首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The characteristics of L-alanine transport in luminal-membrane vesicles isolated either from whole cortex or from pars convoluta or pars recta of rabbit proximal tubules were studied by a rapid filtration technique and by a spectrophotometric method. Uptake of L-alanine by vesicles from whole cortex was mediated by both Na+-dependent and Na+-independent, but electrogenic, processes. The nature, mechanism and tubular localization of the transport systems were studied by the use of vesicles derived from pars convoluta and pars recta. In vesicles from pars recta transport of L-alanine was strictly dependent on Na+ and occurred via a dual transport system, namely a high-affinity (half-saturation 0.14 mM) and a low-affinity system (half-saturation 9.6 mM). The cation-dependent but Na+-unspecific transport system for L-alanine was exclusively localized to the pars convoluta, which also contained an Na+-preferring system of intermediate affinity (half saturation 2.1 mM). A closer examination of the mechanism of transport of L-alanine in vesicles from pars convoluta revealed that an H+ gradient (extravesicular greater than intravesicular) can drive the transport of L-alanine into the vesicles both in the presence and in the absence of Na+. The physiological importance of various L-alanine transporters is briefly discussed.  相似文献   

2.
The mechanisms of renal transport of short chain fatty acids by luminal membrane vesicles prepared from pars convoluta or pars recta of rabbit proximal tubule were studied by a Millipore filtration technique and by a spectrophotometric method using a potential-sensitive carbocyanine dye. Both luminal membrane vesicle preparations take up propionate and butyrate by strictly Na+-dependent transport systems, although with different characteristics. The uptake of short chain fatty acids by membrane vesicles from the pars convoluta was insensitive to changes in membrane potential, which is indicative of electroneutral transport of these compounds. Furthermore, kinetic studies showed that the Na+-dependent, but electrically silent transport of propionate is saturable (Km = 10.9 +/- 1.1 mM and Vmax = 3.6 +/- 0.2 nmol/mg protein per 20 s) and is unaffected by the presence of L- and D-lactate, indicating that these monocarboxylic acids did not share the same common transport system. In the luminal membrane vesicles from the pars recta, the uptake of propionate and butyrate was mediated by an Na+-dependent electrogenic transport process, since addition of the organic compounds to these vesicle/dye suspensions depolarized the membrane vesicles and the renal uptake of propionate and butyrate was enhanced by K+ diffusion potential induced by valinomycin. Competition experiments revealed that in contrast to the transport of propionate by vesicles from the pars convoluta, the Na+-dependent electrogenic transport of short chain fatty acids in vesicles from the pars recta occurred via the same transport system that is responsible for the reabsorption of L- and D-lactate in this region of rabbit kidney proximal tubule.  相似文献   

3.
The characteristics of D- and L-lactate transport in luminal-membrane vesicles derived from whole cortex, from the pars convoluta and from the pars recta of rabbit kidney proximal tubule were studied. It was found that uptake of both isomers in vesicles from whole cortex occurred by means of dual electrogenic transport systems, namely a low-affinity system and a high-affinity system. Uptake of both isomers in vesicles from the pars recta was strictly Na+-dependent and is mediated via a single high-affinity common transport system. Vesicles from the pars convoluta contained a cation-dependent but Na+-unspecific low-affinity common transport system for these compounds. The physiological importance of this system is briefly discussed.  相似文献   

4.
The uptake of taurine by luminal membrane vesicles from pars convoluta and pars recta of rabbit proximal tubule was examined. In pars convoluta, the transport of taurine was characterized by two Na(+)-dependent (Km1 = 0.086 mM, Km2 = 5.41 mM) systems, and one Na(+)-independent (Km = 2.87 mM) system, which in the presence of an inwardly directed H(+)-gradient was able to drive the transport of taurine into these vesicles. By contrast, in luminal membrane vesicles from pars recta, the transport of taurine occurred via a dual transport system (Km1 = 0.012 mM, Km2 = 5.62 mM), which was strictly dependent on Na+. At acidic pH with or without a H(+)-gradient, the Na(+)-dependent flux of taurine was drastically reduced. In both kind of vesicles, competition experiments only showed inhibition of the Na(+)-dependent high-affinity taurine transporter in the presence of beta-alanine, whereas there was no significant inhibition with alpha-amino acids, indicating a beta-amino acid specific transport system. Addition of beta-alanine, L-alanine, L-proline and glycine, but not L-serine reduced the H(+)-dependent uptake of taurine to approx. 50%. Moreover, only the Na(+)-dependent high-affinity transport systems in both segments specifically required Cl-. Investigation of the stoichiometry indicated 1.8 Na+: 1 Cl-: 1 taurine (high affinity), 1 Na+: 1 taurine (low affinity) and 1 H+: 1 taurine in pars convoluta. In pars recta, the data showed 1.8 Na+: 1 Cl-: 1 taurine (high affinity) and 1 Na+: 1 taurine (low affinity).  相似文献   

