首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
S Knotts  H Rindt    J Robbins 《Nucleic acids research》1995,23(16):3301-3309
Transgenic mice generated with constructs containing 5.6 kb of the beta myosin heavy chain (MyHC) gene's 5' flanking region linked to the cat reporter gene express the transgene at high levels. In all 47 lines analyzed, tissue-specific accumulation of chloramphenicol acetyltransferase was found at levels proportional to the number of integrated transgene copies. Deletion constructs containing only 0.6 kb of 5' upstream region showed position effects in transgenic mice and did not demonstrate copy number dependence although transgene expression remained muscle-specific. The 5.6 kb 5' upstream region conferred appropriate developmental control of the transgene to the cardiac compartment and directs copy number dependent and position independent expression. Lines generated with a construct in which three proximal cis-acting elements were mutated showed reduced levels of transgene expression, but all maintained their position independence and copy number dependence, suggesting the presence of distinct regulatory mechanisms.  相似文献   

3.
4.
The methylation status of a mouse metallothionein-I/human transthyretin fusion gene was studied during gametogenesis in transgenic mice. In the adult tissues of this mouse line, the promoter region of the transgene on chromosome 11 is methylated when it is maternally inherited and undermethylated when it is paternally inherited. Germ cells from various developmental stages of gametogenesis were isolated, and their DNAs were assayed using methylation-sensitive restriction endonucleases and the polymerase chain reaction. Only low to nonexistent levels of transgene methylation were detected in germ cells from 14.5-day-old male and female fetuses irrespective of the parental origin of the transgene. This undermethylated state persisted in oocytes from newborn females as well as in testicular spermatogenic cells and sperm. By contrast, the transgene promoter was completely methylated in fully grown oocytes arrested at the first meiotic prophase. The endogenous metallothionein-I gene promoter, located on a different chromosome, remained undermethylated at all stages examined, consistent with previous findings reported for a typical CpG island. Taken together, the results suggest that parental-specific adult patterns of transgene methylation are established during gametogenesis.  相似文献   

5.
Park CW  Park J  Kren BT  Steer CJ 《Genomics》2006,88(2):204-213
The Sleeping Beauty (SB) transposon (Tn) system is a nonviral gene delivery tool that has widespread application for transfer of therapeutic genes into the mammalian genome. To determine its utility as a gene delivery system, it was important to assess the epigenetic modifications associated with SB insertion into the genome and potential inactivation of the transgene. This study investigated the DNA methylation pattern of an SB Tn as well as the flanking genomic region at insertion sites in the mouse genome. The ubiquitous ROSA26 promoter and an initial part of the eGFP coding sequence in the SB Tn exhibited high levels of CpG methylation in transgenic mouse lines, irrespective of the chromosomal loci of the insertion sites. In contrast, no detectable CpG methylation in the endogenous mouse ROSA26 counterpart was observed in the same animals. Furthermore, significant hypomethylation was detected in neighboring chromosomal sequences of two unique SB Tn insertions compared to wild-type patterns. Taken together, these results suggest that SB Tn insertions into the mouse genome can be discriminated by DNA methylation machinery from an identical endogenous DNA sequence and can profoundly alter the DNA methylation status of the transgene cargo as well as flanking host genomic regions.  相似文献   

6.
In red blood cells ankyrin (ANK-1) provides the primary linkage between the erythrocyte membrane skeleton and the plasma membrane. We have previously demonstrated that a 271-bp 5'-flanking region of the ANK-1 gene has promoter activity in erythroid, but not non-erythroid, cell lines. To determine whether the ankyrin promoter could direct erythroid-specific expression in vivo, we analyzed transgenic mice containing the ankyrin promoter fused to the human (A)gamma-globin gene. Sixteen of 17 lines expressed the transgene in erythroid cells indicating nearly position-independent expression. We also observed a significant correlation between the level of Ank/(A)gamma-globin mRNA and transgene copy number. The level of Ank/(A)gamma mRNA averaged 11% of mouse alpha-globin mRNA per gene copy at all developmental stages. The addition of the HS2 enhancer from the beta-globin locus control region to the Ank/(A)gamma-globin transgene resulted in Ank/(A)gamma-globin mRNA expression in embryonic and fetal erythroid cells in six of eight lines but resulted in absent or dramatically reduced levels of Ank/(A)gamma-globin mRNA in adult erythroid cells in eight of eight transgenic lines. These data indicate that the minimal ankyrin promoter contains all sequences necessary and sufficient for erythroid-specific, copy number-dependent, position-independent expression of the human (A)gamma-globin gene.  相似文献   

