首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fertilization in Peridinium cinctum f. ovoplamtm has been investigated at both the light and electron microscopic levels. Gamete formation occurs when vegetative cells are placed into nitrogen deficient media. The majority of gametes observed possess thin thecal plates; however, some are naked. Gametes have few chloroplasts as compared to vegetative cells, numerous membrane bounded storage bodies, many starch grains, and chromosomes which appear slightly unwound. Gamete fusion is observed to peak 7–10 days after inoculation into nitrogen deficient media. Fusion occurs in an area of the sulcus devoid of reticulate thecal plates at or adjacent to the flagellar pores. A fertilization tube is formed and proceeds to widen along the sulcus. Karyogamy occurs within the fertilization tube before plasmogamy is completed. The resulting planozygote is a two walled structure containing two longitudinal flagella. It enlarges over a 2-week period giving rise to the hypnozygote.  相似文献   

2.
The ultrastructure of the amphiesma during pellicle formation was investigated in two species of Dinophyceae, Amphidinium rhynchocephalum Anissimowa and Heterocapsa niei (Loeblich) Morrill & Loeblich using thin sections. In both species the amphiesma consists of an outermost membrane (i.e. the plasma membrane) underlain by amphiesmal vesicles. In A. rhynchocephalum the latter appear empty whereas each amphiesmal vesicle in H. niei contains a thecal plate and a thin, amorphous layer (dark-staining layer) located between, the thecal plate and the inner amphiesmal vesicle membrane. When cells of both taxa are carefully fixed, amphiesmal vesicles are always separate entities (i.e. the sutures are undisrupted). During ecdysis the following amphiesmal components are shed: the plasma membrane, the outer amphiesmal vesicle membrane, and in H. niei the thecal plates. The inner membranes of the amphiesmal vesicles then fuse with each other and form a continuous membrane (termed pellicle membrane) that remains tightly oppressed to an underlying amorphous layer (pellicular layer). In A. rhynchocephalum the pellicular layer is already present in vegetative non-ecdysed cells, whereas in H. niei it forms during ecdysis beneath the pellicle membrane. During ecdysis in H. niei, material from the dark-staining layer precipitates on the outer surface of the pellicle membrane, where it forms a characteristic honeycomb pattern. The new observations are incorporated into a revised model of pellicle formation in dinoflagellates and contrasted with earlier proposals.  相似文献   

3.
Summary The ultrastructure and development of the amphiesma of the dinoflagellateGlenodinium foliaceum was studied using conventional electron microscopy and immunocytochemistry. Ecdysis (shedding of the flagella, the outer two membranes of the cell, and the thecal plates) was induced by centrifugation. The cells were resuspended and the thickening of the pellicle and the development of the new thecal vesicles and plates was studied over a 9 h period. After ecdysis, the thin pellicle which underlay the thecal plates in the motile cells thickens to form a complex structure of four distinct layers: an outer layer of randomly oriented fibrils, a 50 nm layer of fibrils oriented perpendicular to the dense layer, the dense layer which has a trilaminate structure, and a wide inner homogeneous layer. The new thecal vesicles form in these pelliculate cells by the migration of electron translucent amphisomal vesicles over the layer of peripheral microtubules to a position directly under the plasmalemma. The thecal vesicles then flatten and elongate. A discontinuous pellicular layer appears within them. Subsequently, the thecal vesicles widen and are filled with a fibrillogranular substance overlying the pelliculate layer. The thecal plates form on top of this fibrillogranular material. By this time, most cells have escaped from the pellicle and are motile. At first, the outer thecal vesicle membrane is continuous with the inner thecal vesicle membrane at the sutures, but when this connection is broken, the dense pelliculate layers become continuous across the suture as does the inner thecal vesicle membrane. At ecdysis, this membrane becomes the new plasmalemma of the cell. Cells at each stage of pellicle thickening and thecal development were labelled with a polydonal antiserum raised against the 70 kDa epiplasmic protein ofEuglena acus. This antiserum labelled both the thecal plates of the motile cells and the inner homogeneous layer of the pellicle of ecdysed non-motile cells. No other amphiesmal structure was labelled, nor was any intracellular compartment.Abbreviations PBS phosphate-buffered saline - PIPES piperazine-N,N-bis[2-ethane sulfonic acid]  相似文献   