5.
The GTP-binding proteins on luminal and basolateral membrane vesicles from outer cortex (pars convoluta) and outer medulla (pars recta) of rabbit proximal tubule have been examined. The membrane vesicles were highly purified, as ascertained by electron microscopy, by measurements of marker enzymes, and by investigating segmental-specific transport systems. The [35S]GTP gamma S binding to vesicles, and to sodium cholate-extracted proteins from vesicles, indicated that the total content of GTP-binding proteins were equally distributed on pars convoluta, pars recta luminal and basolateral membranes. The membranes were ADP-ribosylated with [32P]NAD+ in the presence of pertussis toxin and cholera toxin. Gel electrophoresis revealed, for all preparations, the presence of cholera toxin [32P]ADP-ribosylated 42 and 45 kDa G alpha s proteins, and pertussis toxin [32P]ADP-ribosylated 41 kDa G alpha i1, 40 kDa G alpha i2 and 41 kDa G alpha i3 proteins. The 2D electrophoresis indicated that Go's were not present in luminal nor in basolateral membranes of pars convoluta or pars recta of rabbit proximal tubule.  相似文献   

6.
The energetics and location of renal transport of acetoacetate, beta-hydroxybutyrate, alpha-hydroxybutyrate and gamma-hydroxybutyrate by luminal-membrane vesicles from either whole cortex or pars convoluta or pars recta of rabbit proximal tubule were studied. Addition of either acetoacetate or beta-hydroxybutyrate or its analogues to dye-membrane-vesicle suspensions in the presence of Na+ gradient (extravesicular greater than intravesicular) resulted in absorbance changes indicative of depolarizing event(s). Valinomycin enhanced the Na+-dependent uptake of monocarboxylic acids, provided a K+ gradient (intravesicular greater than extravesicular) was present. By contrast, Na+-dependent uptake of these compounds was nearly abolished by ionophores that permit Na+ to pass through the luminal-membrane via another channel, either electrogenically (e.g. gramicidin D) or electroneutrally (e.g. nigericin). These results established that the Na+-dependent transport of ketone bodies and analogues by luminal-membrane vesicles is an electrogenic process. Eadie-Hofstee analysis of saturation kinetic data suggested the presence of multiple transport systems in vesicles from whole cortex for these compounds. Tubular localization of the transport systems was studied by the use of vesicles derived from pars convoluta and pars recta. In pars recta uptake of all these compounds was mediated by means of a single high affinity common transport system. Uptake of these compounds by vesicles from pars convoluta was carried out via a relatively low affinity but common transport system. The physiological importance of the transport systems is discussed.  相似文献   

7.
Uptake of D-alanine against a concentration gradient has been shown to occur with isolated luminal-membrane vesicles from pars convoluta or pars recta of rabbit proximal tubule. Renal D-alanine transport systems, displaying the following characteristics, were shown: (1) In vesicles from pars convoluta, the uptake of D-alanine was mediated by both Na+-dependent and Na+-independent transport processes. It was found that an inwardly directed H+-gradient could drive the transport of D-alanine into the vesicles both in the presence and absence of Na+. Thus, in addition to Na+, the transport of D-alanine is influenced by the H+-gradient. (2) In vesicles from pars recta, the transient accumulation of D-alanine was strictly dependent on Na+, since no 'overshoot' was ever observed in the absence of Na+. Although the Na+-dependent uptake of D-alanine was stimulated at acid pH, H+ did not substitute for Na+, as it apparently does in pars convoluta, but instead potentiated the Na+ effect. (3) Addition of L-alanine to vesicle preparations, both from pars convoluta and from pars recta, specifically inhibited renal uptake of D-alanine. A comparison between the transport characteristics of D- and L-alanine indicated that these two isomers of alanine probably share common transport systems located along the proximal tubule of rabbit kidney.  相似文献   

