首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Weiner H 《Plant physiology》1995,108(1):219-225
Serum antibodies were raised against a synthetic peptide corresponding to the amino acid sequence surrounding the major inactivating phosphorylation site (serine-158) of spinach (Spinacia oleracea) leaf sucrose-phosphate synthase (SPS). The anti-peptide antibodies precipitated highly activated SPS preferentially to ATP-inactivated SPS and interacted only weakly with the sodium dodecyl sulfate-denatured enzyme bound to a membrane. The antibodies blocked phosphorylation but not dephosphorylation of SPS. Highly activated SPS was not entirely dephosphorylated and ATP-inactivated SPS was not completely phosphorylated on serine-158, as indicated by the sensitivities of immunopurified serine-158 phospho- and dephospho-SPS to inhibition by inorganic phosphate. The anti-peptide antibodies can be used to detect changes in the phosphorylation state of serine-158, and they are useful to purify and characterize distinct kinetic forms of SPS.  相似文献   

2.
Experiments were conducted to determine whether sucrose synthase (SuSy) was phosphorylated in the elongation zone of maize (Zea mays L.) leaves. The approximately 90-kD subunit of SuSy was 32P-labeled on seryl residue(s) when excised shoots were fed [32P]orthophosphate. Both isoforms of SuSy (the SS1 and SS2 proteins) were phosphorylated in vivo, and tryptic peptide-mapping analysis suggested a single, similar phosphorylation site in both proteins. A combination of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and automated Edman sequencing analysis unequivocally identified the phosphorylation site in the maize SS2 protein as serine-15. This site was phosphorylated in vitro by endogenous protein kinase(s) in a strictly Ca(2+)-dependent manner. A synthetic peptide, based on the phosphorylation site sequence, was used to identify and partially purify an endogenous Ca(2+)-dependent protein kinase(s) from the maize leaf elongation zone and expanding spinach leaves. Phosphorylation of SuSy in vitro selectively activates the cleavage reaction by increasing the apparent affinity of the enzyme for sucrose and UDP, suggesting that phosphorylation may be of regulatory significance. Conservation of the phosphorylation site, and the sequences surrounding it, among plant species suggests that phosphorylation of SuSy may be widespread, if not universal, in plants.  相似文献   

3.
Spinach (Spinacia oleracea L.) leaf sucrose-phosphate synthase (SPS) can be inactivated by phosphorylation of Ser-158 by calmodulin-like domain protein kinases (CDPKs) or SNF1-related protein kinases (SnRK1) in vitro. While the phosphorylation site sequence is relatively conserved, most of the deduced sequences of SPS from dicot species surrounding the Ser-158 regulatory phosphorylation site contain a Pro residue at P-4 (where P is the phosphorylated Ser); spinach is the exception and contains an Arg at P-4. We show that a Pro at P-4 selectively inhibits phosphorylation of the peptide by a CDPK relative to a SnRK1. The presence of a Pro at P-4, by allowing a tight turn in the peptide substrate, may interfere with proper binding of residues at P-5 and beyond. Both kinases had greater activity with peptides having basic residues at P-6 and P+5 (in addition to the known requirement for an Arg at P-3/P-4), and when the residue at P-6 was a His, the pH optimum for phosphorylation of the peptide was acid shifted. The results are used to predict proteins that may be selectively phosphorylated by SnRK1s (as opposed to CDPKs), such as SPS in dicot species, or may be phosphorylated in a pH-dependent manner.  相似文献   

