首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
2.
3.
4.
T cells can undergo activation-induced cell death (AICD) upon stimulation of the T cell receptor-CD3 complex. We found that the extracellular signal-regulated kinase (ERK) pathway is activated during AICD. Transient transfection of a dominant interfering mutant of mitogen-activated/extracellular signal-regulated receptor protein kinase kinase (MEK1) demonstrated that down-regulation of the ERK pathway inhibited FasL expression during AICD, whereas activation of the ERK pathway with a constitutively active MEK1 resulted in increased expression of FasL. We also found that pretreatment with the specific MEK1 inhibitor PD98059 prevented the induction of FasL expression during AICD and inhibited AICD. However, PD98059 had no effect on other apoptotic stimuli. We found only very weak ERK activity during Fas-mediated apoptosis (induced by Fas cross-linking). Furthermore, preincubation with the MEK1 inhibitor did not inhibit Fas-mediated apoptosis. Finally, we also demonstrated that pretreatment with the MEK1 inhibitor could delay and decrease the expression of the orphan nuclear steroid receptor Nur77, which has been shown to be essential for AICD. In conclusion, this study demonstrates that the ERK pathway is required for AICD of T cells and appears to regulate the induction of Nur77 and FasL expression during AICD.  相似文献   

5.
The Tax oncoprotein encoded by human T-cell leukemia virus induces both T-cell activation and apoptosis. The mechanism by which Tax induces apoptosis has remained unclear. Using genetically manipulated T-cell lines, we demonstrate that Tax-induced T-cell death is dependent on NF-kappaB signaling. Tax fails to induce apoptosis in T cells lacking IkappaB kinase gamma (IKKgamma), an essential component of the NF-kappaB signaling pathway. This defect was rescued when the mutant cells were reconstituted with exogenous IKKgamma. We further demonstrate that the Tax-induced T-cell death is mediated by TNF (tumor necrosis factor)-related apoptosis-inducing ligand (TRAIL), because this event can be effectively inhibited by a TRAIL-blocking antibody. Consistent with this functional aspect, Tax stimulates the expression of TRAIL mRNA. Finally, we provide genetic evidence demonstrating that the NF-kappaB signaling pathway is essential for TRAIL gene induction by both Tax and T-cell activation signals. These studies reveal a novel function of the NF-kappaB signaling pathway and suggest a key mechanism by which Tax induces T-cell death.  相似文献   

6.
7.
The Fas death receptor plays a key role in the killing of target cells by NK cells and CTLs and in activation-induced cell death of mature T lymphocytes. These cytotoxic pathways are dependent on induction of Fas expression by cytokines such as TNF-alpha and IFN-gamma or by signals generated after TCR engagement. Although much of our knowledge of the Fas death pathway has been generated from murine studies, little is known about regulatory mechanisms important for murine Fas expression. To this end, we have molecularly cloned a region of the murine Fas promoter that is responsible for mediating TNF-alpha and PMA/PHA-induced expression. We demonstrate here that induction of Fas expression by both stimuli is critically dependent on two sites that associate with RelA-containing NF-kappaB complexes. To determine whether RelA and/or other NF-kappaB subunits are also important for regulating Fas expression in primary T cells, we used CD4 T cells from RelA(-/-), c-Rel(-/-), and p50(-/-) mice. Although proliferative responses were significantly impaired, expression of Fas and activation-induced cell death was unaffected in T cells obtained from these different mice. Importantly, we show that unlike fibroblasts, which consist primarily of RelA-containing NF-kappaB complexes, T cells have high levels of both RelA and c-Rel complexes, suggesting that Fas expression in T cells may be dependent on redundant functions of these NF-kappaB subunits.  相似文献   