8.
Na+-H+-exchanger activity of pars convoluta and pars recta luminal-membrane vesicles prepared from the proximal tubule of acidotic and control rabbits were assayed by a rapid-filtration technique and an Acridine Orange method. Both experimental approaches revealed the existence of an antiporter, sensitive to metabolic acidosis, in pars convoluta membrane vesicles. Kinetic data, obtained with the pH-sensitive dye, showed that the Km for Na+ transport was unchanged by acidosis, whereas Vmax. for exchanger activity was increased, on an average, by 44%. The fluorescence method, in contrast with the rapid-filtration technique, was able to detect exchanger activity in pars recta membrane vesicles. The Km value for the antiporter located in pars recta is comparable with that calculated for pars convoluta membrane vesicles. By contrast, the Vmax. of this exchanger is only about 25% of that found for pars convoluta. Furthermore, metabolic acidosis apparently does not increase Na+-H+-exchanger activity of pars recta luminal-membrane vesicles.  相似文献   

9.
Characteristics of 22Na+ fluxes through Na+ channels in luminal-membrane vesicles isolated from either pars recta or pars convoluta of rabbit proximal tubule were studied. In NaCl-loaded vesicles from pars recta, transient accumulation of 22Na+ is observed, which is inhibited by amiloride. The isotope accumulation is driven by an electrical diffusion potential as shown in experiments using either these membrane vesicles loaded with different anions, or an outwardly directed K+ gradient with a K+ ionophore valinomycin. The vesicles containing the channel show a cation selectivity with the order Li+ greater than Na+ greater than K+. The amiloride-sensitive 22Na+ flux is dependent on intravesicular Ca2+. In NaCl-loaded vesicles from pars convoluta, no overshoot for 22Na+ uptake is observed. Furthermore, addition of amiloride to the incubation medium did not influence the uptake of 22Na+ in these vesicle preparations. It is concluded that Na+ channels are only present in pars recta of rabbit proximal tubule.  相似文献   

10.
The distribution and properties of the peptide-transport system in rabbit renal proximal tubule was examined with glycylsarcosine as the substrate and using brush-border-membrane vesicles derived from pars convoluta (outer cortex) and pars recta (outer medulla). The dipeptide was transported into these vesicles against a concentration gradient in the presence of an inward-directed H+ gradient, demonstrating the presence of a H+-coupled peptide-transport system in outer-cortical as well as outer-medullary brush-border membranes. Even though the transport was electrogenic and was energized by a H+ gradient in both membranes, the system was more active in outer medullary membranes than in outer cortical membranes. Kinetic analysis showed that, although the affinity of the transport system for glycylsarcosine was similar in both membrane preparations, the capacity of the system was significantly greater in outer medulla than in outer cortex. In addition, the pH profiles of the peptide-transport systems in these membrane preparations also showed dissimilarities. The greater dipeptide uptake in one membrane vis-à-vis the other may probably be due to the difference in the affinity of the transport system for H+ and/or the difference in peptide/H+ stoichiometry.  相似文献   

11.
Rabbit proximal nephron segments were microperfused in vitro to determine whether active contraluminal uptake of serine occurs in the renal proximal tubule during bath-to-lumen transport (influx) of the L- and D-isomers in the convoluted (pars convoluta) and straight (pars recta) segments. It is known that several amino acids are actively reabsorbed in the proximal nephron by a mechanism involving co-transport with sodium at the luminal membrane. There is some evidence that certain amino acids may also be accumulated across the contraluminal membrane by an energy-dependent mechanism, indicating that net reabsorption is the result of two oppositely directed active transport processes. During in vitro microperfusion of rabbit proximal nephron segments in this study, inward movement of L- and D-serine occurred in a bath-to-cell direction against a concentration gradient in the range 305-2735:1, indicating active uptake at the contraluminal membrane. The concentration gradients were maintained during influx of both isomers of serine in the proximal tubule. L-Serine accumulation by tubular cells was similar in the pars convoluta and recta, and significantly greater than that of D-serine, which was the same in both regions of the proximal tubule. The data support the conclusion that renal handling of serine involves active contraluminal uptake of the L- and D-isomers in both regions of the proximal tubule, and suggest that contraluminal events play an important role in renal handling of amino acids.  相似文献   

