首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Excitatory effects of adenosine and ATP on carotid body (CB) chemoreception have been previously described. Our hypothesis is that both ATP and adenosine are the key neurotransmitters responsible for the hypoxic chemotransmission in the CB sensory synapse, their relative contribution depending on the intensity of hypoxic challenge. To test this hypothesis we measured carotid sinus nerve (CSN) activity in response to moderate and intense hypoxic stimuli (7 and 0% O(2)) in the absence and in the presence of adenosine and ATP receptor antagonists. Additionally, we quantified the release of adenosine and ATP in normoxia (21% O(2)) and in response to hypoxias of different intensities (10, 5, and 2% O(2)) to study the release pathways. We found that ZM241385, an A(2) antagonist, decreased the CSN discharges evoked by 0 and 7% O(2) by 30.8 and 72.5%, respectively. Suramin, a P(2)X antagonist, decreased the CSN discharges evoked by 0 and 7% O(2) by 64.3 and 17.1%, respectively. Simultaneous application of both antagonists strongly inhibited CSN discharges elicited by both hypoxic intensities. ATP release by CB increased in parallel to hypoxia intensity while adenosine release increased preferably in response to mild hypoxia. We have also found that the lower the O(2) levels are, the higher is the percentage of adenosine produced from extracellular catabolism of ATP. Our results demonstrate that ATP and adenosine are key neurotransmitters involved in hypoxic CB chemotransduction, with a more relevant contribution of adenosine during mild hypoxia, while vesicular ATP release constitutes the preferential origin of extracellular adenosine in high-intensity hypoxia.  相似文献   

2.
Obata T 《Life sciences》2002,71(18):2083-2103
Adenosine exerts cardioprotective effects on the ischemic myocardium. A flexibly mounted microdialysis probe was used to measure the concentration of interstitial adenosine and to assess the activity of ecto-5'-nucleotidase (a key enzyme responsible for adenosine production) in in vivo rat hearts. The level of adenosine during perfusion of adenosine 5'-adenosine monophosphate (AMP) was given as an index of the activity of ecto-5'-nucleotidase in the tissue. Endogenous norepinephrine (NE) activates both alpha(1)-adrenoceptors and protein kinase C (PKC), which, in turn, activates ecto-5'-nucleotidase via phosphorylation thereby enhancing the production of interstitial adenosine. Histamine-release NE activates PKC, which increased ecto-5'-nucleotidase activity and augmented release of adenosine. Opening of cardiac ATP sensitive K(+) (K(ATP)) channels may cause hydroxyl radical (.OH) generation through NE release. Lysophosphatidylcholine (LPC), an endogenous amphiphiphilic lipid metabolite, also increases the concentration of interstitial adenosine in rat hearts, through the PKC-mediated activation of endogenous ecto-5'-nucleotidase. Nitric oxide (NO) facilitates the production of interstitial adenosine, via guanosine 3',5'-cyclic monophosphate (cGMP)-mediated activation of ecto-5'-nucleotidase as another pathway. These mechanisms play an important role in high sensitivity of the cardiac adenosine system. Adenosine plays an important role as a modulator of ischemic reperfusion injury, and that the production and mechanism of action of adenosine are linked with NE release.  相似文献   

3.
The extracellular cAMP-adenosine pathway refers to the local production of adenosine mediated by cAMP egress into the extracellular space, conversion of cAMP to AMP by ectophosphodiesterase (PDE), and the metabolism of AMP to adenosine by ecto-5'-nucleotidase. The goal of this study was to assess whether the cAMP-adenosine pathway is expressed in oviduct cells. Studies were conducted in cultured bovine oviduct cells (mixed cultures of fibroblasts and epithelial cells, 1:1 ratio). Confluent monolayers of oviduct cells were exposed to cAMP (0.01-100 micromol/L) in the presence and absence of 3-isobutyl-1-methylxanthine (IBMX, 1 mmol/L, an inhibitor of both extracellular and intracellular PDE activity), 1,3-dipropyl-8-p-sulfophenylxanthine (DPSPX, 100 micromol/L, a xanthine that can inhibit extracellular or ecto-PDE activity at high concentrations), or alpha,beta-methylene-adenosine-5'-diphosphate (AMPCP, 100 micromol/L, an ecto-5'-nucleotidase inhibitor) for 0-60 min. The medium was then sampled and assayed for AMP, adenosine, and inosine. Addition of exogenous cAMP to oviduct cells increased extracellular levels of AMP, adenosine, and inosine in a concentration- and time-dependent manner. This effect was attenuated by blockade of total (extracellular and intracellular) PDE activity (IBMX), ecto-PDE activity (DPSPX), or ecto-5'-nucleotidase (AMPCP). The functional relevance of the cAMP-adenosine pathway is supported by the findings that treatment with adenylyl cyclase stimulants (forskolin plus isoproterenol) resulted in the egress of cAMP (97% extracellular) into the extracellular space and its conversion into adenosine. The extracellular cAMP-adenosine pathway exists in oviduct cells and may play an important role in regulating the biology and physiology of the oviduct. This pathway also may play a critical role in regulating sperm function, fertilization, and early embryo development.  相似文献   

