首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sexual dichromatism is widespread among animals, but examples of “reverse” sexual dichromatism, in which females are more brightly colored than males, are extremely rare. We discovered a unique case of reverse sexual dichromatism in the golden rocket frog (Anomaloglossus beebei), a diurnal Neotropical frog. Females are bright “golden” in color, and males are drab tan with brown pigmentation that darkens when they are calling. Here, we document this color variation with calibrated digital photography and further show that there is no evidence for sex‐specific habitat matching; both sexes live in the same well‐lit habitat on green bromeliad leaves. Our results suggest that color variation in this species is an intraspecific signal and provide an important exception to the general expectation that males are more visually conspicuous in species with conventional sex roles.  相似文献   

2.
I describe an open‐source R package, multimark , for estimation of survival and abundance from capture–mark–recapture data consisting of multiple “noninvasive” marks. Noninvasive marks include natural pelt or skin patterns, scars, and genetic markers that enable individual identification in lieu of physical capture. multimark provides a means for combining and jointly analyzing encounter histories from multiple noninvasive sources that otherwise cannot be reliably matched (e.g., left‐ and right‐sided photographs of bilaterally asymmetrical individuals). The package is currently capable of fitting open population Cormack–Jolly–Seber (CJS) and closed population abundance models with up to two mark types using Bayesian Markov chain Monte Carlo (MCMC) methods. multimark can also be used for Bayesian analyses of conventional capture–recapture data consisting of a single‐mark type. Some package features include (1) general model specification using formulas already familiar to most R users, (2) ability to include temporal, behavioral, age, cohort, and individual heterogeneity effects in detection and survival probabilities, (3) improved MCMC algorithm that is computationally faster and more efficient than previously proposed methods, (4) Bayesian multimodel inference using reversible jump MCMC, and (5) data simulation capabilities for power analyses and assessing model performance. I demonstrate use of multimark using left‐ and right‐sided encounter histories for bobcats (Lynx rufus) collected from remote single‐camera stations in southern California. In this example, there is evidence of a behavioral effect (i.e., trap “happy” response) that is otherwise indiscernible using conventional single‐sided analyses. The package will be most useful to ecologists seeking stronger inferences by combining different sources of mark–recapture data that are difficult (or impossible) to reliably reconcile, particularly with the sparse datasets typical of rare or elusive species for which noninvasive sampling techniques are most commonly employed. Addressing deficiencies in currently available software, multimark also provides a user‐friendly interface for performing Bayesian multimodel inference using capture–recapture data consisting of a single conventional mark or multiple noninvasive marks.  相似文献   

3.
W.S. Chow  J. Barber 《BBA》1980,593(1):149-157
Salt-induced changes in thylakoid stacking and chlorophyll fluorescence do not occur with granal membranes obtained by treatment of stacked thylakoids with digitonin. In contrast to normal untreated thylakoids, digitonin prepared granal membranes remain stacked under all ionic conditions and exhibit a constant high level of chlorophyll fluorescence. However, unstacking of these granal membranes is possible if they are pretreated with either acetic anhydride or linolenic acid.Trypsin treatment of the thylakoids inhibits the salt induced chlorophyll fluorescence and stacking changes but stacking of these treated membranes does occur when the pH is lowered, with the optimum being at about pH 4.5. This type of stacking is due to charge neutralization and does not require the presence of the 2000 dalton fragment of the polypeptide associated with the chlorophyll achlorophyll b light harvesting complex and known to be lost during treatment with trypsin (Mullet, J.E. and Arntzen, C.J. (1980) Biochim. Biophys. Acta 589, 100–117).Using the method of 9-aminoacridine fluorescence quenching it is argued that the surface charge density, on a chlorophyll basis, of unstacked thylakoid membranes is intermediate between digitonin derived granal and stromal membranes, with granal having the lowest value.The results are discussed in terms of the importance of surface negative charges in controlling salt induced chlorophyll fluorescence and thylakoid stacking changes. In particular, emphasis is placed on a model involving lateral diffusion of different types of chlorophyll protein complex within the thylakoid lipid matrix.  相似文献   

