首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Journal of Plankton Research, 11, 1273–1295, 1989. The values of P/U0 (Table I) and fluid velocity used to calculatethe energy required for sieving (pp. 1289–1290) and severalequations (footnote b of Table I; p. 1290, lines 3–4)are incorrect. The corrected table appears below: Table I. Filter setule measurements (mean and within specimenstandard deviation) of the gnathobases for the cladocerans studiedaGnathobaseof trunklimb number. bP = 8µU0/(b(1 – 21nt + 1/6(t2) - 1/144(t4))), whereP = pressure drop in dyn cm–2, =3.1416, U0 = fluid velocityin cm s–1, b = distance between setule centres in cm,t = ( x setule diameter)/b and µ = 0.0101 dyn s–1cm–2. Formula from Jørgensen (1983). The text (p. 1289, line 19 to p. 1290, line 10) should read: organism. Using a similar argument, a 0.5 mm Ceriodaphnia witha filter area of 0.025 mm2 (Ganf and Shiel, 1985) and pressuredrop P = 2757 dyn cm–2 (with fluid velocity of 0.07 cms–1) allocates only 2171 ergs h–1 to filtrationof a total energy expenditure of 104 ergs h–1 [filtrationenergy (ergs h–1) = area (cm2) x pressure drop (dyn cm–2)x 3600 (s h–1) x 1/0.2 (efficiency of conversion of biochemicalinto mechanical work); total energy (ergs h–1) = respiration(0.05 µl O2 ind–1 h–1 consumed; Gophen, 1976)x conversion factor (2 x 105 ergs µl–1 O2). Withan estimated 0.034 mm2 in filter area, fluid velocity of 0.041cm s–1 and respiration of 1.8 x 104 ergs h–1 (calculatedfrom Porter and McDonough, 1984), a 0.5 mm Bosmina uses <4%of its metabolism to overcome filter resistance. The velocities used in the original examples (0.4 cm s–1for Ceriodaphnia, 0.2 cm s–1 for Bosmina) were derivedfrom literature values of appendage beat rate and estimatesof the distance travelled by the appendages during each beatcycle. This approach unnecessarily assumes that all water movedpasses through the filter. In the new calculations, the flowacross the filter needed for food to be collected by sieving(0.07 cm s–1 for Ceriodaphnia and 0.041 cm s–1 forBosmina) was determined from the maximum clearance rate/filterarea. The amended energy expenditures, although higher, do notrefute the sieve model of particle collection.  相似文献   

2.
It has been demonstrated, in both herbaceous and woody species,that tissue hydration resulting from exposure to drought isless pronounced if plants are concurrently exposed to ultraviolet-Bradiation (UV-B). An explanation for the mechanisms underlyingthis phenomenon has been elusive. Arabidopsis thaliana(L.) Heynh.genotypes, defective in specific defences against UV-B exposure,may permit more insightful study of drought-UV-B interactionsthan is possible with genetically uniform plants. Arabidopsishas a rosette stature and has predominantly abaxial stomata.Thus, it is difficult to investigate its stomatal behaviourand gas exchange using conventional techniques and instrumentation.In this study, the relative abundance of13C and12C in leaf tissue(13C) was used as a means of determining water use efficiency(WUE) and the relative balance, at the site of carbon fixation,between CO2supply and demand. UV-B insensitive (L er) and sensitive(fah1)Arabidopsis genotypes were raised in a growth chamberand exposed to 6 kJ m-2 d-1UV-B irradiation and subjected todrought. In both genotypes, leaf desiccation was less pronouncedthan that of control plants that were subjected to drought butnot exposed to UV-B. The relatively low (more negative) leaf13C values (indicating low WUE), but high dry matter productionof the UV-B exposed plants suggest that their higher leaf watercontent was not primarily due to stomatal closure. We proposethat the mechanisms underlying the maintenance of higher leafwater content involved UV-B and water stress induced biosynthesisof stress proteins and compatible osmolytes. Copyright 2000Annals of Botany Company Arabidopsis thaliana, ultraviolet-B, water deficit, stable carbon isotopes, 13C, stomatal opening, tissue dehydration, dehydrin  相似文献   

