首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
When cells are exposed to a strong enough external electric field, transient aqueous pores are formed in the membrane. The fraction of electroporated cells can be determined by measuring the release of intracellular potassium ions. The current work is the first study where such a method was employed successfully not only with cells suspended in the medium with a rather high concentration of potassium (4-5 mM) but also with cells that release some part of intracellular potassium responding, in this way, to the stress caused by manipulation procedures during the preparation of the cell suspension. Experiments were carried out on mouse hepatoma MH-A22 cells exposed to a square-wave electric pulse. The curves showing the dependence of the fraction of the cells that have become permeable to bleomycin, a membrane-impermeable cytotoxic drug, are close to the ones showing the release of intracellular potassium ions.  相似文献   

2.
Electroporation uses electric pulses to promote delivery of DNA and drugs into cells. This study presents a model of electroporation in a spherical cell exposed to an electric field. The model determines transmembrane potential, number of pores, and distribution of pore radii as functions of time and position on the cell surface. For a 1-ms, 40 kV/m pulse, electroporation consists of three stages: charging of the cell membrane (0-0.51 micros), creation of pores (0.51-1.43 micros), and evolution of pore radii (1.43 micros to 1 ms). This pulse creates approximately 341,000 pores, of which 97.8% are small ( approximately 1 nm radius) and 2.2% are large. The average radius of large pores is 22.8 +/- 18.7 nm, although some pores grow to 419 nm. The highest pore density occurs on the depolarized and hyperpolarized poles but the largest pores are on the border of the electroporated regions of the cell. Despite their much smaller number, large pores comprise 95.3% of the total pore area and contribute 66% to the increased cell conductance. For stronger pulses, pore area and cell conductance increase, but these increases are due to the creation of small pores; the number and size of large pores do not increase.  相似文献   

3.
Neuromodulation applications of nanosecond electric pulses (nsEP) are hindered by their low potency to elicit action potentials in neurons. Excitation by a single nsEP requires a strong electric field which injures neurons by electroporation. We bypassed the high electric field requirement by replacing single nsEP stimuli with high-frequency brief nsEP bursts. In hippocampal neurons, excitation thresholds progressively decreased at nsEP frequencies above 20–200 kHz, with up to 20–30-fold reduction at sub-MHz and MHz rates. For a fixed burst duration, thresholds were determined by the duty cycle, irrespective of the specific nsEP duration, rate, or number of pulses per burst. For 100-μs bursts of 100-, 400-, or 800-ns pulses, the threshold decreased as a power function when the duty cycle exceeded 3–5 %. nsEP bursts were compared with single “long” pulses whose duration and amplitude matched the duration and the time-average amplitude of the burst. Such pulses deliver the same electric charge as bursts, within the same time interval. High-frequency nsEP bursts excited neurons at the time-average electric field 2–3 times below the threshold for a single long pulse. For example, the excitation threshold of 139 ± 14 V/cm for a single 100-μs pulse decreased to 57 ± 8 V/cm for a 100-μs burst of 100-ns, 0.25-MHz pulses (p < 0.001). Applying nsEP in bursts reduced or prevented the loss of excitability in multiple stimulation attempts. Stimulation by high-frequency nsEP bursts is a powerful novel approach to excite neurons at paradoxically low electric charge while also avoiding the electroporative membrane damage.  相似文献   

4.
The technology for loading the cell with membrane-impermeable substances by means of electroporation consists of the following three stages: (i) the creation of pores permeable for the desired substance; (ii) the introduction of a substance into the cell cytosol; and (iii) the restoration of the membrane barrier function. In this paper, the experimental data on the loading of human erythrocytes with small molecules (molecular weight below 500 Da) is presented. The results obtained show that increasing the intensity of the electric field pulse increases the fraction of electroporated cells. The pores through which the molecules of ascorbic acid and mannitol (radius below 0.5 nm) can enter the erythrocytes appear when the field strength exceeds 2.5 kV/cm. The concentration of ascorbic acid inside the cells increases linearly. At 4 degrees C, the rate of ascorbic acid influx was constant for at least 4 hours. The original permeability of most of the cells towards ascorbic acid and mannitol was restored after about 6-7 min at 37 degrees C, and the characteristic time for complete resealing was about 20-40 min. The procedure described here can be used for loading cells with membrane-impermeable substances.  相似文献   

