首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
A 6-kb region from the chromosome of Streptomyces antibioticus, an oleandomycin producer, was cloned and sequenced. This region was located between the 3′ end of the gene encoding the third subunit of the oleandomycin type I polyketide synthase and the oleP and oleB genes, which encode a cytochrome P450 monooxygenase and an oleandomycin resistance gene, respectively. Analysis of the nucleotide sequence revealed the presence of five genes encoding a cytochrome P450-like protein (oleP1), two glycosyltransferases (oleG1 and oleG2) involved in the transfer of the two 6-deoxysugars (L-oleandrose and D-desosamine) to the oleandomycin macrolactone ring, a methyltransferase (oleM1), and a gene (oleY) of unknown function. Insertional inactivation of this region by gene disruption generated an oleandomycin non-producing mutant which accumulated a compound that, according to mass spectrometry analysis, could correspond to the oleandomycin macrolactone ring (oleandolide), suggesting that the mutation affects oleandrosyl glycosyltransferase. Received: 3 December 1997 / Accepted: 12 May 1998  相似文献   

2.
Two glycosyltransferase genes, oleG1 and oleG2, and a putative isomerase gene, oleP1, have previously been identified in the oleandomycin biosynthetic gene cluster of Streptomyces antibioticus. In order to identify which of these two glycosyltransferases encodes the desosaminyltransferase and which the oleandrosyltransferase, interspecies complementation has been carried out, using two mutant strains of Saccharopolyspora erythraea, one strain carrying an internal deletion in the eryCIII (desosaminyltransferase) gene and the other an internal deletion in the eryBV (mycarosyltransferase) gene. Expression of the oleG1 gene in the eryCIII deletion mutant restored the production of erythromycin A (although at a low level), demonstrating that oleG1 encodes the desosaminyltransferase required for the biosynthesis of oleandomycin and indicating that, as in erythromycin biosynthesis, the neutral sugar is transferred before the aminosugar onto the macrocyclic ring. Significantly, when an intact oleG2 gene (presumed to encode the oleandrosyltransferase) was expressed in the eryBV deletion mutant, antibiotic activity was also restored and, in addition to erythromycin A, new bioactive compounds were produced with a good yield. The neutral sugar residue present in these compounds was identified as L-rhamnose attached at position C-3 of an erythronolide B or a 6-deoxyerythronolide B lactone ring, thus indicating a relaxed specificity of the oleandrosyltransferase, OleG2, for both the activated sugar and the macrolactone substrate. The oleP1 gene located immediately upstream of oleG1 was likewise introduced into an eryCII deletion mutant of Sac. erythraea, and production of erythromycin A was again restored, demonstrating that the function of OleP1 is identical to that of EryCII in the biosynthesis of dTDP-D-desosamine, which we have previously proposed to be a dTDP-4-keto-6-deoxy-D-glucose 3, 4-isomerase.  相似文献   

3.
Abstract A cosmid clone from an oleandomycin producer, Streptomyces antibioticus , contains a large open reading frame encoding a type I polyketide synthase subunit and an oleandomycin resistance gene ( oleB ). Sequencing of a 1.4-kb DNA fragment adjacent to oleB revealed the existence of an open reading frame ( oleP ) encoding a protein similar to several cytochrome P450 monooxygenases from different sources, including the products of the eryF and eryK genes from Saccharopolyspora erythraea that participate in erythromycin biosynthesis. The oleP gene was expressed in Escherichia coli as a fusion protein to a maltose-binding protein. Using polyclonal antibodies against this fusion protein it was observed that the synthesis of the cytochrome P450 was in parallel to that of oleandomycin. The cytochrome P450 encoded by the oleP gene could be responsible for the epoxidation of carbon 8 of the oleandomycin lactone ring.  相似文献   