3.
The occurrence of the salp Thetys vagina was observed in theJapan Sea during spring 2004. Catches up to 187 kg wet weight(WW) per 2.18 x 105 m3 (equal to 0.9 g WW m–3) were collectedwith 10-m diameter surface-water otter trawl nets. The horizontaldistribution indicated that the high biomass was related tothe area with high chlorophyll a (Chl a) concentration, whichwas located around the subarctic front with the warm TsushimaCurrent. Five prey taxa were identified from the gut contentsof individuals from the high Chl a area. The diatom Coscinodiscusspp. (13–55 µm in diameter) dominated numerically.Another significant prey was the large diatom Coscinodiscuswailesii (219–313 µm) that is an indicator of thespring bloom in this area. The mass occurrence of T. vaginathus appears related to phytoplankton availability, though themechanisms remain uncertain.  相似文献   

4.
Du Cloux, H. C, André, M., Daguenet, A. and Massinuno,J. 1987. Wheat response to CO2 enrichment: Growth and CO2 exchangesat two plant densities.—J. exp. Bot. 38: 1421–1431. The vegetative growth of wheat (Triticum aestivum L., var. Capitole)was followed for almost 40 d after germination in controlledconditions. Four different treatments were carried out by combiningtwo air concentrations of CO2, either normal (330 mm3 dm 3)or doubled (660 mm3 dm 3) with two plant densities, either 200plants m 2 or 40 plants m 2. Throughout the experiment the CO2gas exchanges of each canopy were measured 24 h d1. These provideda continuous growth curve for each treatment, which were comparedwith dry weights. After a small stimulation at the start (first13 d), no further effect of CO2 enrichment was observed on relativegrowth rate (RGR). However, RGR was stimulated throughout theexperiment when plotted as a function of biomass. The finalstimulation ol dry weight at 660 mm3 dm 3 CO2 was a factor of1·45 at high density and 1·50 at low density,contrary to other studies, no diminution of this CO2 effecton dry weight was observed over time. Nevertheless, at low density,a transient additional enhancement of biomass (up to 1·70)was obtained at a leaf area index (LAI) below 1. This effectwas attributed to a different build up of the gain of carbonin the case of an isolated plant or a closed canopy. In theformer, the stimulation of leaf area and the net assimilationrate are both involved; in the latter the enhancement becomesindependent of the effect on leaf area because the canopy photosynthesisper unit ground area as a function of LAI reaches a plateau. Key words: Triticum aestuum, L. var. Capitole, Vegetative growth, Canopy  相似文献   

5.
The hypothesis that soil water potential (s) is better correlatedto heliotropic leaf orientation, photosaturated photosyntheticCO2 assimilation and stomatal conductance during periods oflimited water availability than is bulk leaf water potential(1) was examined in greenhouse-grown soybean (Glycine max) plants,submitted to a progressive drought. Paired plants were exposedto either 1000 or 100 µmol m–2 s–1 photonflux densities (PFD) for 45–60 mins. The higher irradianceinduced short-term decreases in 1, due to increased transpiration,while l in the plant exposed to low PFD did not decrease. Thesechanges in 1 occurred independently of changes in soil waterstatus. Concurrent to the light treatments, a single attachedleaf from each of the two plants was isolated from the restof the plant by shading, and the pulvinus of its terminal leafletwas exposed to a perpendicular PFD of 500 µmol m–2S–1. Leaf movement of this leaflet was recorded in responseto this light, until a stable leaflet angle was achieved. Valuesof s and l (before and after light treatment), and photosaturatedrates of photosynthesis and stomatal conductance, were thenmeasured on these leaves. Leaflet angle and gas exchange werebetter correlated with s (r2 = 0.50, 0.50 and 0.57 for angle,photosynthesis and conductance, respectively) than with l especiallywhen l was the result of short-term, high-light induced changesin leaf water status (r2 = 0.36, 0.32 and 0.49, for the sameparameters). Leaflet angle was also correlated with stomatalconductance (r2 = 0.61) and photosynthetic rate (r2 = 0.60),suggesting a close association between leaf orientation, leafmetabolism and soil water availability. Glycine max (L.) Merr. cv. Essex, soybean, heliotropism, water potential, photosynthesis, stomatal conductance, solar tracking  相似文献   