4.
We examined whether reserpine-induced norepinephrine (NE) depletion attenuated the products of adenosine in rat heart. A flexibly mounted microdialysis technique was used to measure the concentration of interstitial adenosine and to assess the activity of ecto-5'-nucleotidase in rat hearts in situ. The microdialysis probe was implanted in the left ventricular myocardium of anesthetized rats and perfused with Tyrode solution containing adenosine 5'-monophosphate (AMP) at rate of 1.0 microliter/min. The baseline level of dialysate adenosine was 0.51 +/- 0.09 microM. The introduction of AMP (100 microM) through the probe increased markedly the dialysate adenosine to 8.95 +/- 0.86 microM, and this increase was inhibited by ecto-5'-nucleotidase inhibitor, alpha, beta-methyleneadenosine 5'-diphosphate (AOPCP, 100 microM), to 0.66 +/- 0.38 microM. Thus, the level of dialysate adenosine is a measure of the ecto-5'-nucleotidase activity in the tissue in situ. AMP concentration for the half-maximal effect of adenosine release (EC(50)) was 107.3 microM. The maximum attainable concentration of dialysate adenosine (E(max)) by AMP was 21.1 microM. However, the EC(50) and E(max) values with reserpinized animals were 106.9 and 7.1 microM, respectively. Electrical stimulation of the left stellate ganglion increased significantly dialysate adenosine concentration, from the control level of 8.66 +/- 0.96 microM to 12.38 +/- 1.11 microM. After stimulation, dialysate adenosine returned to near the prestimulation level. When corresponding experiments were performed with reserpinized animals, the effect of electrical stimulation was abolished. Tyramine (endogenous catecholamine trigger) increased the adenosine concentration in a concentration-dependent manner. However, the elevation of adenosine concentration with reserpinized animals was not observed. These results suggest that reserpine attenuates NE-induced adenosine via stimulation of alpha(1)-adrenoceptor and protein kinase C mediated activation of ecto-5'-nucleotidase in rat heart.  相似文献   

5.
K+ and glutamate released endogenous adenosine from superfused slices of rat parietal cortex. The absence of Ca2+ markedly diminished K+- but not glutamate-evoked adenosine release. Tetrodotoxin decreased K+- and glutamate-evoked adenosine release by 40 and 20%, respectively, indicating that release was mediated in part by propagated action potentials in the slices. Inhibition of ecto-5'-nucleotidase by alpha,beta-methylene ADP and GMP decreased basal release of adenosine by 40%, indicating that part of the adenosine was derived from the extracellular metabolism of released nucleotide. In contrast, inhibition of ecto-5'-nucleotidase did not affect release evoked by K+ or glutamate, suggesting that adenosine was released as such. Inhibition of glutamate uptake by dihydrokainate potentiated glutamate-evoked release of adenosine. Glutamate-evoked adenosine release was diminished 50 and 55% by the N-methyl-D-aspartate (NMDA) receptor antagonists, DL-2-amino-5-phosphonovaleric acid and (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801), respectively. The remaining release in the presence of MK-801 was diminished a further 66% by the non-NMDA receptor antagonist, 6,7-dinitroquinoxaline-2,3-dione, suggesting that both NMDA and non-NMDA receptors were involved in glutamate-evoked adenosine release. Surprisingly, K+-evoked adenosine release was also diminished about 30% by NMDA antagonists, suggesting that K+-evoked adenosine release may be partly mediated indirectly through the release of an excitatory amino acid acting at NMDA receptors.  相似文献   