4.
The macrolide antibiotics are biosynthesized by initial assembly of a macrolactone ring, followed by a series of post-polyketide (PKS) modifications. In general, the additional hydroxyl or epoxy groups are installed by cytochrome P450 enzymes, improving the bioactivity profile through structural diversification of natural products. The biosynthetic gene cluster for the 16-membered macrolide antibiotic dihydrochalcomycin (DHC) has been cloned from Streptomyces sp. KCTC 0041BP. Three cytochrome P450 genes are found in the DHC biosynthetic gene (ger) cluster. Two P450 enzymes were characterized from this cluster. Disruption of gerPI accumulated predominantly 12,13-de-epoxydihydrochalcomycin while disruption of gerPII accumulated 8-dehydroxy-12,13-de-epoxydihydrochalcomycin; DHC production was abolished in both cases. The results suggest that GerPII P450 catalyzes hydroxylation at the C8 position followed by an epoxidation reaction catalyzed by GerPI P450 at the C12–C13 position.  相似文献   

5.
6.
7.
Complex formation between the phenobarbital-inducible form of rabbit liver microsomal cytochrome P-450 incorporated into phosphatidylcholine and detergent-solubilized cytochrome b5 is associated with a low-to-high spin transition of the former pigment. It is concluded that the proteins combine in a 1:1 molar ratio. CD spectral analysis in the far uv region reveals that interaction of the cytochromes results in a conformational change of one or both hemoproteins. Such a cytochrome b5-induced structural alteration of the reconstituted enzyme system is accompanied by an increase in affinity of 4-chloroaniline for cytochrome P-450, as measured in terms of cumene hydroperoxide-supported N-oxidation of the arylamine; the maximum velocity of the catalytic process remains unchanged. Similarly, incorporation into the assay media of cytochrome b5 decreases the apparent Kd values of both the amine substrate and the oxygen donor, as determined by optical titration. Stopped-flow spectrophotometric studies on the influence of cytochrome b5 on the kinetics of binding to cytochrome P-450 of 4-chloroaniline and/or cumene hydroperoxide show that the rates of formation and decay of the adducts change as the molar ratio of cytochrome b5 to cytochrome P-450 varies. Moreover, cytochrome b5 modifies the activation energies required for production of the substrate-bound oxy complex. These findings suggest that cytochrome b5, apart from its well-known role as an electron carrier, might exert an effector function in the cytochrome P-450 system.  相似文献   

8.
《Insect Biochemistry》1989,19(5):481-488
Cytochrome P-450, cytochrome b5 and cytochrome P-450 reductase were purified from house fly abdomens using high performance liquid chromatography (HPLC). Using a new technique, cytochrome P-450 was separated from the bulk of other proteins after polyethylene glycol fractionation and hydrophobic interaction chromatography (HIC) using a phenyl-5PW column. This technique resulted in 91% recovery of the cytochrome P-450s in a single concentrated fraction that also contained the remaining cytochrome b5 and cytochrome P-450 reductase activity. Further purification by anion exchange on a DEAE-5SW column resolved the cytochrome P-450s, cytochrome b5 and cytochrome P-450 reductase into individual fractions. The ion exchange step yielded one fraction that contained a high specific content of P-450 (14.4 nmol/mg protein). This cytochrome P-450 fraction ran as a single band at 54.3 kDa in sodium dodecyl sulfate polyacrylamide (SDS-PAGE) gel electrophoresis and had a carboxy ferrocytochrome absorbance maximum at 447 nm.Further purification of the anion exchange cytochrome b5 fraction, by C8 reverse phase HPLC, resulted in a cytochrome b5 fraction with a specific content of 51.8 nmol/mg protein and an apparent molecular mass of 19.7 kDa by SDS-PAGE. The anion exchange HPLC fraction containing the cytochrome P-450 reductase activity was further purified by NADP-agarose affinity chromatography. This step yielded cytochrome P-450 reductase with an apparent molecular mass of 72 kDa.  相似文献   