4.
Nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase (np-Ga3PDHase) is a cytosolic unconventional glycolytic enzyme of plant cells regulated by phosphorylation in heterotrophic tissues. After interaction with 14-3-3 proteins, the phosphorylated enzyme becomes less active and more sensitive to regulation by adenylates and inorganic pyrophosphate. Here, we acknowledge that in wheat (Triticum aestivum), np-Ga3PDHase is specifically phosphorylated by the SnRK (SNF1-related) protein kinase family. Interestingly, only the kinase present in heterotrophic tissues (endosperm and shoots, but not in leaves) was found active. The specific SnRK partially purified from endosperm exhibited a requirement for Mg(2+) or Mn(2+) (being Ca(2+) independent), having a molecular mass of approximately 200 kD. The kinase also phosphorylated standard peptides SAMS, AMARA, and SP46, as well as endogenous sucrose synthase, results suggesting that it could be a member of the SnRK1 subfamily. Concurrently, the partially purified wheat SnRK was recognized by antibodies raised against a peptide conserved between SnRK1s from sorghum (Sorghum bicolor) and maize (Zea mays) developing seeds. The wheat kinase was allosterically inhibited by ribose-5-phosphate and, to a lesser extent, by fructose-1,6-bisphosphate and 3-phosphoglycerate, while glucose-6-phosphate (the main effector of spinach [Spinacia oleracea] leaves, SnRK1) and trehalose-6-phosphate produced little or no effect. Results support a distinctive allosteric regulation of SnRK1 present in photosynthetic or heterotrophic plant tissues. After in silico analysis, we constructed two np-Ga3PDHase mutants, S404A and S447A, identifying serine-404 as the target of phosphorylation. Results suggest that both np-Ga3PDHase and the specific kinase could be under control, critically affecting the metabolic scenario involving carbohydrates and reducing power partition and storage in heterotrophic plant cells.  相似文献   

5.
The regulation of sucrose-phosphate synthase (SPS) and nitrate reductase (NR) activities from mature spinach (Spinacia oleracea L.) leaves share many similarities in vivo and in vitro. Both enzymes are light/dark modulated by processes that involve, at least in part, reversible protein phosphorylation. Experiments using desalted crude extracts show that the ATP-dependent inactivation of spinach SPS and NR is sensitive to inhibition by glucose-6-phosphate. Also, a synthetic peptide homolog of the spinach SPS phosphorylation site inhibits the ATP-dependent inactivation of both enzymes with a similar concentration dependence. We have addressed the possibility that SPS and NR are regulated by the same protein kinase by partially purifying the protein kinases involved. Three unique kinase activities can be separated by anion-exchange and size-exclusion chromatography. Each peak of activity has a different substrate specificity. By gel filtration, they have apparent molecular masses of approximately 45, 60, and 150 kD. Additionally, the activities of the two smaller kinases are dependent on micromolar concentrations of Ca2+, whereas the 150-kD kinase is not. Finally, the 150-kD kinase has a subunit molecular mass of about 65 kD as determined by renaturing the kinase activity in situ following sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

6.
Site-directed mutagenesis of spinach sucrose-phosphate synthase (SPS) was performed to investigate the role of Ser158 in the modulation of spinach leaf SPS. Tobacco plants expressing the spinach wild-type (WT), S158A, S158T and S157F/S158E SPS transgenes were produced. Expression of transgenes appeared not to reduce expression of the tobacco host SPS. SPS activity in the WT and the S158T SPS transgenics showed light/dark modulation, whereas the S158A and S157F/S158E mutants were not similarly light/dark modulated: the S158A mutant enzyme was not inactivated in the dark, and the S157F/S158E was not activated in the light. The inability to modulate the activity of the S158A mutant enzyme by protein phosphorylation was demonstrated in vitro. The WT spinach enzyme immunopurified from dark transgenic tobacco leaves had a low initial activation state, and could be activated by PP2A and subsequently inactivated by SPS-kinase plus ATP. Rapid purification of the S158A mutant enzyme from dark leaves of transgenic plants using spinach-specific monoclonal antibodies yielded enzyme that had a high initial activation state, and pre-incubation with leaf PP2A or ATP plus SPS-kinase (the PKIII enzyme) caused little modulation of activity. The results demonstrate the regulatory significance of Ser158 as the major site responsible for dark inactivation of spinach SPS in vivo, and indicate that the significance of phosphorylation is the introduction of a negative charge at the Ser158 position.  相似文献   