6.
The use of the anti-ozonant ethylenediurea (EDU) to assess croplosses due to atmospheric ozone (O3), is controversial becauseof incomplete knowledge on the optimal dosage, the extent ofprotection provided and potential effects on plant performanceof EDU per se. In a greenhouse experiment, radish (Raphanussativus L.) cv. ‘Cherry Belle’ plants were treatedwith EDU as a soil drench (150 mg11, 60 ml plant1) at threestages of development: early, maximum and late hypocotyl thickening.Two days later the plants were exposed to O3, mimicking an ambientpattern (70 nl 11 O3, 7 h d1, 5 d, and up to 120 nl 11 O3 on2 d), or remained in filtered air. Assessment of leaf injury showed complete protection from ozone-inducedleaf damage at all stages of growth due to EDU. EDU did causeslight leaf margin necrosis and hyponastic leaf deformationirrespective of the atmospheric treatment, but biomass and relativegrowth rate (RGR) of the shoot and leaf number duration werenot altered and leaf area duration was increased when comparedto control plants. EDU did not affect dry weight accumulationnor RGR of the hypocotyl. Ozone-induced reductions in growthof below-ground organs (hypocotyl and root), which were mostprominent in the intermediate and early stage of growth, werelargely suppressed by the EDU-treatment. Decreases of hypocotylbiomass due to O3 were transient and significant increases inRGR of the hypocotyl during the post-exposure period indicateda substantial capability of compensation during the period ofrecovery. Key words: Radish (Raphanus sativus), ozone, anti-ozonant, ethylenediurea (EDU), development, phytotoxicity  相似文献   

7.
Yield stress threshold (Y) and volumetric extensibility () arethe rheological properties that appear to control root growth.In this study they were measured in wheat roots by means ofparallel measurement of the growth rate (r) of intact wheatroots and of the turgor pressures (P) of individual cells withinthe expansion zone. Growth and turgor pressure were manipulatedby immersion in graded osmoticum (mannitol) solutions. Turgorwas measured with a pressure probe and growth rate by visualobservation. The influence of various growth conditions on Yand was investigated; (a) At 27 °C.In 0.5 mol m–3 CaCl2 r, P, Y and were20.7±4.6 µm min–1, 0.77±0.05 MPa,0.07±0.03 MPa and 26±1.9 µm min–1MPa–1 (expressed as increase in length), respectively.Following 24 h growth in 10 mol m–3 KC1 these parametersbecame 12.3±3.5 µm min–1, 0.72±0.04MPa, 0.13±0.01 MPa and 21±0.7 µm min–1MPa–1. After 24 h osmotic adjustment in 150 mol m–3mannitol/0.5 mol m–3 CaCl2 r= 19.6±4.2 µmmin–1, P = 0.68±0.05 MPa and Y and were 0.07±0.04MPa and 30±0.2 µm min–1 MPa–01, respectively.After 24 h growth in 350 mol m–3 mannitol/0.5 mol m–3CaCl2 r= 13.3±4.1 µm min–1, P= 0.58±0.07MPa, Y=0.12±0.01 MPa and ø 32±0.2 tim min–1MPa–1. During osmotic adjustment in 200 mol m–3mannitol/0.5 mol m–3 CaCl2, with or without KCl, the recoveryof growth rate corresponded to turgor pressure recovery (t1/2approximately 3 h). (b) At 15 °C. Lowered temperature dramatically influencedthe growth parameters which became r= 8.3±2.8 um min–1,P=0.78 MPa, r=<0.2 MPa and =15±0.1 µm min–1MPa–1. Therefore, Y and are influenced by 10 mol m–3 K+ ionsand low temperature. In each case the effective pressure forgrowth (P-Y) was large indicating that small fluctuations ofsoil water potential will not stop root elongation. Key words: Yield threshold, cell wall extensibility, wheat root growth, temperature, turgor pressur  相似文献   