6.
Changes in 5'-nucleotidase activity were calculated on the basis of alterations in ATP, ADP, phosphocreatine, Pi, Mg2+, IMP and AMP, determined by using 31P n.m.r. spectroscopy and h.p.l.c., during isoprenaline infusion, graded hypoxia and graded underperfusion in isolated rat heart. Calculated activity changes were compared with the total efflux of purines (adenosine + inosine + hypoxanthine) in order to assess the involvement of various 5'-nucleotidases in formation of adenosine. Purine efflux exhibited an exponential relation with cytosolic [AMP] during isoprenaline infusion and hypoxia (r = 0.92 and 0.95 respectively), supporting allosteric activation of 5'-nucleotidase under these conditions. Purine efflux displayed a linear relation with cytosolic [AMP] during graded ischaemia (r = 0.96), supporting substrate regulation in the ischaemic heart. The calculated activities of membrane-bound ecto-5'-nucleotidase were similar to the observed relations between purine efflux and cytosolic [AMP] in all hearts. The calculated activities of the ATP-activated cytosolic and lysosomal enzymes and of the ATP-inhibited cytosolic 5'-nucleotidase could not explain the observed release of purines under the conditions examined. These results indicate that the kinetic characteristics of the membrane-bound ecto-enzyme are consistent with an important role in the formation of extracellular adenosine, whereas the characteristics of the other 5'-nucleotidases are inconsistent with roles in adenosine formation under the conditions of the present study.  相似文献   

7.
Adenosine formation and release were studied in 48-h-old cultured ciliary ganglia and confluent peripheral and CNS glial cultures from embryonic chicks. Metabolic poisoning induced by 30 mM 2-deoxyglucose and 2 micrograms/ml oligomycin reduced ATP concentration by 90%. An increase in adenosine accounted for 15-40% of the fall in ATP. Dilazep (3 X 10(-6) M), a nucleoside transport inhibitor, decreased both incorporation of adenosine (an index of nucleoside transport) and release of adenosine by 80-90%. Dilazep trapped the newly formed adenosine intracellularly. A concentration of alpha, beta-methylene ADP that inhibited ecto-5'-nucleotidase by 80-90% did not alter the concentration of adenosine or AMP in neurons, glia, or medium. The results demonstrate that adenosine is formed intracellularly and exported out of the cell via the nucleoside transporter. The participation of ecto-5'-nucleotidase was excluded.  相似文献   

8.
The neuromodulator adenosine can be released as such, mainly activating inhibitory A1 receptors, or formed from released ATP, preferentially activating facilitatory A2A receptors. We tested if changes in extracellular adenosine metabolism paralleled changes in A1/A2A receptor neuromodulation in the aged rat hippocampus. The evoked release and extracellular catabolism of ATP were 49-55% lower in aged rats, but ecto-5'-nucleotidase activity, which forms adenosine, was 5-fold higher whereas adenosine uptake was decreased by 50% in aged rats. The evoked extracellular adenosine accumulation was 30% greater in aged rats and there was a greater contribution of the ecto-nucleotidase pathway and a lower contribution of adenosine transporters for extracellular adenosine formation in nerve terminals. Interestingly, a supramaximal concentration of an A1 receptor agonist, N6-cyclopentyladenosine (250 nM) was less efficient in inhibiting (17% in old versus 34% in young) and A2A receptor activation with 30 nM CGS21680 was more efficient in facilitating (63% in old versus no effect in young) acetylcholine release from hippocampal slices of aged compared with young rats. The parallel changes in the metabolic sources of extracellular adenosine and A1/A2A receptor neuromodulation in aged rats further strengthens the idea that different metabolic sources of extracellular adenosine are designed to preferentially activate different adenosine receptor subtypes.  相似文献   