9.
A gene (ORFB) from Streptomyces antibioticus (an oleandomycin producer) encoding a large, multifunctional polyketide synthase (PKS) was cloned and sequenced. Its product shows an internal duplication and a close similarity to the third subunit of the PKS involved in erythromycin biosynthesis by Saccharopolyspora erythraea, showing the equivalent nine active site domains in the same order along the polypeptide. An unusual feature of this ORF is the GC content of most of the sequence, which is surprisingly low, for a Streptomyces gene; the large number of codons with T in the third position is particularly striking. The last 800 by of the gene stand out as being normal in their GC content, this region corresponding almost exactly to the thioesterase domain of the gene and suggesting that this domain was a late addition to the PKS. Based on the high degree of similarity between the ORFB product and the third subunit of the erythromycin PKS and the occurrence nearby of a gene conferring oleandomycin resistance, it is possible that this gene might be involved in the biosynthesis of the oleandomycin lactone ring.  相似文献   

10.
《Gene》1996,169(1):1-7
Analysis of the gene cluster from Streptomyces hygroscopicus that governs the biosynthesis of the polyketide immuno-suppressant rapamycin (Rp) has revealed that it contains three exceptionally large open reading frames (ORFs) encoding the modular polyketide synthase (PKS). Between two of these lies a fourth gene (rapP) encoding a pipecolate-incorporating enzyme that probably also catalyzes closure of the macrolide ring. On either side of these very large genes are ranged a total of 22 further ORFs before the limits of the cluster are reached, as judged by the identification of genes clearly encoding unrelated activities. Several of these ORFs appear to encode enzymes that would be required for Rp biosynthesis. These include two cytochrome P-450 monooxygenases (P450s), designated RapJ and RapN, an associated ferredoxin (Fd) RapO, and three potential SAM-dependent O-methyltransferases (MTases), RapI, RapM and RapQ. All of these are likely to be involved in ‘late’ modification of the macrocycle. The cluster also contains a novel gene (rapL) whose product is proposed to catalyze the formation of the Rp precursor, L-pipecolate, through the cyclodeamination of L-lysine. Adjacent genes have putative roles in Rp regulation and export. The codon usage of the PKS biosynthetic genes is markedly different from that of the flanking genes of the cluster  相似文献   

11.
A minor form of hepatic microsomal cytochrome P-450 has been purified to apparent homogeneity from rats treated with the polychlorinated biphenyl mixture, Aroclor 1254. This newly isolated hemoprotein, cytochrome P-450e, is inducible in rat liver by Aroclor 1254 and phenobarbital, but not by 3-methylcholanthrene. Two other hemoproteins, cytochromes P-450b and P-450c, have also been highly purified during the isolation of cytochrome P-450e based on chromatographic differences among these proteins. By Ouchterlony double-diffusion analysis with antibody to cytochrome P-450b, highly purified cytochrome P-450e is immunochemically identical to cytochrome P-450b but does not cross-react with antibodies prepared against other rat liver cytochromes P-450 (P-450a, P-450c, P-450d) or epoxide hydrolase. Purified cytochrome P-450e is a single protein-staining band in sodium dodecyl sulfate-polyacrylamide gels with a minimum molecular weight (52,500) slightly greater than cytochromes P-450b or P-450d (52,000) but clearly distinct from cytochromes P-450a (48,000) and P-450c (56,000). The carbon monoxide-reduced difference spectral peak of cytochrome P-450e is at 450.6 nm, whereas the peak of cytochrome P-450b is at 450 nm. Ethyl isocyanide binds to ferrous cytochromes P-450e and P-450b to yield two spectral maxima at 455 and 430 nm. At pH 7.4, the 455:430 ratio is 0.7 and 1.4 for cytochromes P-450b and P-450e, respectively. Metyrapone binds to reduced cytochromes P-450e and P-450b (absorption maximum at 445–446 nm) but not cytochromes P-450a, P-450c, or P-450d. Metabolism of several substrates catalyzed by cytochrome P-450e or P-450b reconstituted with NADPH-cytochrome c reductase and dilauroylphosphatidylcholine was compared. The substrate specificity of cytochrome P-450e usually paralleled that of cytochrome P-450b except that the rate of metabolism of benzphetamine, benzo[a]pyrene, 7-ethoxycoumarin, hexobarbital, and testosterone at the 16α-position catalyzed by cytochrome P-450e was only 15–25% that of cytochrome P-450b. In contrast, cytochrome P-450e catalyzed the 2-hydroxylation of estradiol-17β more efficiently (threefold) than cytochrome P-450b. Cytochrome P-450d, however, catalyzed the metabolism of estradiol-17β at the greatest rate compared to cytochromes P-450a, P-450b, P-450c, or P-450e. The peptide fragments of cytochromes P-450e and P-450b, generated by either proteolytic or chemical digestion of the hemoproteins, were very similar but not identical, indicating that these two proteins show minor structural differences.  相似文献   