4.
The chloroplast is the chlorophyll‐containing organelle that produces energy through photosynthesis. Within the chloroplast is an intricate network of thylakoid membranes containing photosynthetic membrane proteins that mediate electron transport and generate chemical energy. Historically, electron microscopy (EM) has been a powerful tool for visualizing the macromolecular structure and organization of thylakoid membranes. However, an understanding of thylakoid membrane dynamics remains elusive because EM requires fixation and sectioning. To improve our knowledge of thylakoid membrane dynamics we need to consider at least two issues: (i) the live‐cell imaging conditions needed to visualize active processes in vivo; and (ii) the spatial resolution required to differentiate the characteristics of thylakoid membranes. Here, we utilize three‐dimensional structured illumination microscopy (3D‐SIM) to explore the optimal imaging conditions for investigating the dynamics of thylakoid membranes in living plant and algal cells. We show that 3D‐SIM is capable of examining broad characteristics of thylakoid structures in chloroplasts of the vascular plant Arabidopsis thaliana and distinguishing the structural differences between wild‐type and mutant strains. Using 3D‐SIM, we also visualize thylakoid organization in whole cells of the green alga Chlamydomonas reinhardtii. These data reveal that high light intensity changes thylakoid membrane structure in C. reinhardtii. Moreover, we observed the green alga Chromochloris zofingiensis and the moss Physcomitrella patens to show the applicability of 3D‐SIM. This study demonstrates that 3D‐SIM is a promising approach for studying the dynamics of thylakoid membranes in photoautotrophic organisms during photoacclimation processes.  相似文献   

5.
The spectral light absorption and fluorescence excitation spectra from thalli (in vivo) and thylakoid micelles (no intracellular self-shading) from the macroalgae Laminaria digitata (L.) Edmonson, Palmaria palmata (L.) Kuntze, and Ulva sp. were examined. In all the examined species, the intracellular self-shading (i.e. the package effect) was highly significant to the extent that absorption peaks related to individual pigments were significantly suppressed. Thus, for studies related to taxonomy and physiology, “unpacked”spectra may be more informative. Thylakoid micelle preparations offer opportunities to examine more closely species-specific differences in the packaging effect, light harvesting and utilization, and pigmentation. As well, the thylakoid micelles, when analyzed with biochemical assays or fluoromtry, may provide insight into components of the photosynthetic machinery that are specific to different classes of mncroalgne. We present the Chl a-specific absorption coefficients and the corresponding fluorescence excitation spectra of macroalgal thylakoid micelles for the three species.  相似文献   

6.
Obesity research suffers from an overinclusion paradigm whereby all participants with a BMI beyond a certain cutoff value (e.g., 30) are typically combined in a single group and compared to those of normal weight. There has been little attempt to identify meaningful subgroups defined by their salient biobehavioral differences. In order to address this limitation, we examined genetic and psychological indicators of hedonic eating in obese adults with (n = 66) and without (n = 70) binge eating disorder (BED). Our analyses focused on dopamine (DA) and opioid genetic markers because of their conjoint association with the functioning of brain reward mechanisms. We targeted three functional polymorphisms related to the D2 receptor (DRD2) gene, as well as the functional A118G polymorphism of the mu‐opioid receptor (OPRM1) gene. We found that significantly more obese controls had the “loss‐of‐function” A1 allele of Taq1A compared to their BED counterparts, whereas the “gain‐of‐function” G allele of A118G occurred with greater frequency in the BED group. A significant gene–gene combination χ2 analysis also indicated that of those participants with the gain‐gain genotype (G+ and A1), 80% were in the BED group whereas only 35% with the loss‐loss genotype (G? and A1+) were in this group. Finally, BED subjects had significantly higher scores on a self‐report measure of hedonic eating. Our findings suggest that BED is a biologically based subtype of obesity and that the proneness to binge eating may be influenced by a hyper‐reactivity to the hedonic properties of food—a predisposition that is easily exploited in our current environment with its highly visible and easily accessible surfeit of sweet and fatty foods.  相似文献   