12.
We studied the effect of gentamicin on Na+-dependent D-glucose transport into brush-border membrane vesicles isolated from rabbit kidney outer cortex (early proximal tubule) and outer medulla (late proximal tubule) in vitro. We found the same osmotically active space and nonspecific binding between control and gentamicin-treated brush-border membrane vesicles. There was no difference in the passive permeability properties between control and gentamicin-treated brush-border membrane vesicles. Kinetic analyses of D-glucose transport into 1 mM gentamicin-treated brush-border membrane vesicles demonstrated that gentamicin decreased Vmax in the outer cortical preparation, while it did not affect Vmax in the outer medullary preparation. With regard to Km, there was no effect of gentamicin in any vesicle preparation. When brush-border membrane vesicles were incubated with higher concentrations of gentamicin, Na+-dependent D-glucose transport was inhibited dose-dependently in both outer cortical and outer medullary preparations. Dixon plots yield inhibition constant Ki = 4 mM in the outer cortical preparation and Ki = 7 mM in the outer medullary preparation. These results indicate that the Na+-dependent D-glucose transport system in early proximal tubule is more vulnerable to gentamicin toxicity than that in late proximal tubule.  相似文献   

13.
The oviduct of the anuran Lepidobatrachus laevis contains three morphological regions, each of which contains a histochemically distinct luminal mucosa. In the pars recta, the most anterior portion of the oviduct, there are periodic acid-Schiff base (PAS)-positive simple glands and epithelia. In the pars convoluta, there are alcian blue-positive, combined alcian blue- and PAS-positive and PAS-positive gland types. The most posterior region, the pars uterina, contains alcian blue-positive and alcian blue-negative epithelial cells. Previous work has shown that solubilized egg jelly contains a major 29.7 kDa glycoprotein subunit that was detected in oviduct tissue extracts from the pars convoluta in the present study. Rabbit antisera to the 29.7 kDa egg jelly glycoprotein of L. laevis reacted with the major pars convoluta glycoprotein and there were no immunoreactive components in the pars uterina. The slight immunoreactivity detected at 29.0–37.0 kDa in pars recta extracts is not believed to be the jelly molecule, based on low immunoreactivity and subunit molecular weight measurements. We conclude that the synthesis of the 29.7 kDa egg jelly glycoprotein is restricted to the pars convoluta region of the oviduct.  相似文献   

14.
The fertilization layer of Xenopus laevis is formed upon egg activation by the binding of the cortical granule lectin (CGL) to its ligand in the egg extracellular matrix. Using Western blotting methods with biotinylated CGL as a probe, oviductal tissue extracts were examined to determine the site of origin of the CGL ligand. Three glycoprotein ligands of Mrs= > 250,000, 160,000, and 90,000 (reduced samples) were localized to the pars convoluta oviduct immediately posterior to the pars recta oviduct. The binding of CGL to these glycoproteins was inhibited in the presence of 200 mM galactose, but not with 200 mM mannose indicating a specific lectin interaction. The Mrs= > 250,000 and 90,000 glycoproteins were linked by disulfide bonds. In addition, these ligands were secreted from a more anterior region of the pars convoluta oviduct than the Mr=160,000 ligand. No binding of CGL was detected to pars recta secretory granule lysate components. The highest molecular weight CGL ligand seen in the pars convoluta corresponded to the CGL ligand in isolated fertilization envelopes. Thus, the CGL ligand involved in the formation of the fertilization layer is a product of the pars convoluta oviduct.  相似文献   