9.
Ecto-5'-nucleotidase is regarded as being the key enzyme in the formation of the neuromodulator adenosine from released ATP. However, the association of ecto-5'-nucleotidase with nerve terminals is not consensual. Only enzyme histochemical and biochemical studies, but not immunocytochemical studies, agree on a general synaptic location of the enzyme. To clarify this issue further we tested the effect of an antibody against ecto-5'-nucleotidase, previously used in immunocytochemical studies, on the activity of ecto-5'-nucleotidase in fractions of nerve terminals isolated from different areas of rat hippocampus. The specific activity of extracellular AMP catabolism was higher in synaptosomes from the CA3 area (0.81+/-0.06 nmol/min/mg of protein) than from synaptosomes from the CA1 area or the dentate gyrus or from the whole hippocampus (0.49-0.68 nmol/ min/mg of protein). The catabolism of AMP (10 microM) was equally inhibited (85-92%) in synaptosomes from whole hippocampus, CA1, CA3, or dentate gyrus by alpha,beta-methylene-ADP (100 microM) and equally unaffected by p-nitrophenyl phosphate (0.5 mM) or rabbit IgGs (100 microg/ml). However, the antiserum against ecto-5'-nucleotidase (100 microg/ml) inhibited extracellular AMP catabolism by 44% in CA3 synaptosomes but had little or no effect in synaptosomes from CA1, dentate gyrus, or whole hippocampus. A similar difference in the inhibitory potential of the antibody was observed between fractions of isolated 5'-nucleotidase binding to concanavalin A-Sepharose (70%) and fractions not retained by the lectin column (18%). Taken together, these results suggest that immunological isoforms of ecto-5'-nucleotidase exist in the rat hippocampal nerve terminals, with predominance in the CA3 area.  相似文献   

10.
Adenosine and arachidonate (AA) fulfil opposite modulatory roles, arachidonate facilitating and adenosine inhibiting cellular responses. To understand if there is an inter-play between these two neuromodulatory systems, we investigated the effect of AA on extracellular adenosine metabolism in hippocampal nerve terminals. AA (30 microm) facilitated by 67% adenosine evoked release and by 45% ATP evoked release. These effects were not significantly modified upon blockade of lipooxygenase or cyclooxygenase and were attenuated (52-61%) by the protein kinase C inhibitor, chelerythrine (6 microm). The ecto-5'-nucleotidase inhibitor, alpha,beta-methylene ADP (100 microm), caused a larger inhibition (54%) of adenosine release in the presence of AA (30 microm) compared with control (37% inhibition) indicating that the AA-induced extracellular adenosine accumulation is mostly originated from an increased release and extracellular catabolism of ATP. This AA-induced extracellular adenosine accumulation is further potentiated by an AA-induced decrease (48%) of adenosine transporters capacity. AA (30 microm) increased by 36-42% the tonic inhibition by endogenous extracellular adenosine of adenosine A(1) receptors in the modulation of acetylcholine release and of CA1 hippocampal synaptic transmission in hippocampal slices. These results indicate that AA increases tonic adenosine modulation as a possible feedback loop to limit AA facilitation of neuronal excitability.  相似文献   

11.
12.
Human adipocytes are of limited viability (7 +/- 2% release of lactate dehydrogenase/h) and contain active ectophosphatases which are capable of sequentially degrading ATP to adenosine. At densities of 30,000-40,000 cells/ml, human fat cell suspensions accumulated adenosine, inosine, and hypoxanthine, and their concentrations were 38 +/- 8, 120 +/- 10, and 31 +/- 7 nmol/liter after 3 h of incubation. Dipyridamole (10 mumol/liter), an inhibitor of nucleoside transport, caused a 5-7-fold increase in adenosine accumulation which was reduced by 85% on inhibition of ectophosphatases by beta-glycerophosphate and antibodies against ecto-5'-nucleotidase or alpha, beta-methylene 5'-adenosine diphosphate (10 mumol/liter), respectively, indicating that most of the adenosine is produced in the extracellular compartment. Accordingly, the spontaneous accumulation of adenosine was reduced beyond 5 nmol/liter on inhibition of ectophosphatase activities or removal of extracellular AMP by AMP deaminase (4 units/ml). Added adenosine (30 nmol/liter) disappeared until its concentration approached 5 nmol/liter. Isoproterenol (1 mumol/liter) had no effect on adenosine accumulation regardless whether purine production from extracellular sources was minimized or not. In contrast to adenosine, the concentrations of inosine and hypoxanthine displayed only a modest decrease (30-50%) on inhibition of ectophosphatase activities. In addition, isoproterenol caused a 2-3-fold increase in inosine and hypoxanthine production which was concentration-dependent and could be inhibited by propranolol. It is concluded that the adenosine that accumulates in human adipocyte suspensions is almost exclusively derived from adenine nucleotides which are released by leaking cells. By contrast, inosine and hypoxanthine are produced inside the cells, and the release of these latter purines appears to be linked to ATP turnover via adenylate cyclase.  相似文献   