7.
The methylation status of a transgene, which carried the adenovirus type 2 E2A late promoter linked to the chloramphenicol acetyltransferase gene, was studied in three transgenic mouse lines (5–8, 7–1 and 8–1). These lines were analysed over a large number of offspring generations beyond the founder animal. In mating experiments, the influence of the parent-of-origin and strain-specific backgrounds on the transgene methylation patterns were assessed and found to have no effect on the pre-established methylation patterns in mouse lines 5–8 and 8–1. The founder animal 7–1 carried two groups of a total of ten transgenes, which were located on two different chromosomes. These arrays of transgenes could be segregated into separate mouse lines 7-1A and 7-1B. The transgenes of 7-1A animals exhibited cellular mosaic methylation, patterns that were demethylated in approximately 10% of the offspring in a mixed genetic background. Upon further transmission of these transgenes in a mixed genetic background, the grandparental methylation patterns were reestablished in most progeny. Mating to inbred DBA/2 mice resulted in maintenance of the demethylated pattern or in further demethylation of the transgenes in approximately 50% of the offspring. In contrast, an equal number of transgenic siblings from matings to C57BL/6 mice showed a return to the original methylation pattern. The mosaic methylation status of this locus was apparently controlled by mouse-strain-specific factors. The methylation patterns of the 7-1B transgenes were not cellular mosaic and remained stable in all offspring, as with lines 5–8 and 8–1. Hence, the strain-dependent and cellular mosaic transgene methylation patterns of 7-1A animals were probably a consequence of the chromosomal integration site of the transgenes (position effect).  相似文献   

8.
Transgenic animals have been used for years to study gene function, produce important proteins, and generate models for the study of human diseases. However, inheritance and expression instability of the transgene in transgenic animals is a major limitation. Copy number and promoter methylation are known to regulate gene expression, but no report has systematically examined their effect on transgene expression. In the study, we generated two transgenic pigs by somatic cell nuclear transfer (SCNT) that express green fluorescent protein (GFP) driven by cytomegalovirus (CMV). Absolute quantitative real-time PCR and bisulfite sequencing were performed to determine transgene copy number and promoter methylation level. The correlation of transgene expression with copy number and promoter methylation was analyzed in individual development, fibroblast cells, various tissues, and offspring of the transgenic pigs. Our results demonstrate that transgene expression is associated with copy number and CMV promoter methylation in transgenic pigs.  相似文献   

9.
10.
11.
In order to identify DNA sequences responsible for the regulation beta-casein gene expression, lines of transgenic mice bearing the entire rat beta-casein gene and two rat beta-casein promoter chloramphenicol acetyltransferase (CAT) fusion genes have been established. All three transgenes have been shown previously to be regulated in a tissue- and stage specific manner. To investigate the relative contribution of promoter and intragenic sequences in the hormonal regulation of the beta-casein gene, mammary explant cultures derived from these lines of mice have now been performed, and the effects of PRL and glucocorticoids on transgene as compared with endogenous beta-casein gene expression have been quantified. After the addition of PRL to cultures performed in the presence of insulin and glucocorticoids, a 25- to 40-fold induction of endogenous mouse beta-casein mRNA was observed after 48 hr. A comparable greater than 25-fold induction of transgene expression after PRL addition was observed in explant cultures derived from a line of mice expressing the entire rat beta-casein gene. In contrast, PRL addition elicited only a 1- to 4.5-fold increase in CAT activity in cultures derived from two lines of mice bearing casein-CAT fusion genes with either 524 or 2300 base pairs of 5'-flanking DNA. In the presence of insulin, glucocorticoid or PRL addition alone increased endogenous beta-casein gene expression 2- to 2.5-fold and 5- to 10-fold, respectively, but only a 1.2- to 2.5-fold induction of CAT activity was observed for each hormone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
We have developed six transgenic lines of mice with constructs containing presumptive 5' regulatory regions of carbonic anhydrase II (CA II). Four of the lines contained 1,100 bases of the 5' flanking region of the human CA II gene, and two transgenic lines resulted from a construct containing 500 bases of the 5' flanking region of the mouse CA II gene. Tissue-specific expression of the chloramphenicol acetyltransferase (CAT) gene was not obtained in any of the transgenic lines. One of the transgenic lines was found to have high levels of expression of CAT in cerebellum. This expression persisted through multiple generations and was independent of the parental origin of the transgene. On the assumption that the expression was due to the insertion of the transgene in or near a gene expressed normally in cerebellum, homozygous mice were bred for the transgenic insert to see if a mutation might have been induced. Homozygous mice were found and seemed to be normal in all aspects of their phenotype studied. Thus, in this case, neither the insertion of the gene nor the ectopic expression of CAT seemed to be harmful to the animals.  相似文献   