8.
Willmer, C. M., Wilson, A. B. and Jones, H. G. 1988. Changingresponses of stomata to abscisic acid and CO2 as leaves andplants age.—J. exp. Bot. 39: 401–410. Stomatal conductances were measured in ageing leaves of Commelinacommunis L. as plants developed; stomatal responses to CO2 andabscisic acid (ABA) in epidermal strips of C. communis takenfrom ageing leaves of developing plants and in epidermal stripsfrom the same-aged leaves (the first fully-expanded leaf) ofdeveloping plants were also monitored. Stomatal behaviour wascorrelated with parallel measurements of photosynthesis andleaf ABA concentrations. Stomatal conductance in intact leavesdecreased from a maximum of 0-9 cm s– 1 at full leaf expansionto zero about 30 d later when leaves were very senescent. Conductancesdeclined more slowly with age in unshaded leaves. Photosynthesisof leaf slices also declined with age from a maximum at fullleaf expansion until about 30 d later when no O2 exchange wasdetectable. Exogenously applied ABA (0.1 mol m– 3) didnot affect respiration or photosynthesis. In epidermal stripstaken from ageing leaves the widest stomatal apertures occurredabout 10 d after full leaf expansion (just before floweringbegan) and then decreased with age; this decrease was less dramaticin unshaded leaves. The inhibitory effects of ABA on stomatalopening in epidermal strips decreased as leaves aged and wasgreater in the presence of CO2 than in its absence. When leaveswere almost fully-senescent stomata were still able to open.At this stage, guard cells remained healthy-looking with greenchloroplasts while mesophyll cells were senescing and theirchloroplasts were yellow. Similar data were obtained for stomatain epidermal strips taken from the same-aged leaves of ageingplants. The inhibitory effects of ABA on stomatal opening alsodecreased with plant age. In ageing leaves both free and conjugated ABA concentrationsremained low before increasing dramatically about 30 d afterfull leaf expansion when senescence was well advanced. Concentrationsof free and conjugated ABA remained similar to each other atall times. It is concluded that the restriction of stomatal movements inintact leaves as the leaves and plants age is due mainly toa fall in photosynthetic capacity of the leaves which affectsintracellular CO2 levels rather than to an inherent inabilityof the stomata to function normally. Since stomatal aperturein epidermal strips declines with plant and leaf age and stomatabecome less responsive to ABA (while endogenous leaf ABA levelsremain fairly constant until leaf senescence) it is suggestedthat some signal, other than ABA, is transmitted from the leafor other parts of the plant to the stomata and influences theirbehaviour. Key words: Abscisic acid, CO2, Commelina, leaf age, senescence, stomatal sensitivity  相似文献   

9.
To better understand source-sink interactions, this work focusedon the influence of fruit number on leaf area and photosyntheticactivity in cantaloupe. To this end, flowers were removed over2 years on two Charentais cultivars to obtain single-fruit plantsand plants with an unrestricted fruit load (which set two tofive fruits and constituted control plants). At the whole plantscale, net photosynthesis was reduced by about 30% under highfruit load. At the leaf scale, a submodel of stomatal conductancewas fitted to the data and was included in a rectangular hyperbolamodel of leaf photosynthesis. Maximum leaf net photosynthesisaveraged 14.83 µmol CO2m-2s-1at 1000 µmol quantam-2s-1. Light use efficiency was not affected by fruit loadand equalled 0.040 mol CO2mol-1quanta. Leaf area of plants withunrestricted fruit load decreased after 24 days from pollination,while the leaf area of single-fruit plants was still increasing.The decrease was due to production of fewer new leaves per day,whereas the number of senescent leaves and the size of individualleaves were not affected by the treatment. Under high fruitload, cultivar Galoubet developed a larger projected leaf areathan cultivar Talma. Thus it is concluded that: (1) large cantaloupefruits may divert a large amount of assimilates away from, andgrow at the expense of, the canopy; and (2) photosynthesis ofthe canopy was lowered because leaf area was reduced whereasphotosynthetic rate of leaves was not altered.Copyright 1998Annals of Botany Company. Cucumis meloL., fruit load, source-sink interactions, leaf photosynthesis, canopy photosynthesis, leaf area, SLA, source strength.  相似文献   