7.
The mechanism(s) of force development in vascular smooth muscle following pharmacological activation of protein kinase C by phorbol esters are not known. In this study, we examined the myosin light chain phosphorylation response following stimulation by phorbol 12,13-dibutyrate (PDB) or phenylephrine in rabbit aorta which had been incubated with 32PO4 in order to label ATP pools. Through tryptic phosphopeptide mapping of myosin light chain from intact tissue and comparison to controls using purified components, we inferred that Ca2+-dependent force stimulated by PDB was associated with small increases in serine-19 phosphorylation, consistent with a contractile mechanism involving indirect activation of myosin light chain kinase. Additional residues, consistent with the in vitro substrate specificity of protein kinase C, were also observed to be phosphorylated in response to PDB and represented proportionately a larger fraction of the total phosphorylated myosin light chain in Ca2+-depleted tissues. Stimulation by an alpha 1-adrenergic agonist (phenylephrine) resulted in phosphorylation of residues which were consistent with an activation mechanism involving myosin light chain kinase only. These results indicate that in rabbit aorta the contractile effects of PDB may be partially mediated by Ca2+-dependent activation of myosin light chain kinase. However, the data do not rule out a component of the PDB-stimulated contractile response which is independent of myosin light chain phosphorylation on the serine-19 residue. In addition, activation by a more physiological stimulus, phenylephrine, does not result in protein kinase C-mediated myosin light chain phosphorylation.  相似文献   

8.
The Ca(2+)-dependent protein kinases (CDPKs) are members of a large subfamily of protein kinases in plants that have been implicated in the control of numerous aspects of plant growth and development. One known substrate of the CDPKs is the ER-located ACA2 calcium pump, which is regulated by phosphorylation of Ser(45). In the present study, a synthetic peptide based on the known regulatory phosphorylation site (RRFRFTANLS(45)KRYEA) was efficiently phosphorylated in vitro by CDPKs but not a plant SNF1-related protein kinase. Phosphorylation of the Ser(45)-ACA2 peptide was surprising because the sequence lacks basic residues at P-3/P-4 (relative to the phosphorylated Ser at position P) that are considered to be essential recognition elements for CDPKs. We demonstrate that phosphorylation of the Ser(45)-ACA2 peptide is dependent on the cluster of basic residues found N-terminal (P-6 to P-9) as well as C-terminal (P + 1/P + 2) to the phosphorylated Ser. The results establish a new general phosphorylation motif for CDPKs: [Basic-Basic-X-Basic]-phi-X(4)-S/T-X-Basic (where phi is a hydrophobic residue). The motif predicts a number of new phosphorylation sites in plant proteins. Evidence is presented that the novel motif may explain the phosphorylation by CDPKs of Ser271 in the aquaporin PM28A.  相似文献   

9.
Phospholipid-sensitive Ca2+ -dependent protein kinase (PL-Ca-PK) and cyclic AMP-dependent protein kinase (A-PK) both preferentially phosphorylated serine residues of bovine myelin basic protein (MBP). Tryptic peptide maps of MBP phosphorylated by PL-Ca-PK or A-PK, however, revealed different phosphopeptides, suggesting a difference in the intramolecular substrate specificity for the two enzymes. Serine-115 of MBP, in the sequence (-Arg-Phe-Ser(115)-Trp-), was found to be a preferred and probably major phosphorylation site for PL-Ca-PK. Because serine-115 of bovine MBP corresponds to serine-113 of rabbit MBP, an in vivo phosphorylation site reported by Martenson et al. (1983), and PL-Ca-PK is present at a very high level in brain and myelin, it is suggested that the enzyme may be responsible for the in vivo phosphorylation of this and other sites in MBP.  相似文献   

10.
Purified Ca(2+)-stimulated, Mg(2+)-dependent ATPase (Ca(2+)-ATPase) from human erythrocytes was phosphorylated with a stoichiometry of about 1 mol of phosphate/mol of ATPase at both threonine and serine residues by purified rat brain type III protein kinase C. In the presence of calmodulin, the phosphorylation was markedly reduced. Labeled phosphate from [gamma-32P]ATP was retained on an 86-kDa calmodulin-binding tryptic fragment of Ca(2+)-ATPase but not on 82- and 77-kDa non-calmodulin-binding fragments. Similarly, fragmentation of the phosphorylated Ca(2+)-ATPase by calpain I revealed that calmodulin-binding fragments (127 and 125 kDa) retained phosphate label whereas a non-calmodulin-binding fragment (124 kDa) did not. The calmodulin-binding domain, located about 12 kDa from the carboxyl terminus of the Ca(2+)-ATPase, was thus located as a site of protein kinase C phosphorylation. A synthetic peptide corresponding to a segment of the calmodulin-binding domain (H2 N-R-G-L-N-R-I-Q-T-Q-I-K-V-V-N-COOH) was indeed phosphorylated at the single threonine residue within this sequence. The additional serine phosphorylation site was carboxyl terminal to the calmodulin domain. Phosphorylation by purified type III protein kinase C (canine heart) antagonized the calmodulin activation of the Ca(2+)-ATPase, particularly at lower Ca2+ concentrations (0.2-1.0 microM). By contrast, a purified but unresolved protein kinase C isoenzyme mixture from rat brain stimulated the activity of Ca(2+)-ATPase prepared in asolectin, but not glycerol, by more than 2-fold in the presence of the ionophore A23187, without increasing its Ca2+ sensitivity. The results clearly indicate that human erythrocyte Ca(2+)-ATPase is a substrate of protein kinase C, but the effect of phosphorylation on the activity of the enzyme depends on the isoenzyme form of protein kinase C used and on the lipid associated with the Ca(2+)-ATPase.  相似文献   