14.
15.
16.
The cytoplasmic β-actin promoter, commonly used as strong promoter in many gene regulation studies, produces a pattern of male germ cell and preimplantation, embryonic gene expression in transgenic mice. In seven of ten expressing transgenic lines, a chicken β-actin-lacZ fusion gene was expressed in adult testes. In addition, five of the ten lines demonstrated transgene expression in the preimplantation mouse embryo. This is the first example of transgene expression at the stages of both gamete and early embryo. Overall, the site or transgene integration appeared to influence transgene expression in adult tissues. © 1993 Wiley-Liss, Inc.  相似文献   

17.
A novel transgene silencing phenomenon was found in the ornamental plant, gentian (Gentiana triflora × G. scabra), in which the introduced Cauliflower mosaic virus (CaMV) 35S promoter region was strictly methylated, irrespective of the transgene copy number and integrated loci. Transgenic tobacco having the same vector did not show the silencing behavior. Not only unmodified, but also modified 35S promoters containing a 35S enhancer sequence were found to be highly methylated in the single copy transgenic gentian lines. The 35S core promoter (−90)-introduced transgenic lines showed a small degree of methylation, implying that the 35S enhancer sequence was involved in the methylation machinery. The rigorous silencing phenomenon enabled us to analyze methylation in a number of the transgenic lines in parallel, which led to the discovery of a consensus target region for de novo methylation, which comprised an asymmetric cytosine (CpHpH; H is A, C or T) sequence. Consequently, distinct footprints of de novo methylation were detected in each (modified) 35S promoter sequence, and the enhancer region (−148 to −85) was identified as a crucial target for de novo methylation. Electrophoretic mobility shift assay (EMSA) showed that complexes formed in gentian nuclear extract with the −149 to −124 and −107 to −83 region probes were distinct from those of tobacco nuclear extracts, suggesting that the complexes might contribute to de novo methylation. Our results provide insights into the phenomenon of sequence- and species- specific gene silencing in higher plants.  相似文献   

18.
19.
20.
We have developed a method of marking of mouse cells by means of transfection of a foreign gene. The transgene chosen here was the plasmid pEF321CAT which contains the bacterial chloramphenicol acetyl transferase (CAT) gene linked to the promoter region of the human polypeptide chain elongation factor 1 alpha (hEF1 alpha) gene. Evaluation of the plasmid pEF321CAT as a cellular marker for mouse cells involved intensive examination of a transgenic mouse carrying pEF321CAT. The CAT gene was expressed in all tissues examined, demonstrating that the hEF1 alpha promoter was active in a wide range of mouse cells. The plasmid itself did not exert any harmful effect on the normal development of mice, and the CAT activity was immunohistologically detectable on sectioned tissues by the use of anti-CAT serum. When the plasmid was transferred into embryonal carcinoma (EC) cells and embryonic stem (ES) cells, the CAT gene was also found to be expressed constantly irrespective of their differentiation. These results demonstrated that the plasmid pEF321CAT can be used as a reliable and feasible cellular marker that would distinguish unequivocally the cells of each of genotype in chimeric tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号