10.
DEAN  T. J.; LONG  J. N. 《Annals of botany》1985,55(3):361-366
Greenhouse grown monocultures of Trifolium pratense L, werepartially defoliated to test the hypothesis that the constantof proportionality (K) in the self-thinning rule is a functionof leaf area. This constant equates mean weight (w) and density(p) in self-thinning populations by the equation Pruning leaflets did not affect the pattern or occurrence ofdensity-related mortality but, as predicted, did affect K, whichwas reduced by 25 per cent as leaf area was decreased from anaverage of 7.3 to 3.9 m2m–2. For both self-thinning andnon-self-thinning populations, leaf area was substituted forK in eqn (1) to give Multiple linear regression showed that this expression was significantfor all three defoliation treatments. Regressions with treedata grouped by genera were also significant and indicate thateqn (2) may be a more general expression of the relation betweenmean weight and density in even-aged monocultures. The self-thinningrule may be a special case of eqn (2) which expresses itselfwhen leaf area attains some upper limit. Trifolium pratense, red clover, leaf area, self-thinning, defoliation  相似文献   

11.
Cacao (Theobroma cacao L.) seedlings at the onset of a flushcycle were exposed to five different irrigation treatments.The expansion of all leaves in an emerging flush was followed,and estimates of leaf water potential(w) were made on each daythat leaf areas were measured. The growth in area of the leaveswas fitted with a modified logistic curve of the form y = a/[1+ be –(ct+dt2)], and parameters of leaf growth were derivedfrom the fitted constants. A coefficient of stress exposure,S, was derived as the slope of the relation between cumulativew and time. Three parameters of the logisitc function (a, cand d) were strongly associated with S. By fitting regressionsfor the relations between S and estimates of each parameterfor the five treatments, values of a, b, c and d may be estimatedat any level of S encompassed by these data. The effects ofwater stress on leaf expansion rate and on the final leaf areaattained by the emerging flush can be adequately predicted bythis technique. Theobroma cacao L.cacao, leaf expansion, logistic model, water stress  相似文献   

12.
Pereira, J. S., Tenhunen, J. D. and Lange, O. L. 1987. Stomatalcontrol of photosynthesis of Eucalyptus globulus Labill. treesunder field conditions in Portugal.—J. exp. Bot. 38: 1678–1688. Stomatal behaviour of adult leaves of Eucalyptus globulus treeswas studied under field conditions in Portugal. In the absenceof severe plant water stress stomata were open when the summedtotal of photosynthetically active photon flux density incidenton both leaf surfaces was above 100 µmol m2s1 and leafconductance to water vapour reached 245 mmol m 2 s1 on a total(both epidermes) leaf area basis. The stomata of both leaf epidermesresponded similarly to changes in solar radiation and waterstress. Water stress resulted in decreasing daily maxima inleaf conductance as predawn leaf water potential decreased.Maximal leaf conductance decreased to less than 50 mmol m 2s 1 when predawn leaf water potential decreased below —1·0MPa. At similar values of predawn leaf water potential stomatawere more closed as the leaf to air water vapour partial pressuredifference increased. The effect of increasing air dryness onstomata was greatest at high predawn leaf water potential. Dailymaxima in photosynthetic rates and in leaf conductance werelinearly related to one another in spring and summer. Both decreasedwith increase in leaf water stress. In autumn and winter, increasesin leaf conductance occurring under natural conditions duringthe course of the day were not necessarily accompanied by increasesin net photosynthesis. Stomata were more closed in the afternoonthan in the morning at the same rates of net photosynthesis,temperature or leaf to air water vapour partial pressure difference. Key words: Eucalyptus globulus,, photosynthesis, stomata, water stress.  相似文献   