11.
The vacuolar calmodulin (CaM)-stimulated Ca(2+)-ATPase, BCA1p, in cauliflower (Brassica oleracea) has an extended N terminus, which was suggested to contain a CaM-binding domain (S. Malmstr?m, P. Askerlund, M.G. Palmgren [1997] FEBS Lett 400: 324-328). The goal of the present study was to determine the role of the N terminus in regulating BCA1p. Western analysis using three different antisera showed that the N terminus of BCA1p is cleaved off by trypsin and that the N terminus contains the CaM-binding domain. Furthermore, the expressed N terminus binds CaM in a Ca(2+)-dependent manner. A synthetic peptide corresponding to the CaM-binding domain of BCA1p (Ala-19 to Leu-43) strongly inhibited ATP-dependent Ca(2+) pumping by BCA1p in cauliflower low-density membranes, indicating that the CaM-binding region of BCA1p also has an autoinhibitory function. The expressed N terminus of BCA1p and a synthetic peptide (Ala-19 to Met-39) were good substrates for phosphorylation by protein kinase C. Sequencing of the phosphorylated fusion protein and peptide suggested serine-16 and/or serine-28 as likely targets for phosphorylation. Phosphorylation of serine-28 had no effect on CaM binding to the alanine-19 to methionine-39 peptide. Our results demonstrate the regulatory importance of the N terminus of BCA1p as a target for CaM binding, trypsin cleavage, and phosphorylation, as well as its importance as an autoinhibitory domain.  相似文献   

12.
We previously identified p65/L-plastin as a phosphorylated protein in LPS-stimulated macrophages and determined its phosphorylation site. In vitro kinase assay using peptide substrates revealed that LPS-stimulated kinase activity selectively phosphorylated their serine-5 (Ser-5) residue. Kinase inhibitors for cAMP-dependent kinase such as H-89 inhibited the Ser-5 phosphorylation, but cAMP was not essential for the kinase activity. The LPS-stimulated kinase activity in cytosol fractions of macrophages was recovered as a sharp peak by anion exchange chromatography. These findings suggest that an as yet unknown H-89-sensitive serine kinase is rapidly activated by LPS stimulation and then phosphorylates p65/L-plastin, playing a vital role in macrophage activation.  相似文献   