12.
A cytochrome P-450 present in ripening avocado (Persea americana) fruit mesocarp (CYTP71A1) had previously been shown to metabolize the monoterpenoids nerol and geraniol (Hallahan et al. (1992) Plant Physiol. 98, 1290-1297). Using DNA encoding CYP71A1 as a hybridization probe, we have shown by Southern analysis that a related gene is present in the catmint, Nepeta racemosa. RNA blot analysis, together with Western analysis of catmint leaf polypeptides using avocado cyt P-450 antiserum, showed that a closely related gene is expressed in catmint leaves. Cytochrome P-450 in catmint microsomes catalysed the specific hydroxylation of nerol and geraniol at C-10, whereas avocado CYP71A1, in either avocado microsomes or heterologously expressed in yeast, catalysed 2,3- or 6,7-epoxidation of these substrates. These results suggest that orthologous genes of the CYP71 family are expressed in these two plant species, but catalyse dissimilar reactions with monoterpenoid substrates.  相似文献   

13.
The nysL gene, encoding a putative P450 monooxygenase, was identified in the nystatin biosynthetic gene cluster of Streptomyces noursei. Although it has been proposed that NysL is responsible for hydroxylation of the nystatin precursor, experimental evidence for this activity was lacking. The nysL gene was inactivated in S. noursei by gene replacement, and the resulting mutant was shown to produce 10-deoxynystatin. Purification and an in vitro activity assay for 10-deoxynystatin demonstrated its antifungal activity being equal to that of nystatin. The NysL protein was expressed heterologously in Escherichia coli as a His-tagged protein and used in an enzyme assay with 10-deoxynystatin as a substrate. The results obtained clearly demonstrated that NysL is a hydroxylase responsible for the post-polyketide synthase modification of 10-deoxynystatin at position C-10. Kinetic studies with the purified recombinant enzyme allowed determination of Km and kcat and revealed no inhibition of recombinant NysL by either the substrate or the product. These studies open the possibility for in vitro evolution of NysL aimed at changing its specificity, thereby providing new opportunities for engineered biosynthesis of novel nystatin analogues hydroxylated at alternative positions of the macrolactone ring.  相似文献   

14.
When Bacillus megaterium ATCC 14581 is grown in the presence of barbiturates, a cytochrome P-450-dependent fatty acid monooxygenase (Mr 120 000) is induced (Kim, B.-H. and Fulco, A.J. (1983) Biochem. Biophys. Res. Commun. 116, 843–850). Gel filtration chromatography of a crude monooxygenase preparation from pentobarbital-induced B. megaterium indicated that not all of the induced cytochrome P-450 present in the extract was accounted for by this high-molecular-weight component. Further purification revealed the presence of two additional but smaller cytochrome P-450 species. The minor component, designated cytochrome P-450BM-2, had a molecular mass of about 46 kDa, but has not yet been completely purified or further characterized. The major component, designated cytochrome P-450BM-1, was obtained in pure form, exhibited fatty acid monooxygenase activity in the presence of iodosylbenzenediacetate, and has been extensively characterized. Its Mr of 38 000 makes it the smallest cytochrome P-450 yet purified to homogeneity. Although it is a soluble protein, a complete amino acid analysis indicated that it contains 42% hydrophobic residues. By the dansyl chloride procedure the NH2-terminal amino acid is proline; the penultimate NH2-terminal residue is alanine. The absolute absorption spectra of cytochrome P-450BM-1 show maxima in the same general regions as do P-450 cytochromes from mammalian or other bacterial sources, but they differ in detail. The oxidized form of P-450BM-1 has absorption maxima at 414, 533 and 567 nm, while the reduced form has peaks at 410 and 540 nm. The absorption maxima for the CO-reduced form of P-450BM-1 are found at 415, 448 and 550 nm. Antisera from rabbits immunized with pure P-450BM-1 strongly reacted with and precipitated this P-450, but showed no detectable affinity for either the 46 kDa P-450 or the 120 kDa fatty acid monooxygenase.  相似文献   