13.
The method ofsurfactant instillation into the lungs for treatment of neonatalrespiratory distress syndrome is an important attribute of delivery,and it may determine the overall efficacy of treatment. Previousstudies primarily focused on the rate at which the bolus is instilled.These findings show that rapid injections lead to a more homogenousdistribution, whereas slow infusions drain into the dependent lung withrespect to gravity, resulting in a heterogeneous deposition. Theseresults suggest that it is beneficial to form a meniscus, from which amore homogenous dispersal can proceed. The objective of the presentstudy was to develop a functional criterion for meniscus formationduring bolus injection. An in vitro experiment was used to examine theclinical setting of surfactant instillation. The physical variablesexamined were the bolus viscosity (µ) and density (), gravity(g), injection rate (Q), orientation of thetrachea with respect to gravity (), tracheal size(D), surface tension (), andcatheter size (d). All quantitieswere varied, except gravity and catheter size. Experimental resultsshow that a meniscus will form whenNSt > 0.004Re2/3, whereNSt is Stokesnumber and Re is Reynolds number,NSt = µQ/D4gsin,a ratio of viscous effects to gravitational effects, and Re = QD/d2µ,a ratio of inertial effects to viscous effects. Rapid injections, highviscosity, and small inclination with respect to gravity promotemeniscus formation. These results can be used to refine the guidelinesfor administration of surfactant replacement therapy.

  相似文献   

14.
The relationships between CO2 concentrating mechanisms, photosyntheticefficiency and inorganic carbon supply have been investigatedfor the aquatic macrophyte Littorella uniflora. Plants wereobtained from Esthwaite Water or a local reservoir, with thelatter plants transplanted into a range of sediment types toalter CO2 supply around the roots. Free CO2 in sediment-interstitial-waterranged from 1–01 mol m–3 (Esthwaite), 0.79 mol m–3(peat), 0.32 mol m–3 (silt) and 0–17 mol m–3(sand), with plants maintained under PAR of 40 µmol m–2s–1. A comparison of gross morphology of plants maintained underthese conditions showed that the peat-grown plants with highsediment CO2 had larger leaf fresh weight (0–69 g) andtotal surface area (223 cm2 g–1 fr. wt. including lacunalsurface area) than the sand-grown plants (0.21 g and 196 cm2g–1 fr. wt. respectively). Root fresh weights were similarfor all treatments. In contrast, leaf internal CO2 concentration[CO2], was highest in the sand-grown plants (2–69 molm–3, corresponding to 6.5% CO2 in air) and lowest inthe Esthwaite plants (1–08 mol m–3). Expressionof CAM in transplants was also greatest in the low CO2 regime,with H+ (measured as dawn-dusk titratable acidity) of 50µmolg fr. wt., similar to Esthwaite plants in natural sediment.Assuming typical CAM stoichiometry, decarboxylation of malatecould account largely for the measured [CO2]1 and would makea major contribution to daytime CO2 fixation in vivo. A range of leaf sections (0–2, 1–0, 5–0 and17–0 mm) was used to evaluate diffusion limitation andto select a suitable size for comparative studies of photosyntheticO2 evolution. The longer leaf sections (17.0 mm), which weresealed and included the leaf tip, were diffusion-limited witha linear response to incremental addition of CO2 and 1–0mol m–3 exogenous CO2 was required to saturate photosynthesis.Shorter leaf sections were less diffusion-limited, with thegreatest photosynthetic capacity (36 µmol O2 g–1 fr. wt. h–1) obtainedfrom the 1.0 mm size and were not infiltrated by the incubatingmedium. Comparative studies with 1.0 mm sections from plants grown inthe different sediment types revealed that the photosyntheticcapacity of the sand-grown plants was greatest (45 µmolO2 g–1 fr. wt. h–1) with a K0.5 of 80 mmol m–3.In terms of light response, saturation of photosynthesis intissue slices occurred at 850–1000 µmol m–2s–1 although light compensation points (6–11 µmolm–2s–1) and chlorophyll a: b ratios (1.3) were low.While CO2 and PAR responses were obtained using varying numbersof sections with a constant fresh weight, the relationshipsbetween photosynthetic capacity and CO2 supply or PAR were maintainedwhen the data were expressed on a chlorophyll basis. It is concludedthat under low PAR, CO2 concentrating mechanisms interact inintact plants to maintain saturating CO2 levels within leaflacunae, although the responses of the various components ofCO2 supply to PAR require further investigation. Key words: Key words-Uttorella uniflora, internal CO2 concentration, crassulacean acid metabolism, root inorganic carbon supply, CO2 concentrating mechanism  相似文献   