4.
Phases in the life history of the dinoflagellate Dinophysis pavillardi Schroeder from cultured phytoplankton assemblages are described. Under stressful conditions, induced in the laboratory through substantial thermic and nutritive changes, vegetative cells divided repeatedly. Scanning electron and light microscopy of dividing specimens showed that thecal fission began with the separation of the sulcal and ventral epithecal plates and the simultaneous dislocation of the pore plates from the right cell half. The posterior progression of the division led to pairs of cells attached antapically, which produced a new wall of reduced size. This phase of the life cycle coincided with the appearance and development of small forms of D. pavillardi, which displayed cytological features and behavior typical of male gametes, suggesting a process of gametogenesis through depauperating mitotic divisions. Anisogamy occurred at the time of the maximum production of small cells and involved the shedding of thecal components by the smaller gamete and subsequent cytoplasmic fusion and formation of planozygotes. Although the dormancy aspects of this species remain unknown, these observations provide the first evidence of sexuality .  相似文献   

5.
The organization and development of cell coverings in two alternate phases of the life cycle in a marine dinoflagellate, Scrippsiella hexapraecingula Horiguchi et Chihara, were investigated by thin sectioning and freeze‐fracture electron microscopy. In one of these phases, the motile phase, cells have an outermost plasma membrane that is lined with flattened amphiesmal vesicles. Groups of microtubules lie beneath these vesicles. In mature motile cells, thecal plates are completely enclosed in individual amphiesmal vesicles. After settling, the cells enter the second, non‐motile phase. Here, ecdysis occurs, resulting in several steps including formation of the first pellicle layer (PI), fusion of the inner amphiesmal vesicle membranes to form the new plasma membrane, deposition of the second pellicle layer (PM) under PI, and the appearance and fusion of juvenile amphiesmal vesicles to form new territories, which eventually give rise to new thecal plates in the next motile phase. Thus, the pattern in which thecal plates are arranged in motile cells is determined at the time when the amphiesmal vesicles develop into non‐motile cells.  相似文献   

6.
Summary The structure of the generative cell and its association with the vegetative nucleus in the pollen tube ofCyphomandra betacea Sendt. were observed with the electron microscope. The generative cell, bounded by its own plasma membrane and the inner plasma membrane of the vegetative cell, possesses the cytoplasmic extension which lies within the embayments of a vegetative nucleus. The generative cell contains the normal complement of organelles and, especially, microtubules which cluster into several groups adjacent to the plasma membrane, oriented along the longitudinal axis of the cell. In the pollen tube reaching the lower end of the style aftersemivivo pollination, both of the sperm cells are elongated and polyribosomes and microtubules are the outstanding feature in the cytoplasm. The two sperm cells are connected by a common transverse cell wall, while cytoplasmic channels exist in both the periplasm of the two sperm cells and the transverse wall. The leading sperm cell (Svn) is closely associated with the vegetative nucleus. Thus the present study demonstrates the existence of the male germ unit in the pollen tube ofC. betacea. The possible cytoplasmic continuity between the sperm cells and between the gametes and vegetative cell is considered.Abbreviations Svn sperm cell physically associated with the vegetative nucleus - Sua sperm cell unassociated with the vegetative nucleus - RER rough endoplasmic reticulum - SER smooth endoplasmic reticulum  相似文献   