13.
1. The role of adenosine deaminase (EC 3.5.4.4), ecto-(5'-nucleotidase) (EC 3.1.3.5) and ecto-(non-specific phosphatase) in the CN-induced catabolism of adenine nucleotides in intact rat polymorphonuclear leucocytes was investigated by inhibiting the enzymes in situ. 2. KCN (10mM for 90 min) induced a 20-30% fall in ATP concentration accompanied by an approximately equimolar increase in hypoxanthine, ADP, AMP and adenosine concentrations were unchanged, and IMP and inosine remained undetectable ( less than 0.05 nmol/10(7) cells). 3. Cells remained 98% intact, as judged by loss of the cytoplasmic enzyme lactate dehydrogenase (EC 1.1.1.27). 4. Pentostatin (30 microM), a specific inhibitor of adenosine deaminase, completely inhibited hypoxanthine production from exogenous adenosine (55 microM), but did not black CN-induced hypoxanthine production or cause adenosine accumulation in intact cells. This implied that IMP rather than adenosine was an intermediate in AMP breakdown in response to cyanide. 5. Antibodies raised against purified plasma-membrane 5'-nucleotidase inhibited the ecto-(5'-nucleotidase) by 95-98%. Non-specific phosphatases were blocked by 10 mM-sodium beta-glycerophosphate. 6. These two agents together blocked hypoxanthine production from exogenous AMP and IMP (200 microM) by more than 90%, but had no effect on production from endogenous substrates. 7. These data suggest that ectophosphatases do not participate in CN-induced catabolism of intracellular AMP in rat polymorphonuclear leucocytes. 8. A minor IMPase, not inhibited by antiserum, was detected in the soluble fraction of disrupted cells.  相似文献   

14.
15.
Adenosine, a well-known neuromodulator, may be formed intracellularly in the CNS from degradation of AMP and then exit via bi-directional nucleoside transporters, or extracellularly by the metabolism of released nucleotides. This study reports the enzymatic properties of an ecto-5'-nucleotidase activity in brain membranes of zebrafish (Danio rerio). This enzyme was cation-dependent, with a maximal rate for AMP hydrolysis in a pH range of 7.0-7.5 in the presence of Mg(2+). The enzyme presented a maximal activity for AMP hydrolysis at 37 degrees C. The apparent K(m) and V(max) values for Mg(2+)-AMP were 135.3+/-16 microM and 29+/-4.2 nmol Pi.min(-1).mg(-1) protein, respectively. The enzyme was able to hydrolyze both purine and pyrimidine monophosphate nucleotides, such as UMP, GMP and CMP. Levamisole and tetramisole (1 mM), specific inhibitors of alkaline phosphatases, did not alter the enzymatic activity. However, a significant inhibition of AMP hydrolysis (42%) was observed in the presence of 100 microM alpha,beta-methylene-ADP, a known inhibitor of ecto-5'-nucleotidase. Since 5'-nucleotidase represents the major enzyme responsible for the formation of extracellular adenosine, the enzymatic characterization is important to understand its role in purinergic systems and the involvement of adenosine in the regulation of neurotransmitter release.  相似文献   

16.
Adenosine production inside rat polymorphonuclear leucocytes.   总被引:13,自引:5,他引:8       下载免费PDF全文
Adenosine synthesis was studied during 2-deoxyglucose-induced ATP catabolism in intact rat polymorphonuclear leucocytes. When both adenosine kinase (EC 2.7.1.20) and adenosine deaminase (EC 3.5.4.4) were selectively inhibited, adenosine accumulated. Adenosine formation took place inside the intact cells by a metabolic pathway independent of the ecto-5'-nucleotidase (EC 3.1.3.5). Distinct metabolic pathways are proposed for adenosine production from intracellular or extracellular nucleotides.  相似文献   