15.
Candida apicola belongs to a group of yeasts producing surface-active glycolipids consisting of sophorose and long-chain (ω)- or (ω-1)-hydroxy fatty acids. Hydroxylation of the fatty acids in this strain is likely catalyzed by cytochrome P450 monooxygenases (P450), which require reducing equivalents delivered via a cytochrome P450-diflavin reductase (CPR). We herein report cloning and characterization of the cpr gene from C. apicola ATCC 96134. The gene encoding a protein of 687 amino acids was cloned in Escherichia coli and the enzyme was expressed in functional form after truncation of its N-terminal putative membrane anchor. The truncated recombinant protein showed cytochrome c reducing activity (K M of 13.8 μM and k cat of 1,915 per minute). Furthermore, we herein demonstrate to our best knowledge for the first time the use of a eukaryotic CPR to transfer electrons to bacterial P450s (namely CYP109B1 and CYP154E1). Cloning and characterization of this CPR therefore is not only an important step in the study of the P450 systems of C. apicola, but also provides a versatile redox partner for the characterization of other bacterial P450s with appealing biotechnological potential. The GenBank accession number of the sequence described in this article is JQ015264.  相似文献   

16.
Rhodococcus sp. strain DK17 is able to grow on o-xylene, benzene, toluene, and ethylbenzene. DK17 harbors at least two megaplasmids, and the genes encoding the initial steps in alkylbenzene metabolism are present on the 330-kb pDK2. The genes encoding alkylbenzene degradation were cloned in a cosmid clone and sequenced completely to reveal 35 open reading frames (ORFs). Among the ORFs, we identified two nearly exact copies (one base difference) of genes encoding large and small subunits of an iron sulfur protein terminal oxygenase that are 6 kb apart from each other. Immediately downstream of one copy of the dioxygenase genes (akbA1a and akbA2a) is a gene encoding a dioxygenase ferredoxin component (akbA3), and downstream of the other copy (akbA1b and akbA2b) are genes putatively encoding a meta-cleavage pathway. RT-PCR experiments show that the two copies of the dioxygenase genes are operonic with the downstream putative catabolic genes and that both operons are induced by o-xylene. When expressed in Escherichia coli, AkbA1a-AkbA2a-AkbA3 transformed o-xylene into 2,3- and 3,4-dimethylphenol. These were apparently derived from an unstable o-xylene cis-3,4-dihydrodiol, which readily dehydrates. This indicates a single point of attack of the dioxygenase on the aromatic ring. In contrast, attack of AkbA1a-AkbA2a-AkbA3 on ethylbenzene resulted in the formation of two different cis-dihydrodiols resulting from an oxidation at the 2,3 and the 3,4 positions on the aromatic ring, respectively.  相似文献   