13.
Under phosphorylating conditions, addition of Ca2+ or cyclic AMP to the 100,000 g supernatant of purified bovine adrenal chromaffin cells increases both the incorporation of 32P into tyrosine hydroxylase and the activity of the enzyme. Combining maximally effective concentrations of each of these stimulating agents produces an additive increase in both the level of 32P incorporation into tyrosine hydroxylase and the degree of activation of the enzyme. The increased phosphorylation by Ca2+ is due to stimulation of endogenous Ca2+-dependent protein kinase activity and not inhibition of phosphoprotein phosphatases. When the chromaffin cell supernatant is subjected to diethylaminoethyl (DEAE) chromatography to remove calmodulin and phospholipids, tyrosine hydroxylase is no longer phosphorylated or activated by Ca2+; on the other hand, phosphorylation and activation of tyrosine hydroxylase by cyclic AMP are not affected. Subsequent replacement of either Ca2+ plus calmodulin or Ca2+ plus phosphatidylserine to the DEAE-fractionated cell supernatant restores the phosphorylation, but not activation of the enzyme. Reverse-phase HPLC peptide mapping of tryptic digests of tyrosine hydroxylase from the 100,000 g supernatant shows that the Ca2+-dependent phosphorylation occurs on three phosphopeptides, whereas the cyclic AMP-dependent phosphorylation occurs on one of these peptides. In the DEAE preparation, either cyclic AMP alone or Ca2+ in the presence of phosphatidylserine stimulates the phosphorylation of only a single phosphopeptide peak, the same peptide phosphorylated by cyclic AMP in the crude supernatant. In contrast, Ca2+ in the presence of calmodulin stimulates the phosphorylation of three peptides having reverse-phase HPLC retention times that are identical to peptides phosphorylated by Ca2+ addition to the crude unfractionated 100,000 g supernatant. Rechromatography of the peaks from each of the in vitro phosphorylations, either in combination with each other or in combination with each of the seven peaks generated from phosphorylation of tyrosine hydroxylase in situ, established that cyclic AMP, Ca2+/phosphatidylserine, and Ca2+/calmodulin all stimulate the phosphorylation of the same reverse-phase HPLC peptide: in situ peptide 6. Ca2+/calmodulin stimulates the phosphorylation of in situ peptides 3 and 5 as well. Thus, tyrosine hydroxylase can be phosphorylated in vitro by protein kinases endogenous to the chromaffin cell. Phosphorylation occurs on a maximum of three of the seven in situ phosphorylated sites, and all three of these sites can be phosphorylated by a Ca2+/calmodulin-dependent protein kinase.  相似文献   

14.
Myosin regulatory light chain (RLC) phosphorylation in skeletal and cardiac muscles modulates Ca(2+)-dependent troponin regulation of contraction. RLC is phosphorylated by a dedicated Ca(2+)-dependent myosin light chain kinase in fast skeletal muscle, where biochemical properties of RLC kinase and phosphatase converge to provide a biochemical memory for RLC phosphorylation and post-activation potentiation of force development. The recent identification of cardiac-specific myosin light chain kinase necessary for basal RLC phosphorylation and another potential RLC kinase (zipper-interacting protein kinase) provides opportunities for new approaches to study signaling pathways related to the physiological function of RLC phosphorylation and its importance in cardiac muscle disease.  相似文献   

15.
The calcium-dependent proline-rich tyrosine kinase Pyk2 is activated by tyrosine phosphorylation, associates with focal adhesion proteins, and has been linked to proliferative and migratory responses in a variety of mesenchymal and epithelial cell types. Full Pyk2 activation requires phosphorylation at functionally distinct sites, including autophosphorylation site Tyr-402 and catalytic domain site Tyr-580, though the mechanisms involved are unclear. The pathways mediating Pyk2 phosphorylation at Tyr-402 and Tyr-580 were therefore investigated. Both sites were rapidly and transiently phosphorylated following cell stimulation by Ang II or LPA. However, only Tyr-580 phosphorylation was rapidly enhanced by intracellular Ca(2+) release, or inhibited by Ca(2+) depletion. Conversely, Tyr-402 phosphorylation was highly sensitive to inhibition of actin stress fibers, or of Rho kinase (ROK), an upstream regulator of stress fiber assembly. Ang II also induced a delayed (30-60 min) secondary phosphorylation peak occurring at Tyr-402 alone. Unlike the homologous focal adhesion kinase (FAK), Pyk2 phosphorylation was sensitive neither to the Src inhibitor PP2, nor to truncation of its N-terminal region, which contains a putative autoinhibitory FERM domain. These results better define the mechanisms involved in Pyk2 activation, demonstrating that autophosphorylation is ROK- and stress fiber-dependent, while transphosphorylation within the kinase domain is Ca(2+)-dependent and Src-independent in intestinal epithelial cells. This contrasts with the tight sequential coupling of phosphorylation seen in FAK activation, and further underlines the differences between these closely related kinases.  相似文献   