15.
Germination-Rate Dependency on Temperature of Geranium carolinianum Seeds   总被引:1,自引:0,他引:1  
Germination-rate dependency on temperature in the sub-optimalrange and its spread in a seed population of Geranium carolinianumL. were analysed through a detailed time course study. Withand without Arrhenius transformation the relationship betweenthe germination rate and temperature could be well approximatedby straight lines. The thermal time (), one of the parameterscharacterizing the simple linear relationship had a distributionwithin the seed population, which could be described by thefollowing distribution function: F()= l–[A–m+ (A/3) )3 + 1) ? where m is the median of the distribution and A is a shape parametercharacterizing the pattern of the distribution. Moist chillingtreatment for 3–7 d caused a change in the value for Ato make the spread of germination time much wider. Key words: Germination rate, Temperature, Geranium caroliniantun  相似文献   

16.
Exponentially growing cultures of the chlorophyta Tetraedronminimum were allowed to photoadapt to low (50µmole quantam–2s–1) and high (500µmole quanta m–2–1)irradiance levels. In these cultures, various aspects of theorganization of the photosynthetic apparatus and related differencesin its performance were studied. In this organism, the observed five-fold increase in pigmentationof low-light adapted cells was due to increases in the numbersof PSU's, while their sizes remained constant. Using radioimmunoassay technique, we found that high-light adaptedalgae had over five times more Rubisco per PSU than their low-lightadapted counterparts. The high-light adapted algae also exhibited far higher (x2.3)light saturated photosynthetic rates per chl a. This increasewas the result of a reduction of tau, , the turnover time ofPS II reaction centers. We propose that the increase in Rubisco per PSU in high-lightadapted algae explains the reduction in , which results in thehigher Pmax rates per chl a in these algae. The relationship is non linear, since the increase in Rubiscoper PSU was x5.3 whereas that in PmM per chl a was only x2.3. (Received July 30, 1988; Accepted December 2, 1988)  相似文献   

17.
The microbial dynamics during a spring diatom bloom declinewas monitored in the Northeast Atlantic during a 5-day Lagrangianstudy (8–12 April 2002). Phytoplankton abundance, compositionand health status were related to viral and bacterial abundance,zooplankton abundance and grazing rates, as well as bacterialproduction. Phytoplankton reached maximum concentration on Day3 (Chl a >5 µg L–1) and declined on Day 5 (Chla 2 µg L–1) and was dominated (70% of Chl a) bydiatoms. Bacterial production increased substantially to >20µg C L–1 day–1 on Day 3 and concomitantlylarge viruses decreased in number by half to <10 x 103 mL–1.This was followed by a 5-fold increase in large viruses on Day5, indicating infection and subsequent lysis on Days 3 and 5,respectively. Micro- and mesozooplankton grazing were not theprincipal cause for the decline of the bloom and pheophorbide-ashowing little variation in concentration from Days 1–4(100 ng L–1) although doubled on Day 5. The poor physiologicalstatus of the diatoms, indicated by the high chlorophyllide-aconcentrations (50–480 ng L–1), likely promoteda series of closely interrelated events involving bacteria andviruses leading to the demise of the diatom bloom.  相似文献   