17.
Because adenosine plays a role in the regulation of glomerular filtration rate and of the release of renin, we examined the possibility of a local source for this mediator. We found that rat cultured glomerular mesangial cells converted 5'-AMP into adenosine. The properties of the enzyme involved in the reaction were those of an ecto-5' nucleotidase: (1) the products of the reaction were generated in the extracellular fluid although no 5'-nucleotidase was released by the cells into the medium; (2) identical activities were found for cultured cells in situ and sonicated cells; (3) the diazonium salt of sulfanilic acid which is a nonpenetrating reagent inhibited up to 75% of the enzyme activity. Ecto-5'-nucleotidase activity of intact cells obeyed Michaelis-Menten kinetics. Apparent Km for 5'-AMP was 0.32 mM. 5'-UMP was a strictly competitive inhibitor. ADP exerted a very powerful inhibitory effect and behaved also as a competitive inhibitor. ATP was inhibitory both by increasing Km and by decreasing Vmax. Ecto-5'-nucleotidase was active in the absence of divalent cations. However, Mg2+, Ca2+, Co2+ and Mn2+ were stimulatory. Zn2+ and Cu2+ suppressed the activity. Concanavalin A, a plant lectin, was markedly inhibitory, suggesting that a glycoprotein moiety was necessary to express enzyme activity. Ecto-5'-nucleotidase activity was not modified during phagocytosis of serum-treated zymosan by mesangial cells. Rat cultured glomerular epithelial cells exhibited a 5'-nucleotidase activity which was 4 times lower than that of the mesangial cells in primary culture.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Adenosine produces analgesia in the spinal cord and can be formed extracellularly through enzymatic conversion of adenine nucleotides. A transverse push-pull microprobe was developed and characterized to sample extracellular adenosine concentrations of the dorsal horn of the rat spinal cord. Samples collected via this sampling technique reveal that AMP is converted to adenosine in the dorsal horn. This conversion is decreased by the ecto-5'-nucleotidase inhibitor, alpha,beta-methylene ADP. Related behavioral studies demonstrate that AMP administered directly to the spinal cord can reverse the secondary mechanical hyperalgesia characteristic of the intradermal capsaicin model of inflammatory pain. The specific adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dimethylxanthine (CPT) inhibits the antihyperalgesia produced by AMP. This research introduces a novel microprobe that can be used as an adjunct sampling technique to microdialysis and push-pull cannulas. Furthermore, we conclude that AMP is converted to adenosine in the dorsal horn of the spinal cord by ecto-5'-nucleotidase and subsequently may be one source of adenosine, acting through adenosine A(1) receptors in the dorsal horn of the spinal cord, which produce antihyperalgesia.  相似文献   

19.
20.
1. The activities of ecto- and cytosolic 5'-nucleotidase (EC 3.1.3.5), adenosine kinase (EC 2.7.1.20), adenosine deaminase (EC 3.5.4.4) and AMP deaminase (EC 3.5.4.6) were compared in ventricular myocardium from man, rats, rabbits, guinea pigs, pigeons and turtles. The most striking variation was in the activity of the ecto-5'-nucleotidase, which was 20 times less active in rabbit heart and 300 times less active in pigeon heart than in rat heart. The cytochemical distribution of ecto-5'-nucleotidase was also highly variable between species. 2. Adenosine formation was quantified in pigeon and rat ventricular myocardium in the presence of inhibitors of adenosine kinase and adenosine deaminase. 3. Both adenosine formation rates and the proportion of ATP catabolized to adenosine were greatest during the first 2 min of total ischaemia at 37 degrees C. Adenosine formation rates were 410 +/- 40 nmol/min per g wet wt. in pigeon hearts and 470 +/- 60 nmol/min per g wet wt. in rat hearts. Formation of adenosine accounted for 46% of ATP plus ADP broken down in pigeon hearts and 88% in rat hearts. 4. The data show that, in both pigeon and rat hearts, adenosine is the major catabolite of ATP in the early stages of normothermic myocardial ischaemia. The activity of ecto-5'-nucleotidase in pigeon ventricle (16 +/- 4 nmol/min per g wet wt.) was insufficient to account for adenosine formation, indicating the existence of an alternative catabolic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号