5.
This study investigated whether molecules spontaneously transported inside cells, like glucose derivatives, can also be used as electropermeabilization markers. Uptake of a fluorescent deoxyglucose derivative (2-NBDG) by normal and electropermeabilized cells in culture was analyzed. 2-NBDG was added to DC-3F cell suspensions and cells, exposed or not to eight square-wave electric pulses of 100-μs duration and of appropriate field amplitude at a repetition frequency of 1 Hz or 5 kHz, were incubated at 37 °C. 2-NBDG uptake was temperature-, concentration- and time-dependent in cells submitted or not to the electric pulses. In spite of significant uptake of 2-NBDG mediated by GLUT transporters into nonpermeabilized cells, the electric pulses significantly increased about ten to hundred times the 2-NBDG uptake into the cells. The increase in the field amplitude from 900 to 1,500 V/cm resulted in a progressive increase of 2-NDBG. Our results show that under the conditions of in vivo exposure duration to FDG and the physiological concentration of d-glucose, electric pulses increased 2-NBDG uptake into electropermeabilized cells. Under our experimental conditions, the percentage of permeabilized cells within the population of cells exposed to electric pulses remained at the same level regardless of the pulse frequency used, 1 Hz or 5 kHz. The findings showed that glucose derivatives can also be used to detect electropermeabilized cells exposed to electric pulses.  相似文献   

6.
Role of pulse shape in cell membrane electropermeabilization   总被引:2,自引:0,他引:2  
The role of the amplitude, number, and duration of unipolar rectangular electric pulses in cell membrane electropermeabilization in vitro has been the subject of several studies. With respect to unipolar rectangular pulses, an improved efficiency has been reported for several modifications of the pulse shape: separate bipolar pulses, continuous bipolar waveforms, and sine-modulated pulses. In this paper, we present the results of a systematic study of the role of pulse shape in permeabilization, cell death, and molecular uptake. We have first compared the efficiency of 1-ms unipolar pulses with rise- and falltimes ranging from 2 to 100 μs, observing no statistically significant difference. We then compared the efficiency of triangular, sine, and rectangular bipolar pulses, and finally the efficiency of sine-modulated unipolar pulses with different percentages of modulation. We show that the results of these experiments can be explained on the basis of the time during which the pulse amplitude exceeds a certain critical value.  相似文献   

7.
K. Lindsey  M. G. K. Jones 《Planta》1987,172(3):346-355
A simple method has been developed to determine the changes in permeability of protoplasts and intact cells when electroporated. Cells and protoplasts of sugar beet, Beta vulgaris L., were subjected to electric pulse treatments of different field strengths, pulse number and pulse duration, and the ability to accumulate and retain the hydrophilic dye phenosafranine was determined spectrophotometrically. Results of timecourse studies of phenosafranine accumulation and retention indicated that pores are formed or enlarged rapidly in the plasmamembrane and remain permeable to phenosafranine for relatively long periods; the half-life of the pores was temperaturedependent. Both cells and protoplasts retained the highest levels of phenosafranine when supplied with a series of five rectangular pulses of 50 s duration and of field strength 2500 V·cm-1. If these parameters were exceeded, The phenosafranine content was reduced, concomitant with a decline in viability as indicated by fluorescein-diacetate staining, indicating the loss of the integrity of the plasmamembrane. The pattern of accumulation and retention by protoplasts of radioactivity from [3H]pABD1, a modified bacterial plasmid, was similar to that of phenosafranine, but uptake of the plasmid by cells was not demonstrated. The mothod can be used to determine conditions for the optimum permeabilization of protoplasts for direct gene transfer.  相似文献   

8.
The erythrocytes infection by a parasite (Babesia canis) induced a modification of the biological membrane which was studied using the effect of electric pulses of short duration. This process induces the formation of pores and during the opening hemoglobin and other cytoplasmic proteins diffuse out of the cells and are recovered in the external medium. The rate of molecular permeation across the electrically perforated membranes depends on several factors: electric-field strength, pulses number, pulse duration, temperature and cellular concentration. Even for low parasitemia, differences in the effect of these parameters were observed between infected and non-infected erythrocytes.  相似文献   