15.
Sugar uptake by intestinal basolateral membrane vesicles   总被引:6,自引:0,他引:6  
A high yield of membrane vesicles was prepared from the basolateral surface of rat intestinal cells using an N2 cavitation bomb and density gradient centrifugation. The membranes were enriched 10-fold and were free of significatn contamination by brush border membranes and mitochondria. The rate of D-E114C]glucose and L-E13H]glucose uptake into the vesicle was measured using a rapid filtration technique. D-Glucose equilibrated within the vesicles with a half-time 1/25th that for L-glucose. The stereospecific uptake exhibited saturation kinetics with a Km of approx. 44 mM and a V of approx. 110 nmol . mg-1 min-1 at 10 degrees C. The activation energy for the process was 14 kcal . mol-1 below 15 degrees C and it approached 3 kcal . mol-1 above 22 degrees C. Carrier-mediated uptake was eliminated in the presence of 1 mM HgCl2 and 0.5 mM phloretin. The rate of transport was unaffected by the absence or presence of sodium concentration gradients. Competition studies demonstrated that all sugars with the D-glucose pyranose ring chair conformation shared the transport system, and that, with the possible exception of the -OH group at carbon No. 1, there were no specific requirements for an equatorial -OH group at any position in the pyranose ring. In the case of alpha-methyl-D-glucoside its inability to share the D-glucose transport system may be due to steric hindrance posed by the -OCH3 group rather than by a specific requirement for a free hydroxyl group at the position in the ring. It is concluded that sugars are transported across the basolateral membrane of the intestinal epithelium by a facilitated diffusion system reminiscent of that in human red blood cells.  相似文献   

16.
Summary The morphology of tight junctions of the renal proximal tubule was studied comparing the pars convoluta and pars recta of rat, golden hamster, rabbit, cat, dog and tupaia. Though some interspecies variations were observed, the convoluted portions of the proximal tubules revealed quite uniformly very leaky tight junctions with mainly 1–2 strands.Along the whole proximal tubule of the rabbit kidney including the pars recta only minor differences of the zonulae occludentes were found. By contrast, the tight junctions of the pars recta in other species were much more elaborate, especially in cat and tupaia, having up to 6 strands and an overall depth of more than 150 nm. The implications of these findings are discussed with special regard to the functional differences between the pars convoluta and pars recta of the proximal tubule.This work was supported by the Deutsche Forschungsgemeinschaft  相似文献   

17.
Summary New nephron anlages appear in the renal cortex up to the 4th postnatal day (PD). The last anlages to be formed develop into functional nephrons by PD 10, and the cortex appears mature at PD 12 after formation of the cortex corticis. The renal medulla develops by the longitudinal growth of loops of Henle and collecting ducts. The immature medulla cannot be divided into different zones and corresponds structurally to the later inner stripe of the outer zone. The inner zone is formed by PD 8, and the outer stripe of the outer zone by PD 12. The renal medulla is mature at PD 21.From the start of its development, the renal proximal tubule consists of the pars convoluta and pars recta. In both parts the formation of the brush border is accompanied by the simultaneous appearance of brush border enzymes (alkaline phosphatase, -glutamyltranspeptidase, dipeptidylamino-peptidase IV) and lysosomal enzymes (acid phosphatase, acid -galactosidase, N-acetylglucosaminidase, dipeptidylaminopeptidase II) over the full length of the proximal tubule. During the course of proximal tubule maturation, however, the lysosomal enzyme activities decline in the pars convoluta (with constant brush border enzyme activities), while the brush border enzyme activities increase in the pars recta (with constant lysosomal enzyme activities). The two parts further differ in that they exhibit different lysosomal patterns from the outset, the pars convoluta containing numerous large, highly enzyme-active lysosomes arranged in groups, and the pars recta containing only a few very small lysosomes with low enzyme activity. Thus, even in the newborn rat, the lysosomal pattern of the pars recta already corresponds to that of the mature S3 segment. The S1 and S2 segments of the pars convoluta first differentiate between PD 10 and 21, as the groups of large lysosomes are progressively broken up and the extent of the lysosomal apparatus is diminished, this proceeding in a retrograde direction from the end of the immature pars convoluta.Supported by the Deutsche Forschungsgemeinschaft (SFB 105)  相似文献   