16.
Identification of the protein kinase C phosphorylation site in neuromodulin   总被引:11,自引:0,他引:11  
E D Apel  M F Byford  D Au  K A Walsh  D R Storm 《Biochemistry》1990,29(9):2330-2335
Neuromodulin (P-57, GAP-43, B-50, F-1) is a neurospecific calmodulin binding protein that is phosphorylated by protein kinase C. Phosphorylation by protein kinase C has been shown to abolish the affinity of neuromodulin for calmodulin [Alexander, K. A., Cimler, B. M., Meier, K. E., & Storm, D. R. (1987) J. Biol. Chem. 262, 6108-6113], and we have proposed that the concentration of free CaM in neurons may be regulated by phosphorylation and dephosphorylation of neuromodulin. The purpose of this study was to identify the protein kinase C phosphorylation site(s) in neuromodulin using recombinant neuromodulin as a substrate. Toward this end, it was demonstrated that recombinant neuromodulin purified from Escherichia coli and bovine neuromodulin were phosphorylated with similar Km values and stoichiometries and that protein kinase C mediated phosphorylation of both proteins abolished binding to calmodulin-Sepharose. Recombinant neuromodulin was phosphorylated by using protein kinase C and [gamma-32P]ATP and digested with trypsin, and the resulting peptides were separated by HPLC. Only one 32P-labeled tryptic peptide was generated from phosphorylated neuromodulin. The sequence of this peptide was IQASFR. The serine in this peptide corresponds to position 41 of the entire protein, which is adjacent to or contained within the calmodulin binding domain of neuromodulin. A synthetic peptide, QASFRGHITRKKLKGEK, corresponding to the calmodulin binding domain with a few flanking residues, including serine-41, was also phosphorylated by protein kinase C. We conclude that serine-41 is the protein kinase C phosphorylation site of neuromodulin and that phosphorylation of this amino acid residue blocks binding of calmodulin to neuromodulin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
We investigated the role of a Ca(2+) channel and intracellular calcium concentration ([Ca(2+)](i)) in osmotic stress-induced JNK activation and tight junction disruption in Caco-2 cell monolayers. Osmotic stress-induced tight junction disruption was attenuated by 1,2-bis(2-aminophenoxyl)ethane-N,N,N',N'-tetraacetic acid (BAPTA)-mediated intracellular Ca(2+) depletion. Depletion of extracellular Ca(2+) at the apical surface, but not basolateral surface, also prevented tight junction disruption. Similarly, thapsigargin-mediated endoplasmic reticulum (ER) Ca(2+) depletion attenuated tight junction disruption. Thapsigargin or extracellular Ca(2+) depletion partially reduced osmotic stress-induced rise in [Ca(2+)](i), whereas thapsigargin and extracellular Ca(2+) depletion together resulted in almost complete loss of rise in [Ca(2+)](i). L-type Ca(2+) channel blockers (isradipine and diltiazem) or knockdown of the Ca(V)1.3 channel abrogated [Ca(2+)](i) rise and disruption of tight junction. Osmotic stress-induced JNK2 activation was abolished by BAPTA and isradipine, and partially reduced by extracellular Ca(2+) depletion, thapsigargin, or Ca(V)1.3 knockdown. Osmotic stress rapidly induced c-Src activation, which was significantly attenuated by BAPTA, isradipine, or extracellular Ca(2+) depletion. Tight junction disruption by osmotic stress was blocked by tyrosine kinase inhibitors (genistein and PP2) or siRNA-mediated knockdown of c-Src. Osmotic stress induced a robust increase in tyrosine phosphorylation of occludin, which was attenuated by BAPTA, SP600125 (JNK inhibitor), or PP2. These results demonstrate that Ca(V)1.3 and rise in [Ca(2+)](i) play a role in the mechanism of osmotic stress-induced tight junction disruption in an intestinal epithelial monolayer. [Ca(2+)](i) mediate osmotic stress-induced JNK activation and subsequent c-Src activation and tyrosine phosphorylation of tight junction proteins. Additionally, inositol 1,4,5-trisphosphate receptor-mediated release of ER Ca(2+) also contributes to osmotic stress-induced tight junction disruption.  相似文献   

18.
Prothrombin is a major constituent of the blood coagulation cascade and requires phospholipid and Ca2+ for its activation. We have found that phospholipid/Ca(2+)-dependent protein kinase (Protein kinase C) phosphorylates prothrombin and the associated apparent Km value for prothrombin (0.86 microM) is comparable to the Km value reported for most known substrates of protein kinase C. A 2-dimension separation analysis revealed that serine residue was apparently phosphorylated by PKC. The phosphorylation was inhibited by such phosphatidylserine- and/or Ca2+ competitive protein kinase C inhibitors as trifluoperazine, palmitoylcarnitine and gossypol. These results suggest that protein kinase C phosphorylation was involved in the regulation of blood coagulation.  相似文献   