9.
Electric pulses are known to affect the outer membrane and intracellular structures of tumour cells. By applying electrical pulses of 450 ns duration with electric field intensity of 8 kV/cm to HepG2 cells for 30 s, electric pulse‐induced changes in the integrity of the plasma membrane, apoptosis, viability and mitochondrial transmembrane potential were investigated. Results demonstrated that electric pulses induced cell apoptosis and necrosis accompanied with the decrease of mitochondrial transmembrane potential and the formation of pores in the membrane. The role of cytoskeleton in cellular response to electric pulses was investigated. We found that the apoptotic and necrosis percentages of cells in response to electric pulses decreased after cytoskeletal disruption. The electroporation of cell was not affected by cytoskeletal disruption. The results suggest that the disruption of actin skeleton is positive in protecting cells from killing by electric pulses, and the skeleton is not involved in the electroporation directly.  相似文献   

10.
1. Modification of erythrocyte membrane properties infected by Babesia canis was studied using the effect of electric pulses of short duration. 2. This process induces the formation of pores in the membrane and the releasing of hemoglobin and other cytoplasmic proteins into the external medium. 3. The rate of molecular permeation across the electrically perforated membranes depends on several factors: electric-field strength, pulse number, pulse duration, temperature and cellular concentration. 4. Even for low parasitemia, differences in the effect of these parameters were observed between infected and non-infected erythrocytes. 5. Here we describe an influence of electric field intensity and temperatures on the opening pores.  相似文献   

11.
Current challenges in embryonic-stem cell (ESC) research include the inability of sustaining and culturing of undifferentiated ESCs over time. Growth-arrested feeder cells are essential to the culture and sustaining of undifferentiated ESCs, and they are currently prepared using gamma-radiation and chemical inactivation. Both techniques have severe limitations. In this study, we developed a new, simple and effective technique (pulsed electric fields, PEFs) to produce viable growth-arrested cells (RTS34st) and used them as high-quality feeder cells to culture and sustain undifferentiated zebrafish ESCs over time. The cells were exposed to 25 sequential 10-ns electric pulses (10nsEPs) of 25, 40 and 150 kV/cm with 1-s pulse interval, or 2 sequential 50-μs electric pulses (50μsEPs) of 2.83, 1.78 and 0.78 kV/cm with 5-s pulse interval, respectively. We found that the cellular effects of PEFs depended directly upon the duration, number and electric field strength of the pulses, showing the feasibility of tuning them to produce various types of growth-arrested cells for culturing undifferentiated ESCs. Both 10nsEPs of 40 kV/cm produced by a 10nsEP generator and 50μsEPs of 1.78 kV/cm provided by inexpensive and widely available conventional electroporators, generated high-quality growth-arrested feeder cells for proliferation of undifferentiated ESCs over time. PEFs can therefore be used to replace radiation and chemical inactivation methods for preparation of growth-arrested feeder cells for advancing ESC research.  相似文献   

12.
The most important unpleasant sensation of electrochemotherapy is muscle contraction. One of the causes of this discomfort is electrochemotherapy in the low-frequency range (1 Hz). To resolve this problem, there are two solutions: first, increasing the repetition frequency of electric pulses above the tetanic frequency and, second, reducing the voltage amplitude. This study examines the antitumor effectiveness of treatment using low electric fields and high frequency in the presence and absence of chemotherapeutic agents. High-voltage amplitude electrochemotherapy was performed by eight pulses, at 1,000 V/cm, of 100-μs duration at 1-Hz and 5-kHz repetition frequency. In the low-voltage amplitude protocol, 4,000 pulses, of 100-μs duration at 5-kHz repetition frequency with 70, 100 and 150 V/cm were delivered to invasive ductal carcinoma tumors after intratumoral injection of bleomycin. Our data demonstrate significant differences in tumor volumes and the curability rate between mice treated by 70 V/cm compared to other groups. Electrochemotherapy, which is specified by a higher repetition frequency of electric pulses (5 kHz) and low voltage, inhibits tumor growth. This protocol has a comparable effect to 1-Hz pulse repetition electric pulses with high voltage. Based on these results, the 4,000 pulses of 70 V/cm with 5-kHz frequency are most effective. This protocol demonstrates inhibition of tumor growth without any need for drug administration.  相似文献   