18.
The niche occupation of two giant rosette plants, Lobelia gibberoaHemsl and Solanecio gigas(Vatke) C. Jeffrey, was investigatedin a small mountain valley in an afromontane forest, centralEthiopia. Plant distribution, density, life-form, morphologyand microsite conditions were related to transpiration, chlorophylla fluorescence and 13C analysis to explain how ecophysiologicaltraits and morphology determine the niche differentiation ofplants of similar life-forms. L. gibberoa was more abundantat the humid northern flank of the valley while S. gigas wasequally distributed in the northern and drier southern flanks;both species occurred in the valley bottom. Photosynthetic capacity,as determined by chlorophyll a fluorescence, was similar forboth species. In dry locations, S. gigas transpired somewhatless and had lower leaf conductance for water vapour, g, than in wet locations. Both specieshad the highest gand 13C-isotopediscrimination in the wettest locations. Overall for the ecophysiologicaltraits, site differences were larger than differences betweenthe two species. L. gibberoa had a well developed vascular cylinder,maintained a large number of rosettes and had an average leafarea index (LAI) of 2.8, which may restrict it to the more humidlocations. S. gigas, with a poorly developed vascular bundle,had many fewer rosettes, an average LAI of 1.5, and reactedmore to the water status of its habitat. It was thus also capableof colonizing drier locations. The role of morphological andanatomical traits and ecophysiological features in niche occupationas revealed by assessment of vegetation is discussed. Copyright2001 Annals of Botany Company Life forms, Lobelia gibberoa, afromontane forest, niche occupation, Solanecio gigas  相似文献   

19.
In Aplysia intestine,stimulation of Na+ absorption withluminal alanine increases apical membraneK+ conductance(GK,a), whichpresumably regulates enterocyte volume during stimulatedNa+ absorption. However, themechanism responsible for the sustained increase in plasma membraneK+ conductance is not known forany nutrient-absorbing epithelium. In the present study, we have begunto test the hypothesis that the alanine-induced increase inGK,a inAplysia enterocytes results fromexocytic insertion of K+ channelsinto the apical membrane. We used the fluid-phase marker horseradishperoxidase to assess the effect of alanine on apical membraneexocytosis and conventional microelectrode techniques to assess theeffect of alanine on fractional capacitance of the apical membrane(fCa). Luminalalanine significantly increased apical membrane exocytosis from 1.04 ± 0.30 to 1.39 ± 0.38 ng · min1 · cm2.To measure fCa,we modeled the Aplysia enterocyte as adouble resistance-capacitance (RC) electric circuit arranged in series. Several criteria were tested to confirm application of the model to theenterocytes, and all satisfied the model. When added to the luminalsurface, alanine significantly increasedfCa from 0.27 ± 0.02 to 0.33 ± 0.04 (n = 10)after 4 min. There are two possible explanations for our findings:1) the increase in exocytosis, whichadds membrane to the apical plasma membrane, prevents plasma membranefracture, and 2) the increase inexocytosis delivers K+ channels tothe apical membrane by exocytic insertion. After the alanine-induceddepolarization of apical membrane potential (Va), there isa strong correlation (r = 0.96)between repolarization ofVa, whichreflects the increase inGK,a, andincrease in fCa. This correlation supports the exocytic insertion hypothesis for activation ofGK,a.

  相似文献   

20.
The causes of interspecific differences in the µ-l relationshipare examined in the context of a mechanistic model which relatesµ to irradiance in terms of six factors:, kc photosyntheticquotient (PQ), Chl a:C, respiration and excretion. The effectof cell size on the light saturated growth rate is also considered.It is shown that photosynthetic efficiency and PQ exhibit remarkablylittle interspecific variability, and average 0.024 ±0.005 µg C(µg Chl a)–1 h–1 (µEm–2 s–1)–1 and 1.5 ± 0.2 mol 02 molC–1 (when NO3 is the nitrogen source) respectively.Two useful relationships were derived: (i) between growth efficiency,g and Chl a:C at µ. = 0; (ii) between the compensationintensity, Ic and the Chl a-specific maintenance respirationrate. Both relationships were independent of temperature anddaylength. Species best adapted to growth at low light werefound to exhibit high Chl a:C ratios and low maintenance respirationrates. As a group, diatoms were consistently the best adaptedfor growth at low irradiance. Chiorophytes, haptophytes, chrysophytesand cryptophytes were intermediate in their performance at lowirradiance. Dinoflagellates exhibited extreme diversity, withspecies spanning the spectrum from very good performance atlow irradiance to very poor. A new µmax-cell carbon relationshipis given based on growth rates normalized to 15°C. Evidenceis presented to show that noise in this relationship can besignificantly reduced by using only carbon-specific growth ratesand using only data for species grown at the same daylength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号