19.
J A Koch  D J Waxman 《Biochemistry》1989,28(8):3145-3152
Phosphorylation of hepatic cytochrome P-450 was studied in isolated hepatocytes incubated in the presence of agents known to stimulate protein kinase activity. Incubation of hepatocytes isolated from phenobarbital-induced adult male rats with [32P]orthophosphate in the presence of N6,O2'-dibutyryl-cAMP (diBtcAMP) or glucagon resulted in the phosphorylation of microsomal proteins that are immunoprecipitable by polyclonal antibodies raised to the phenobarbital-inducible P-450 form PB-4 (P-450 gene IIB1). Little or no phosphorylation of these proteins was observed in the absence of diBtcAMP or glucagon or in the presence of activators of Ca2+-dependent protein kinases. Two-dimensional gel electrophoresis revealed that these 32P-labeled microsomal proteins consist of a mixture of P-450 PB-4 and the closely related P-450 PB-5 (gene IIB2), both of which exhibited heterogeneity in the isoelectric focusing dimension. Phosphorylation of both P-450 forms was markedly enhanced by diBtcAMP at concentrations as low as 5 microM. In contrast, little or no phosphorylation of P-450 forms reactive with antibodies to P-450 PB-1 (gene IIC6), P-450 2c (gene IIC11), or P-450 PB-2a (gene IIIA1) was detected in the isolated hepatocytes under these incubation conditions. Phosphoamino acid analysis of the 32P-labeled P-450 PB-4 + PB-5 immunoprecipitate revealed that these P-450s are phosphorylated on serine in the isolated hepatocytes. Peptide mapping indicated that the site of phosphorylation in hepatocytes is indistinguishable from the site utilized by cAMP-dependent protein kinase in vitro, which was previously identified as serine-128 for the related rabbit protein P-450 LM2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Angiotensin II (ANG II) promotes vascular smooth muscle cell (VSMC) growth, stimulates Ca(2+)-calmodulin (CaM)-dependent kinase II (CaMKII), and activates cytosolic Ca(2+)-dependent phospholipase A2 (cPLA2), which releases arachidonic acid (AA). ANG II also generates H2O2 and activates Akt, which have been implicated in ANG II actions in VSMC. This study was conducted to investigate the relationship of these signaling molecules to Akt activation in rat aortic VSMC. ANG II increased Akt activity, as measured by its phosphorylation at serine-473. ANG II (200 nM)-induced Akt phosphorylation was decreased by extracellular Ca2+ depletion and calcium chelator EGTA and inhibitors of CaM [N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide] and CaMKII [(2-[N-(2-hydroxyethyl)]-N-(4-me-thoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzyl-amine)]. cPLA2 inhibitor pyrrolidine-1, antisense oligonucleotide, and retroviral small interfering RNA also attenuated ANG II-induced Akt phosphorylation. AA increased Akt phosphorylation, and AA metabolism inhibitor 5,8,11,14-eicosatetraynoic acid (ETYA) blocked ANG II- and AA-induced Akt phosphorylation (199.03 +/- 27.91% with ANG II and 110.18 +/- 22.40% with ETYA + ANG II; 405.00 +/- 86.22% with AA and 153.97 +/- 63.26% with ETYA + AA). Inhibitors of lipoxygenase (cinnamyl-3,4-dihydroxy-alpha-cyanocinnamate) and cytochrome P-450 (ketoconazole and 17-octadecynoic acid), but not cyclooxygenase (indomethacin), attenuated ANG II- and AA-induced Akt phosphorylation. Furthermore, 5(S)-, 12(S)-, 15(S)-, and 20-hydroxyeicosatetraenoic acids and 5,6-, 11,12-, and 14,15-epoxyeicosatrienoic acids increased Akt phosphorylation. Catalase inhibited ANG II-increased H2O2 production but not Akt phosphorylation. Oleic acid, which also increased H2O2 production, did not cause Akt phosphorylation. These data suggest that ANG II-induced Akt activation in VSMC is mediated by AA metabolites, most likely generated via lipoxygenase and cytochrome P-450 consequent to AA released by CaMKII-activated cPLA2 and independent of H2O2 production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号