8.
TCR engagement can induce either T cell proliferation and differentiation or activation-induced T cell death (AICD) through apoptosis. The intracellular signaling pathways that dictate such a disparate fate after TCR engagement have only been partially elucidated. Non-FcR-binding anti-CD3 mAbs induce a partial agonist TCR signaling pattern and cause AICD on Ag-activated, cycling T cells. In this study, we examined TCR signaling during the induction of AICD by anti-CD3 fos, a non-FcR-binding anti-CD3 mAb. This mAb activates Fyn, Lck, and extracellular signal-regulated kinase, and induces phosphorylation of Src-like adapter protein, despite the inability to cause calcium mobilization or TCR polarization. Anti-CD3 fos also fails to effectively activate zeta-associated protein of 70 kDa or NF-kappaB. Using Ag-specific T cells deficient for Fyn or Lck, we provide compelling evidence that activation of Lck is required for the induction of AICD. Our data indicate that a selective and distinct TCR signaling pattern is required for AICD by TCR partial agonist ligands.  相似文献   

9.
Activated T cells undergo apoptosis when the Fas-antigen (APO-1, CD95) is ligated by Fas Ligand (FasL) or agonistic anti-Fas antibodies. Repeated stimulation of T lymphocytes via the TCR/CD3-complex induces activation-induced cell death (AICD) associated with FasL surface expression. FasL binding to Fas molecules triggers the Fas-dependent death signaling cascade. Since it is still controversial whether Fas-induced cell death is associated with tyrosine kinase activity, we investigated the tyrosine kinase activation requirements in anti-Fas antibody-induced cell death and AICD in human T cell clones. We report that cell death triggered by anti-Fas antibody is not accompanied by an increase in tyrosine phosphorylation and cannot be blocked by inhibitors of protein tyrosine kinases (PTK). Under the same conditions, AICD of T cell clones is clearly associated with tyrosine kinase activation. In fact, semiquantitative RT-PCR analysis of FasL mRNA expression triggered in T cell clones via the TCR/CD3-complex revealed that tyrosine phosphorylation is required for functional FasL mRNA and surface expression.  相似文献   

10.
The mechanisms of allograft tolerance have been classified as deletion, anergy, ignorance and suppression/regulation. Deletion has been implicated in central tolerance, whereas peripheral tolerance has generally been ascribed to clonal anergy and/or active immunoregulatory states. Here, we used two distinct systems to assess the requirement for T-cell deletion in peripheral tolerance induction. In mice transgenic for Bcl-xL, T cells were resistant to passive cell death through cytokine withdrawal, whereas T cells from interleukin-2-deficient mice did not undergo activation-induced cell death. Using either agents that block co-stimulatory pathways or the immunosuppressive drug rapamycin, which we have shown here blocks the proliferative component of interleukin-2 signaling but does not inhibit priming for activation-induced cell death, we found that mice with defective passive or active T-cell apoptotic pathways were resistant to induction of transplantation tolerance. Thus, deletion of activated T cells through activation-induced cell death or growth factor withdrawal seems necessary to achieve peripheral tolerance across major histocompatibility complex barriers.  相似文献   

11.
Glucocorticoid-induced TNFR (GITR) is a member of the TNFR family that can inhibit the suppressive function of regulatory T cells and promote the survival and activation of T cells. However, little is known about the molecular mechanisms regulating T cell survival and activation downstream of GITR. To gain further insight into the cellular events and signaling pathways triggered by GITR, survival, proliferation, and cytokine production as well as activation of MAPKs and NF-kappaB were monitored after cross-linking of the receptor on naive and activated T cells. GITR cross-linking provided costimulation of naive and activated T cells and resulted in activation of MAPKs and NF-kappaB. Although GITR-induced signaling pathways augmented the survival of naive T cells, they were not sufficient to inhibit activation-induced cell death triggered by CD3 cross-linking of activated T cells. Differences in the contributions of GITR to cell survival between naive and activated T cells suggest that the receptor triggers specific pathways depending on the activation state of the T cell.  相似文献   