7.
Fusion of the generative and vegetative nuclei physically separated by a wall has been observed in cultured microspores of barley. The generative cell appears to play an active role in fusion as it elongates toward the vegetative nucleus, becomes detached from the microspore wall, and finally completely encloses the vegetative nucleus. The generative cell wall disappears before nuclear fusion takes place. Since these events have been known to occur during pollen development in vivo, it is hypothesized that the occurrence of nuclear fusion in cultured microspores is the result of continued expression of the genes for gametophytic development.  相似文献   

8.
Developmental phases surrounding the processes of gametic delivery and fusion were examined ultrastructurally in the reduced megagametophyte of Plumbago zeylanica, which lacks synergids. Gametic delivery occurs at the end of pollen tube growth and results in deposition of two male gametes, a vegetative nucleus, and a limited amount of pollen cytoplasm between the egg and central cell. Discharge of these materials from the tube is accompanied by loss of inner and outer pollen tube plasma membranes, loss of sperm-associated cell wall components, and disruption of the formerly continuous cell wall between the egg and central cell. The dispersion of egg cell wall components directly exposes female reproductive cell membranes to the unfused male gametes and pollen tube without disrupting gametic cell plasma membranes. Presence of unfused sperms within the female gametophyte appears to be a transitory phenomenon, lasting less than 5 min at the end of over 8½ hr of pollen tube growth. At the time of gametic deposition, plasma membranes of unfused sperm cells become directly appressed to plasma membranes of both the egg and central cell. Gametic fusion is initiated by a single fusion event between membranes of participating male and female cells, which is rapidly followed by subsequent, secondary fusion events between the same two cells at different locations along their surface. Gametic fusion results in the transmission of male gamete nuclei with co-transmission of nearly the entire sperm cytoplasmic volume and organellar complement, and it is possible to identify heritable male cytoplasmic organelles within both the incipient zygote and endosperm. Paternally originating plastids may be distinguished from maternal plastids by differences in morphology and staining characteristics, whereas paternal mitochondria may be distinguished from maternal mitochondria by populational differences in mitochondrial size which are statistically significant. Such observations further indicate that transmitted paternal mitochondria seem to remain viable, as judged by their ultrastructural appearance, and are transmitted exclusively by sperm cytoplasm rather than discharged pollen cytoplasm. The presence of anucleate, membrane-bounded cytoplasmic bodies between the egg and central cell are identifiable on the basis of their enclosed organelles and indicate that fragmentation of a small amount of the sperm cytoplasm associated with the vegetative nucleus commonly occurs. The presence and identification of sperm cytoplasmic organelles and associated membranes within female reproductive cells following gametic transmission represents strong evidence in support of the cellular basis of nuclear and cytoplasmic transmission during sexual reproduction in Plumbago.  相似文献   

9.
白刺胚乳早期发育的超微结构研究   总被引:2,自引:0,他引:2  
白刺(Nitraria sibirica)胚乳发育经历游离核阶段、细胞化阶段和被吸收解体阶段。游离核胚乳沿胚囊壁均匀排列为一层,胞质浓厚,其中有丰富的质体、线粒体、高尔基体、内质网和各种小泡等细胞器。珠孔区域的胚囊壁具发达的分枝状壁内突,而周缘区域的胚囊壁具间隔的钉状内突,内突周围的细胞质中具多数线粒体和小泡。胚乳细胞化时,初始垂周壁源于核有丝分裂产生的细胞板。在细胞板两端开始壁的游离生长,一端与胚囊壁相连接,另一端向心自由延伸。壁的游离生长依赖于小泡的融合。早期胚乳细胞具大液泡,具核或无核,细胞质中有大量的线粒体,质体缺乏,其壁仍由多层膜结构组成。  相似文献   

