首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
微晶和芦苇浆纳米纤维素的粒度分布分析   总被引:1,自引:0,他引:1  
在一定工艺条件下,硫酸分别水解微晶纤维素和芦苇浆制备纳米纤维素,采用激光粒度分析法分别分析了微晶和芦苇浆纳米纤维素的粒度分布,结果表明以微晶纤维素为原料,在控制制备工艺条件下可以制备出三维尺度相差不大的纳米纤维素,Z均粒径为163.8 nm。芦苇浆纳米纤维素为非球形颗粒,且不同方向的尺寸相差较大,Z均粒径为942.0 nm。  相似文献   

2.
目的:制备粒径均一且稳定、载药率和包埋率较高的聚合物脂质纳米球。方法:将HSPC(氢化大豆卵磷脂)与PLGA(聚乳酸-羟基乙酸共聚物)两种材料结合,利用超声复乳法制备聚合物脂质纳米球,采用响应面法优化最佳制备工艺;以HSPC(氢化大豆卵磷脂)与PLGA(聚乳酸-羟基乙酸共聚物)的比例、PVA浓度、超声功率为条件优化制备参数,以粒径为响应值。结果:优化后的最佳工艺参数为:HSPC与PLGA的比例为1:10,PVA浓度为0.66%,超声功率为51.34%(205.36 W)。结论:按最优工艺制备出的聚合物脂质纳米粒的粒径为230 nm左右,多分散系数(PDI)值为0.057,与预测值偏差较小,且粒径分布均一,可作为蛋白及多肽类药物的递送载体。  相似文献   

3.
鸭毛梗制备复合氨基酸工艺条件的研究   总被引:4,自引:1,他引:3  
采用正交试验方法 ,研究了鸭毛梗水解制备复合氨基酸的工艺条件 ,结果表明 :温度 /压力是影响氨基酸转化率最主要的因素。鸭毛梗水解制备的复合氨基酸转化率盐酸法最高 (82 .36 % ) ,氢氧化钠法最低 (5 8.4 6 % ) ,硫酸法与盐酸法接近(79.4 4 % )。硫酸法产率较高 ,操作方便 ,环境污染和设备腐蚀均小 ,适合大量生产 ,确定为水解制备复合氨基酸介质 ,其最佳工艺条件为 :水解时间 8.0h ,硫酸浓度 3.0mol·L-1,水解温度 12 5℃。氨基酸分析表明 ,水解液中均含有 18种以上氨基酸。  相似文献   

4.
正交试验法探讨单酸降解纤维素的最佳条件   总被引:8,自引:1,他引:7  
正交试验法探讨了乙酸、草酸、盐酸、硫酸等单酸降解植物纤维素的最佳条件。研究结果表明,乙酸降解纤维素时,影响因素的主次顺序为:A>B>C,最佳组合为A3B1C2。即乙酸浓度为30%,温度40℃,反应1.5h为最佳条件,验证性试验结果表明,单用乙醇能使纤维素降解成葡萄糖的转化率达42.2%。而草酸影响因素的主次则为A>C>B,最佳组合为A2C1B2。即草酸度浓度0%,70℃酸解1h为最佳条件。在此条件下,转化率可达40.8%。对于盐酸影响因素的主次为A>B>C,最佳组合为A3B3C1。即在20%盐酸,100℃酸解1h的条件下,转化率可达42.8%。而硫酸影响因素的主次顺序为B>A>C,最佳组合为A3B3C1。即在40%硫酸,100℃反应1h的最佳条件下能使转化率达40.9%。研究还发现,乙酸、草酸、盐酸、硫酸降解纤维素特性不同。乙酸、草酸同属有机酸,但因二者的酸性、挥发性、溶解性等不同,致使温度、时间两因素对纤维降解的影响相关很大。盐酸、硫酸无机强酸,都要求高温短时,但随着浓度的升高,转化度呈下降趋势,且二者的下降幅度不同,硫酸大于盐酸。  相似文献   

5.
本文采用喷雾干燥法制备高纯α-亚麻酸为芯材、亚麻籽胶为壁材的微胶囊,并以微胶囊化效率和含油率为指标,考察了制备工艺.结果表明,最佳微胶囊原料配方为:芯材与壁材的比例为(m/m)3∶2,料液浓度为5%,进料温度为20℃;最佳喷雾干燥工艺条件:进风温度为180℃,出风温度为80℃,雾化器转速21000 rpm,进料速度为42.01 mL/min.在此工艺条件下亚麻酸的微胶囊化效率为96.18%,含油率为60.09%.  相似文献   

6.
5-FU壳聚糖-阿拉伯胶缓释微囊的制备工艺研究   总被引:3,自引:0,他引:3  
研究以壳聚糖和阿拉伯胶为基质材料,制备5-FU缓释微囊.以微囊的药物包封率为制备工艺优化指标,利用复凝聚法,通过L_9(3~4)正交实验得出微囊的最佳制备工艺条件.以最佳制备工艺条件制备的5-FU缓释微囊,所制微囊形态及稳定性较好.体外释放研究表明,微囊有良好的缓释效果.  相似文献   

7.
为提高米糠蛋白的利用价值及应用意义,本研究拟采用超声乳化法制备以米糠蛋白为乳化剂的β-胡萝卜素纳米乳液,本研究采用响应面优化法获取了米糠蛋白纳米乳液超声乳化制备工艺:超声温度50℃,超声功率490 W,超声时间280 s和米糠蛋白浓度4.5%,在此条件下米糠蛋白纳米乳液的平均粒径为190 nm,乳化产率为88.1%,兼具较强的稳定性。研究结果将为新型功能性食品、纳米食品的开发提供技术途径及研发思路。  相似文献   

8.
以火龙果茎为原料,研究火龙果茎甾醇的提取及精制工艺.利用响应面分析法对火龙果茎甾醇超声提取工艺进行优化.结果表明:超声波辅助提取火龙果茎甾醇的最佳工艺条件为提取时间57 min、超声功率143 W、液料比12∶1 (mL/g)、温度53℃,甾醇得率为2.693%‰.通过正交试验确定火龙果茎甾醇精制的最佳条件为:液料比为4∶1(mL/mg),结晶初始温度为55℃,养品时间为18h,此条件下火龙果茎甾醇的纯度达到87.6%.  相似文献   

9.
本文采用正交试验法优选硫酸水解猪血粉制备复合氨基酸的最佳条件,经中试及工业规模生产证明:复合氨基酸收率平均为53.3%,氨基酸含量为72.7%。  相似文献   

10.
为探索美洲大蠊药渣的综合利用的新途径,以美洲大蠊药渣为原料,石油醚为提取溶剂,通过正交设计优化超声辅助提取工艺条件,考察超声功率、提取时间、料液比和提取次数对残油提取率的影响。对制备的残油,进一步以硫酸作为催化剂,与甲醇进行酯交换反应制备生物柴油,通过正交设计优化制备工艺条件,考察反应温度、反应时间、油醇比和催化剂用量对转化率的影响。美洲大蠊药渣残油的最佳提取工艺条件为,超声波功率300 W、提取时间0.5 h、料液比1∶8、提取次数4次。在最佳提取工艺条件下,得油率可达24.25%。生物柴油的最佳制备工艺条件为:反应温度为65℃、反应时间2.5 h、油醇比为1∶5 mol/mol、催化剂用量为1.5%。转化率可达94.37%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号