12.
13.
14.
Fas ligand (FasL) has been well characterized as a death factor. However, recent studies revealed that FasL possesses inflammatory activity. Here we found that FasL induces production of the inflammatory chemokine IL-8 without inducing apoptosis in HEK293 cells. Reporter gene assays involving wild-type and mutated IL-8 promoters and NF-kappaB- and AP-1 reporter constructs indicated that an FasL-induced NF-kappaB and AP-1 activity are required for maximal promoter activity. FasL induced NF-kappaB activation with slower kinetics than did TNF-alpha, yet this response was cell autonomous and not mediated by secondary paracrine factors. The death domain of Fas, FADD, and caspase-8 were required for NF-kappaB activation by FasL. A dominant-negative mutant of IKKgamma inhibited the FasL-induced NF-kappaB activation. However, TRADD and RIP, which are essential for the TNF-alpha-induced NF-kappaB activation, were not involved in the FasL-induced NF-kappaB activation. Moreover, CLARP/FLIP inhibited the FasL- but not the TNF-alpha-induced NF-kappaB activation. These results show that FasL induces NF-kappaB activation and IL-8 production by a novel mechanism, distinct from that of TNF-alpha. In addition, we found that mouse FADD had a dominant-negative effect on the FasL-induced NF-kappaB activation in HEK293 cells, which may indicate a species difference between human and mouse in the FasL-induced NF-kappaB activation.  相似文献   

15.
16.
17.
18.
19.
Reovirus infection activates NF-kappaB, which leads to programmed cell death in cultured cells and in the murine central nervous system. However, little is known about how NF-kappaB elicits this cellular response. To identify host genes activated by NF-kappaB following reovirus infection, we used HeLa cells engineered to express a degradation-resistant mutant of IkappaBalpha (mIkappaBalpha) under the control of an inducible promoter. Induction of mIkappaBalpha inhibited the activation of NF-kappaB and blocked the expression of NF-kappaB-responsive genes. RNA extracted from infected and uninfected cells was used in high-density oligonucleotide microarrays to examine the expression of constitutively activated genes and reovirus-stimulated genes in the presence and absence of an intact NF-kappaB signaling axis. Comparison of the microarray profiles revealed that the expression of 176 genes was significantly altered in the presence of mIkappaBalpha. Of these genes, 64 were constitutive and not regulated by reovirus, and 112 were induced in response to reovirus infection. NF-kappaB-regulated genes could be grouped into four distinct gene clusters that were temporally regulated. Gene ontology analysis identified biological processes that were significantly overrepresented in the reovirus-induced genes under NF-kappaB control. These processes include the antiviral innate immune response, cell proliferation, response to DNA damage, and taxis. Comparison with previously identified NF-kappaB-dependent gene networks induced by other stimuli, including respiratory syncytial virus, Epstein-Barr virus, tumor necrosis factor alpha, and heart disease, revealed a number of common components, including CCL5/RANTES, CXCL1/GRO-alpha, TNFAIP3/A20, and interleukin-6. Together, these results suggest a genetic program for reovirus-induced apoptosis involving NF-kappaB-directed expression of cellular genes that activate death signaling pathways in infected cells.  相似文献   

20.
Cell death induced by the Fas/Fas ligand pathway and its role in pathology.   总被引:12,自引:0,他引:12  
Engagement of the cell death surface receptor Fas by Fas ligand (FasL) results in apoptotic cell death, mediated by caspase activation. Cell death mediated via Fas/FasL interaction is important for homeostasis of cells in the immune system and for maintaining immune-privileged sites in the body. Killing via the Fas/FasL pathway also constitutes an important pathway of killing for cytotoxic T cells. Fas ligand is induced in activated T cells, resulting in activation-induced cell death by the Fas/FasL pathway. Recently it has been shown that the Fas receptor can also be up-regulated following a lesion to the cell, particularly that induced by DNA-damaging agents. This can then result in killing of the cell by a Fas/FasL-dependent pathway. Up-regulation of Fas receptor following DNA damage appears to be p53 dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号