10.
Continuous periplasm in a filamentous, heterocyst-forming cyanobacterium   总被引:1,自引:0,他引:1  
The cyanobacteria bear a Gram-negative type of cell wall that includes a peptidoglycan layer and an outer membrane outside of the cytoplasmic membrane. In filamentous cyanobacteria, the outer membrane appears to be continuous along the filament of cells. In the heterocyst-forming cyanobacteria, two cell types contribute specialized functions for growth: vegetative cells provide reduced carbon to heterocysts, which provide N2-derived fixed nitrogen to vegetative cells. The promoter of the patS gene, which is active specifically in developing proheterocysts and heterocysts of Anabaena sp. PCC 7120, was used to direct the expression of altered versions of the gfp gene. An engineered green fluorescent protein (GFP) that was exported to the periplasm of the proheterocysts through the twin-arginine translocation system was observed also in the periphery of neighbouring vegetative cells. However, if the GFP was anchored to the cytoplasmic membrane, it was observed in the periphery of the producing proheterocysts or heterocysts but not in adjacent vegetative cells. These results show that there is no cytoplasmic membrane continuity between heterocysts and vegetative cells and that the GFP protein can move along the filament in the periplasm, which is functionally continuous and so provides a conduit that can be used for chemical communication between cells.  相似文献   

11.
Sexual reproduction is induced in the dinoflagelate Peridinium cinctum f. ovoplanum Lindemann when exponentially growing cells are inoculated into nitrogen deficient medium. Small, naked vegetative cells, produced by division of the thecate cells, then act as gametes. The zygote remains motile for 12–13 days during which time it enlarges and the theca which it forms becomes warty. Thirteen to 14 day s following plasmogamy the zygote is nonmotile, the protoplast contracts, a large red oil droplet appears, the wall thickens and becomes chitinized. This hypnozygote germinates within 7–8 weeks at 20 c producing 1 post-zygotic cell retaining the large red oil droplet. The presence of 4 nuclei in these post-zygotic cells may be demonstrated by staining them with acetocarmine. Two of these nuclei are smaller than the other two and probably abort. One may infer that meiosis occurs immediately prior to or at the germinartion of the hypnozygote. This post-zygotic cell divides within 24 h into 2 daughter cells each with a promment red oil droplet. These daughter cells divide after 2–3 days into ordinary vegetative cells. Attempts to induce sexual reproduction by changes in temperature or light and by inoculation of cells into media deficient in a number of basic elements were unsuccessful.  相似文献   

12.
Sexual fusion of haploid Chlamydomonas gametes produces a diploid zygote which undergoes sporulation (maturation). We have used a combination of genetic and cellular approaches to evaluate the role(s) of gametic cell and nuclear fusion in the progression of sporulation. A fusion-arrested strain, zym-26–3. was obtained following ultraviolet irradiation of vegetative haploid cells of the homothallic species Chlamydomonas monoica Strehlow. Using the DNA-specific fluorochrome, DAPI, we determined that diploidy was rarely achieved although nuclear migration to the base of the cytoplasmic bridge connecting the gametes and attempted transit through the tubule could be easily documented. Unusual cytoplasmic‘buds’which developed adjacent to the cytoplasmic bridge in sporulating haploids were usually found to contain a migrant nucleus. Using transmission electron microscopy, we determined that ultrastructural changes typically associated with sporulation of a diploid zygote (e.g. spore wall formation; plastid dedifferentiation and associated lipid accumulation; nuclear migration and heterochromatization) could occur following arrested cell fusion despite the absence of nuclear fusion. Genetic analysis of the zym-263 strain revealed two unlinked mutations: cf-1 responsible for the failure to complete cell fusion; and ger-8, a mutant allele not affecting cell fusion, but interfering with late stages of spore maturation and germination.‘Cytoplasmic budding’was observed in strains carrying each of these mutations singly and may be a common secondary consequence of disturbances in the relative timing of interrelated processes required for spare wall assembly.  相似文献   