13.
The voltage-dependent activity of prestin, the outer hair cell (OHC) motor protein essential for its electromotility, enhances the mammalian inner ear's auditory sensitivity. We investigated the effect of prestin's activity on the plasma membrane's (PM) susceptibility to electroporation (EP) via cell-attached patch-clamping. Guinea pig OHCs, TSA201 cells, and prestin-transfected TSA cells were subjected to incremental 50 mus and/or 50 ms voltage pulse trains, or ramps, at rates from 10 V/s to 1 kV/s, to a maximum transmembrane potential of +/-1000 mV. EP was determined by an increase in capacitance to whole-cell levels. OHCs were probed at the prestin-rich lateral PM or prestin-devoid basal portion; TSA cells were patched at random points. OHCs were consistently electroporated with 50 ms pulses, with significant resistance to depolarizing pulses. Although EP rarely occurred with 50 mus pulses, prior stimulation with this protocol had a significant effect on the sensitivity to EP with 50 ms pulses, regardless of polarity or PM domain. Consistent with these results, resistance to EP with depolarizing 10-V/s ramps was also found. Our findings with TSA cells were comparable, showing resistance to EP with both depolarizing 50-ms pulses and 10 V/s ramps. We conclude prestin significantly affects susceptibility to EP, possibly via known biophysical influences on specific membrane capacitance and/or membrane stiffness.  相似文献   

14.
Modeling and experimental studies have shown that pulsed electric fields of nanosecond duration and megavolt per meter amplitude affect subcellular structures but do not lead to the formation of large pores in the outer membrane. This "intracellular electromanipulation" requires the use of pulse generators which provide extremely high power but low energy pulses. In this study, we describe the concept of the required pulsed power sources, their design, operation, and the necessary diagnostics. Two types of pulse generators based on the Blumlein line principle have been developed and are described here. One system is designed to treat a large number of cells in cuvettes holding volumes from 0.1 to 0.8 ml. Pulses of up to 40 kV amplitude, with a duration of 10 ns and a rise time close to 1 ns can be applied to the cuvette. For an electrode gap of 1 mm this voltage corresponds to an average electric field of 40 MV/m. The second system allows for real time observation of individual cells under a microscope. It generates pulses of 10-300 ns duration with a rise time of 3.5 ns and voltage amplitudes up to 1 kV. Connected to a microreactor with an electrode gap of 100 microm, electric fields up to 10 MV/m are applied.  相似文献   

15.
Electric fields of a few kV/cm and of duration in microseconds are known to implant pores of limited size in cell membranes. We report here a study of kinetics of pore formation and reversibility of pores. Loading of biologically active molecules was also attempted. For human erythrocytes in an isotonic saline, pores allowed passive Rb+ entry formed within 0.5 microsecond when a 4 kV/cm electric pulse was used. Pores that admitted oligosaccharides were introduced with an electric pulse of a longer duration in an isosmotic mixture of NaCl and sucrose. These pores were irreversible under most circumstances, but they could be resealed in an osmotically balanced medium. A complete resealing of pores that admitted Rb+ took approximately 40 min at 37 degrees C. Resealing of pores that admitted sucrose took much longer, 20 h, under similar conditions. In other cell types, resealing step may be omitted due to stronger membrane structures. Experimental protocols for loading small molecules into cells without losing cytoplasmic macromolecules are discussed.  相似文献   

16.
Extremely large but very short (20 kV/cm, 300 ns) electric field pulses were reported recently to non-thermally destroy melanoma tumors. The stated mechanism for field penetration into cells is pulse characteristic times faster than charge redistribution (displacement currents). Here we use a multicellular model with irregularly shaped, closely spaced cells to show that instead overwhelming pore creation (supra-electroporation) is dominant, with field penetration due to pores (ionic conduction currents) during most of the pulse. Moreover, the model's maximum membrane potential (about 1.2 V) is consistent with recent experimental observations on isolated cells. We also use the model to show that conventional electroporation resulting from 100 microsecond, 1 kV/cm pulses yields a spatially heterogeneous electroporation distribution. In contrast, the melanoma-destroying pulses cause nearly homogeneous electroporation of cells and their nuclear membranes. Electropores can persist for times much longer than the pulses, and are likely to be an important mechanism contributing to cell death.  相似文献   

17.
The role of polyethylene glycol (PEG) in the transformation of Schizosaccharomyces pombe by electroporation is investigated by fluorescein isothiocyanate-dextran uptake and transformation studies. It is shown that when S. pombe cells are electroporated in the presence of PEG, the permeability state created is sustained until removal of PEG. In addition, the permeability of electroporated S. pombe envelopes is further increased with longer incubation times in PEG. The increased permeability is apparently a result of enlarged pores (electropores) due to the presence of PEG. Comparison of a heat pulse transformation protocol with electroporation suggests a second role for PEG in the uptake of macromolecules. Since pores are not thought to be created during a heat pulse, the PEG may be facilitating the uptake of plasmid DNA. This facilitation of uptake would also be expected to affect DNA uptake by electroporated cells.  相似文献   