18.
Mixed membrane vesicles prepared from cultured chick embryo fibroblasts possess a stereospecific D-glucose transport system, the properties of which are identical to those of the system in intact cells. Uptake of D-glucose proceeds without chemical alteration. The rate of stereospecific uptake of D-glucose into the mixed vesicles is 70% greater than that of the homogenate and uptake is directly proportional to membrane protein concentration. Stereospecific D-glucose uptake appears linear for 0.3 min, reaches a maximum at 2--5 min, and declines to zero by 5 h as L-glucose enters the vesicles. Uptake is osmotically sensitive and inhibited by cytochalasin B (Ki = 0.13 microM) and the structural analogues of D-glucose : D-mannose, 2-deoxy-D-glucose, 3-O-methyl-D-glucose, D-galactose and maltose, but not by sucrose of L-glucose. Uphill counterflow can be demonstrated and the apparent activation energy displays a transition from 47.7 kcal/mol below 11 degrees C to 18.1 kcal/mol above 11 degrees C. Stereospecific uptake rates of mixed vesicles prepared from Rous sarcoma virus-transformed cells are increased 30% over control values, and are increased 66% in vesicles derived from cells incubated for 24 h in glucose-free medium. Plasma membrane vesicles prepared from these cells by a dextran cushion centrifugation procedure display a 9-fold increase in the specific activity of stereospecific D-glucose uptake relative to the homogenate. Extraction of these membranes with dimethylmaleic anhydride (5 mg/mg protein) results in substantial or complete removal of major polypeptides of molecular weight 40 000, 55 000, 75 000, 78 000 and 200 000 with no loss in total uptake activity. Following extraction, major polypeptides of molecular weight 28 000, 33 000 and 68 000 remain in the membrane residue.  相似文献   

19.
Lysosomal membrane vesicles isolated from rat liver were exploited to analyze the mechanism of glucose transport across the lysosomal membrane. Uptake kinetics of [14C]D-glucose showed a concentration-dependent saturable process, typical of carrier-mediated facilitated transport, with a Kt of about 75 mM. Uptake was unaffected by Na+ and K+ ions, membrane potentials, and proton gradients but showed an acidic pH optimum. Lowering the pH from 7.4 to 5.5 had no effect on the affinity of the carrier for the substrate but increased the maximum rate of transport about 3-fold. As inferred from the linearity of Scatchard plots, a single transport mechanism could account for the uptake of glucose under all conditions tested. As indicated by the transstimulation properties of the carrier, other neutral monohexoses, including D-galactose, D-mannose, D- and L-fucose were transported by this carrier. The transport rates and affinities of these sugars, measured by the use of their radiolabeled counterparts, were in the same range as those for D-glucose. Pentoses, sialic acid, and other acidic monosaccharides including their lactones, aminosugars, N-acetyl-hexosamines, and most L-stereoisomers, particularly those not present in mammalian tissues, were not transported by this carrier. Glucose uptake and transstimulation were inhibited by cytochalasin B and phloretin. The biochemical properties of this transporter differentiate it from other well-characterized lysosomal sugar carriers, including those for sialic acid and N-acetylhexosamines. The acidic pH optimum of this glucose transporter is a unique feature not shared with any other known glucose carrier and is consistent with its lysosomal origin.  相似文献   

20.
The initial rates of Na(+)-dependent D-aspartate and D-glucose uptakes were shown to decline from the time of resuspension of brush border membrane vesicles isolated from rabbit and rat jejunum by standard divalent cation precipitation procedures. The former were however more stable than the latter and followed quite closely the decrease in the intravesicular volume, thus suggesting that the loss of transport activity may involve both nonspecific opening of the vesicles and either direct or indirect specific inactivation of the transporters. Uptake rates for both substrates did tend to stabilize at 6-24 h from resuspension, however this final 'next day' uptake activity was too low to be of practical use in kinetic studies. Freezing aliquots of rabbit jejunal vesicles in liquid N2 until the time of assay resulted in complete stabilization of D-glucose uptake. A modified homogenate buffer designed to inhibit a broad spectrum of phospholipase activities resulted in a partial stabilization of glucose transport by rabbit jejunal vesicles with, on average, an over 6-fold enrichment in the 'next day' stable specific activity of uptake as compared to unfrozen vesicles. The modified homogenate buffer also improved the stability and the 'next day' specific activities of D-glucose uptake in rat jejunal brush border vesicles and D-aspartic acid uptake in rabbit jejunal vesicles. It also completely stabilized the intravesicular volume in the latter preparation. An evaluation of the kinetic parameters of Na(+)-dependent D-glucose transport in rabbit vesicles prepared from either the standard homogenate media and frozen in liquid N2 or the modified media and allowed to stabilize overnight, revealed a single transport system with a Km of 0.31-0.32 mM as the best model to fit the data. As such the modifications to the homogenate media do not appear to effect the functional properties of D-glucose transport in the membrane. While being less efficient in stabilizing the vesicles than the rapid freezing protocol, it is shown that the modified homogenate should however be preferred when dealing with slowly permeant ions like choline since it provides in this case the only alternative to reliable measurement of uptake rates across a stable and equilibrated vesicle preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号