13.
14.
The ultrastructure of the early stages of carposporophyte development in the marine red algaChondria tenuissima has been studied. The diploid carposporophyte grows on the gametophyte. Apical gonimoblast cells develop into diploid carpospores. The basal gonimoblast cells cease to divide and undergo considerable cytoplasmic changes before they become incorporated into the expanding fusion cell. Nucleus and plastids degenerate gradually, while mitochondria remain intact. The smooth endoplasmic reticulum becomes prominent, it seems to produce small vesicles with electron dense contents. Simultaneously, numerous mucilage sacs are formed, presumably from dilating ER cisternae. The contents of the mucilage sacs are secreted by exocytosis. The pit connections between gonimoblast cells flare out. They remain as isolated bodies without connection to a wall after fusion. Secondary pit connections occur between vegetative gametophyte cells and sterile carposporophyte cells. There are three different morphological types of pit connections.  相似文献   

15.
SYNOPSIS. The suctorian Heliophrya erhardi (Rieder) Matthes is attached to the substrate by the flattened ventral side of the cell body. The dorsal is covered by a pellicle composed of 3 unit membranes. Below the pellicle is a 0.4–0.8-μm thick epiplasm composed of 6–8-nm thick fibrils. Microtubules form a network beneath the epiplasm. The epipalsm is penetrated by tube-like pellicular pits, which are lined by the cell membrane and end beneath the epiplasm in a saccule-like enlargement. During conjugation, 2 neighboring organisms form cytoplasmic processes which come into contact and fuse, thus forming a cytoplasmic bridge between the 2 cells. Around the bridge the pellicles of both organisms fuse, and the partners become united by a continuous common membrane system. Across the entire conjugation bridge the 2 fused epiplasms form a septum. Tube-like structures can be seen lying partly in the epiplasmic septum and partly in the adjacent cytoplasm. These structures are open at both ends and represent remnants of the pellicular pits. No trace of the original pellicular membranes can be found at the fusion area within the epiplasmic septum. The cytoplasm of the conjugation partners is separated only by the fused epiplasms forming the epiplasmic septum.  相似文献   

16.
Morphology and sexual reproduction in Chlorogonium capillatum Nozaki, Watanabe & Aizawa sp. nov. (Volvocales, Chlorophyta) originating from Miyatoko Mire, Japan, were studied under controlled laboratory conditions. Vegetative cells of this new species were fusiform with blunt anterior and posterior ends, and they had a massive parietal chloroplast and numerous contractile vacuoles distributed throughout the protoplast. Several to many pyrenoids were randomly distributed in the chloroplast, but they disappeared under the light microscope when grown photoheterotrophically. During asexual reproduction, the first division took place transversely without a preceding rotation of the parental protoplast. In sexual reproduction, the parental protoplast divided successively to form 32 or 64 small, biflagellate isogametes. After gametogenesis, the gametes did not escape from the parental cell (gametangial) wall, within which pairs of the adjoining gametes fused to form quadriflagellate zygotes. Such zygotes were then released from the parental cell wall and developed into hypnozygotes, which at maturity developed numerous thin spines or hairs on the zygote wall. On zygote germination, four biflagellate germ cells were released from the zygote wall separately. This type of gametic union, "paedogamy," has not previously been described in the green algae except for Chlorococcum echinozygotum Starr . Chlorogonium capillatum can be clearly distinguished from other described species of Chlorogonium by its numerous contractile vacuoles and blunt anterior and posterior ends in vegetative cells as well as by its unique sexual reproduction, in which paedogamous conjugation occurs, and numerous thin spines or hairs that develop on the hypnozygote walls .  相似文献   

17.
The life cycle events of an unarmored dinoflagellate Gyrodinium instriatum Freudenthal et Lee has been investigated using clonal cultures. After the inoculation of vegetative cells into fresh medium, clumping of gametes was observed after a period of 10 days. In the clumps, a number of gametes were observed to be swimming in close contact with each other, pairing successively and then forming a plano-zygote. This clumping behavior is considered to be useful in the performance of sexual reproduction, particularly in the event of low cell density, because it increases the chance of fusion. Gametes of this species were most often isogarnous, although apparent amsogamous fusions were occasionally observed. When planozygotes were isolated and placed in fresh medium, they enlarged their size and finally divided into two cells. The daughter cells continued to multiply by binary fission and produced vegetative cells. Thus, G. instriatum has an alternative cycle between vegetative cells and zygotes without a hypnozygote stage. However, cysts of this species were transformed from large motile cells (pre-cyst cells) which are oblong and dorso-ventrally flattened in shape. These mottle pre-cyst cells have two longitudinal flagella, which may indicate that cysts of this species are of zygote origin. On the basis of these results, the relationship between zygotes and pre-cysts of G. instriatum is discussed. Excystment was enhanced by dark and cold treatments prior to the incubation for germination experiments with a germination success rate of 26–64%. Encystment was greatly inhibited by the lack of dark and cold treatments.  相似文献   