17.
Ethanol oxidation activity has been reconstituted in a system composed of NADPH-cytochrome c reductase, synthetic dilauroylglycerol-3-phosphorylcholine and cytochrome P-450 purified from liver microsomes of phenobarbital-treated rats. This system is free of alcohol dehydrogenase and catalase activities. Furthermore, sodium azide (1 mm), a catalase inhibitor, is without effect on ethanol metabolism. There is a requirement for both NADPH-cytochrome c reductase and cytochrome P-450 and a partial requirement for phospholipid for ethanol oxidation by the reconstituted system. In addition, both NADPH and O2 are required for catalysis. Under optimal reaction conditions, the rate of acetaldehyde formation if 25 to 50 nmol/min/nmol of cytochrome P-450. Cytochrome P-450 from other sources, including the homogeneous P-450LM2 from phenobarbital-treated rabbits, have also been found to catalyze ethanol oxidation in reconstituted systems. Antibody prepared against cytochrome P-450 inhibits ethanol metabolism in the reconstituted system consistent with a cytochrome P-450-mediated reaction. Furthermore, cumene hydroperoxide can replace both NADPH and NADPH-cytochrome c reductase in ethanol oxidation and catalysis can be demonstrated in a system composed of only cytochrome P-450, lipid, ethanol, and cumene hydroperoxide. These data implicate cytochrome P-450 in the direct oxidation of ethanol by this system.  相似文献   

18.
Clones containing the information for cytochrome P-450c were produced by transfecting Escherichia coli HB101 with a hybrid mRNAP-450-c:cDNAP-450c that had been annealed to PstI-linearized pBR322 by the A-T tailing method. Over 250 tetracycline-resistant, ampicillin-sensitive clones were obtained from which several were selected on the basis of positive hybridization to cDNAP-450c. pEB163 and pEB339 contained DNA inserts of 0.5 and 1.0 kb in length, respectively. When poly(A)+-RNA that had been prepared from the livers of 3-methylcholanthrene-treated rats was hybridized to nitrocellulose-immobilized, denatured HindIII-linearized pEB163 and pEB339 DNA, a mRNA could be eluted which coded exclusively for cytochrome P-450c production in a cell-free reticulocyte assay system. The clones now make possible further studies on the cytochrome P-450c gene in the rat.  相似文献   

19.
We describe the isolation of cytochrome P-4501α from chick-kidney mitochondria. Although, gel permeation HPLC yielded 41% of the total amount of P-450 present in cholate-solubilized hemeproteins, it produced a highly purified mixture from which the P-4501α could be purified to homogeneity in a final detergent-free state by a single-step application of hydrophobic interaction HPLC using hydroxypropyl silica. The purified P-4501α traveled as a single band in SDS gel electrophoresis with an apparent Mr = 57 000. The absolute spectrum of the P-4501α(Fe3+) form gave a λmax at 403 nm. This characteristic lends support to the anomalous high-spin heme electron paramagnetic resonance spectrum and the heme structure of P-4501α which we have previously reported (Ghazarian et al. (1980) J. Biol. Chem. 255, 8275–8281; Pedersen et al. (1976) J. Biol. Chem. 251, 3933–3941). In reconstitution experiments with ferredoxin-dependent NADPH-cytochrome c (P-450) reductase complexes, P-4501α catalyzed the hydroxylation of 25-hydroxy-9,10-secocholesta-5,7,10(19)-trien-3β-ol at the C-1 position exclusively with a turnover number of 0.03 min?1. This number is identical to that obtained from measurements of the catalytic activity in intact mitochondria, indicating that only one major species of cytochrome P-450 occurs in chick-kidney mitochondria. The complete responsiveness of cytochrome P-450 concentrations in intact mitochondria to the vitamin D status of chicks provided additional evidence that the major cytochrome P-450 species present in renal mitochondria is uniquely associated with vitamin D metabolism.  相似文献   

20.
《FEMS microbiology letters》1998,167(2):171-177
The sequence of the cyc1 gene encoding the Thiobacillus ferrooxidans ATCC 33020 c552 cytochrome, shows that this cytochrome is a 21-kDa periplasmic c4-type cytochrome containing two similar monohaem domains. The kinetics of reduction and the fact that cytochromes c4 are considered to be physiological electron donors of cytochrome oxidases suggest that the last steps of the iron respiratory chain are: rusticyanin→cytochrome c4→cytochrome oxidase. In Thiobacillus ferrooxidans, cyc1 is co-transcribed with the cyc2 gene, encoding a high-molecular-mass monohaem cytochrome c. This suggests that the cytochromes encoded by these genes belong to the same electron transfer chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号