18.
The influence of stimulus pulse duration on calcium mobilization triggering facilitation of evoked [(3)H]acetylcholine ([(3)H]ACh) release by the A(2A) adenosine receptor agonist CGS 21680C was studied in the rat phrenic nerve-hemidiaphragm. The P-type calcium channel blocker omega-agatoxin IVA (100 nM) decreased [(3)H]ACh release evoked with pulses of 0.04-ms duration, whereas nifedipine (1 microM) inhibited transmitter release with pulses of 1-ms duration. Depletion of intracellular calcium stores by thapsigargin (2 microM) decreased [(3)H]ACh release evoked by pulses of 1 ms, an effect observed even in the absence of extracellular calcium. With short (0.04-ms) stimulation pulses, when P-type calcium influx triggered transmitter release, facilitation of [(3)H]ACh release by CGS 21680C (3 nM) was attenuated by both thapsigargin (2 microM) and nifedipine (1 microM). With longer stimuli (1 ms), a situation in which both thapsigargin-sensitive internal stores and L-type channels are involved in ACh release, pretreatment with either omega-agatoxin IVA (100 nM) or nifedipine (1 microM) reduced the facilitatory effect of CGS 21680C (3 nM). The results suggest that A(2A) receptor activation facilitates ACh release from motor nerve endings through alternatively mobilizing the available calcium pools (thapsigargin-sensitive internal stores and/or P- or L-type channels) that are not committed to the release process in each stimulation condition.  相似文献   

19.
Transient membrane permeabilization by application of high electric field intensity pulses on cells (electropermeabilization) depends on several physical parameters associated with the technique (pulse intensity, number, and duration). In the present study, electropermeabilization is studied in terms of flow of diffusing molecules between cells and external medium. Direct quantification of the phenomenon shows that electric field intensity is a critical parameter in the induction of permeabilization. Electric field intensity must be higher than a critical threshold to make the membrane permeable. This critical threshold depends on the cell size. Extent of permeabilization (i.e., the flow rate across the membrane) is then controlled by both pulse number and duration. Increasing electric field intensity above the critical threshold needed for permeabilization results in an increase membrane area able to be permeabilized but not due to an increase in the specific permeability of the field alterated area. The electroinduced permeabilization is transient and disappears progressively after the application of the electric field pulses. Its life time is under the control of the electric field parameters. The rate constant of the annealing phase is shown to be dependent on both pulse duration and number, but is independent of electric field intensity which creates the permeabilization. The phenomenon is described in terms of membrane organization transition between the natural impermeable state and the electro-induced permeable state, phenomenon only locally induced for electric field intensities above a critical threshold and expanding in relation to both pulse number and duration.  相似文献   

20.
Rhabdomyolysis due to pulsed electric fields   总被引:5,自引:0,他引:5  
High-voltage electrical trauma frequently results in extensive and scattered destruction of skeletal muscle along the current path. The damage is commonly believed to be mediated by heating. Recent experimental and theoretical evidence suggests, however, that the rhabdomyolysis and secondary myoglobin release that occur also can result from electroporation, a purely nonthermal mechanism. Based on the results of a computer simulation of a typical high-voltage electric shock, we have postulated that electroporation contributes substantially to skeletal muscle damage and could be the primary mechanism of damage in some cases of electrical injury. In this study, we determined the threshold field strength and exposure duration required to produce rhabdomyolysis by the electroporation mechanism. The change in the electrical impedance of intact skeletal muscle tissue following the application of short-duration, high-intensity electric field pulses is used as an indicator of membrane damage. Our experiments show that a decrease in impedance magnitude occurs following electric field pulses that exceed threshold values of 60 V/cm magnitude and 1-ms duration. The field strength, pulse duration, and number of pulses are factors that determine the extent of damage. The effect does not depend on excitation-contraction coupling. Electron micrographs confirm structural defects created in the membranes by the applied electric field pulses, and these represent the first clear demonstration of rhabdomyolysis in intact muscle due to electroporation. These results provide compelling evidence in support of our postulate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号