18.
Sexual reproduction was induced in the dinoflagellate Peridinium willei Huitfeld-Kass when exponentially growing cells were inoculated into nitrogen deficient medium. Small, naked vegetative cells produced by division of thecate cells acted as gametes. The zygote remained motile 13–14 days, during which time it enlarged and the theca formed became warty. Fourteen to 15 days following plasmogamy the zygote was nonmotile with the protoplast contracted. A large red oil droplet appeared and the wall thickened, becoming chitinized. Hypnozygotes with 4 nuclei were observed 7–8 wk following formation. Meiosis was inferred. The hypnozygote germinated, within 8 wk producing one post-zygotic cell retaining the red oil droplet. This cell divided within 24 h into 2 daughter cells each with a prominent red oil droplet. These daughter cells divided after 2 to 3 days into ordinary vegetative cells. Attempts to induce sexual reproduction by inoculation of cells into media deficient in a number of basic elements were unsuccessful.  相似文献   

19.
The sexual cycle of Gonyaulax monilata Howell was observed in stationary cultures and in nitrogen-deficient medium. The armored, isogamous gametes fuse in a characteristic manner with cingula at oblique angles. Nuclear fusion lags slightly behind cytoplasmic fusion. The zygote enlarges for several days. The dark, double-flagellated planozygote encysts within 1–3 wk. Early hypnozygotes are round to ovoid and contain lipid and one or two large golden-yellow globules. As the hypnozygote matures, the globules become smaller and the cytoplasm darkens and pulls from the wall. All cysts examined contained only one nucleus. A very dark, uninucleate post-hypnozygotic cell escapes through an archeopyle and within 24 h divides into daughter cells which divide in 24–48 h forming a small chain. The production of thick walled zygates in culture implies that such resting stages in marine sediments could serve as a source stock for blooms. This species causes toxic red tides and the existence of benthic “seed beds” consisting of hypnozygotes is now plausible.  相似文献   

20.
Summary Tanycytes along the third ventricle have been studied in adult rat and mouse brains with the rapid Golgi method. A tanycyte can be divided into three portions: somatic, neck, tail. The somatic portion is in the ependymal layer and frequently has thin cytoplasmic extensions. The neck portion originates from the soma and sticks into the periventricular layer. It, too, has numerous fine lamellar processes radiating from it. The neck contacts a blood vessel. Distal to this contact, the neck becomes thin and devoid of its cytoplasmic processes. This is the tail portion, which courses through hypothalamic nuclei to terminate as small bulbous swellings either on a vessel or at the pial surface.Although tanycytes occur throughout the dorsoventral extent of the ventricle, they are especially numerous ventrally. Midway down the ventricular wall, the neck processes interdigitate and form a moderately loose fabric beneath the ependyma. Proceeding ventrally, this becomes denser and thicker.Because the tails have no apparent associations with cells in the hypothalamic nuclei, the functional interactions of tanycytes with hypothalamic neuropil are probably confined to the periventricular layer.Supported by: NINDS Grants 5 RO1 NS 09001-02 NEUA, 5 TO1 NB 5309, and GM 00958, and by the Eleanor Roosevelt Cancer Foundation Research Institute.It is a pleasure to acknowledge the expert photographic assistance of Mr. Keith Johnson.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号