7.
Earlier experiments, using 31P‐NMR and time‐resolved merocyanine fluorescence spectroscopy, have shown that isolated intact, fully functional plant thylakoid membranes, in addition to the bilayer phase, contain three non‐bilayer (or non‐lamellar) lipid phases. It has also been shown that the lipid polymorphism of thylakoid membranes can be characterized by remarkable plasticity, i.e. by significant variations in 31P‐NMR signatures. However, changes in the lipid‐phase behaviour of thylakoids could not be assigned to changes in the overall membrane organization and the photosynthetic activity, as tested by circular dichroism and 77 K fluorescence emission spectroscopy and the magnitude of the variable fluorescence of photosystem II, which all showed only marginal variations. In this work, we investigated in more detail the temporal stability of the different lipid phases by recording 31P‐NMR spectra on isolated thylakoid membranes that were suspended in sorbitol‐ or NaCl‐based media. We observed, at 5°C during 8 h in the dark, substantial gradual enhancement of the isotropic lipid phases and diminishment of the bilayer phase in the sorbitol‐based medium. These changes compared well with the gradually increasing membrane permeability, as testified by the gradual acceleration of the decay of flash‐induced electrochromic absorption changes and characteristic changes in the kinetics of fast chlorophyll a‐fluorescence transients; all variations were much less pronounced in the NaCl‐based medium. These observations suggest that non‐bilayer lipids and non‐lamellar lipid phases play significant roles in the structural dynamics and functional plasticity of thylakoid membranes.  相似文献   

8.
The effects of temperature (25–45 °C) and pH (7.5–5.5) on photosystem (PS) 2 was studied in spinach (Spinacia oleracea L.) thylakoid membranes using chlorophyll a fluorescence induction kinetics. In high temperature and low pH treated thylakoid membranes a decline in the variable to maximum fluorescence ratio (Fv/Fm) and PS 2 electron transport rate were observed. More stacking in thylakoid membranes, studied by digitonin fractionation method, was observed at low pH, while the degree of unstacking increased under high temperature conditions. We conclude that the change in pH does not significantly affect the donor/acceptor side of PS 2 while high temperature does. Fluorescence emission spectra at 77 K indicated that low pH is associated with energy redistribution between the two photosystems while high temperature induced changes do not involve energy re-distribution. We suggest that both, high temperature and low pH, show an inhibitory effect on PS 2 but their mechanisms of action are different.  相似文献   

9.
Massive anthropogenic changes in estuarine salinities, from manipulations of freshwater flows, are again occurring through governmental projects “correcting” past freshwater alterations. The downstream effects of increased freshwater on seagrass meadows, a major fisheries and ecosystem habitat, are not clear. Spectral responses to low salinities were quantitatively delimited for the important habitat seagrass Thalassia testudinum utilizing spectral reflectance measurements for the first time (non-invasive sampling). Over a range of salinities (32–16 parts per thousand sea salts [ppt] for 24 h) and spectra (308–1138 nm), Thalassia specimens showed statistically significant differences in spectral values (P < 0.05) between treatments at normal (32 ppt) and 50% reduced (16 ppt) seawater. Mature blades yellowed at low salinities. Reflectance changes at 525 nm and 650–680 nm at low salinities suggested changes in xanthophylls and chlorophylls. Four indices were also used to characterize the reflectance spectra to delineate the effect of the salinity changes: (1) The normalized difference vegetation index (NDVI) for mature blades reduced at 16 ppt from that at 32 ppt. (2) The chlorophyll normalized difference index (Chl NDI) suggested chlorophyll content decreases in response to reduced salinity. (3) The structure independent pigment index (SIPI), higher in mature blades at 16 ppt than new blades, indicates a higher carotenoid : chlorophyll ratio in mature blades. (4) The photochemical reflectance index (PRI) suggested a lower photochemical efficiency at lower salinities. The main low-salinity effect on Thalassia physiology delineated herein is likely through changes in pigmentation (decreases in chlorophyll and changes in xanthophyll cycle epoxidation).  相似文献   

10.
Four rhesus macaque (Macaca mulatta) mothers each spontaneously adopted and reared an abandoned, unrelated neonate in addition to their own neonate. Data on relative time spent in maternal contact and who maintained proximity were collected for the biological and adopted “twins” and singleton control infants using focal animal sampling. Infant weight gain and the subsequent conception history for each mother were obtained for the following year. Biological infants spent more time in maternal contact than their adopted “twin” siblings. When in contact with their mothers, biological “twins” spent more time in the ventro-ventral position and more ventral time alone than adoptees. Mothers initiated more contacts with their biological infants than their adopted infants, suggesting these differences may be due to differential maternal behavior. “Twins” gained weight at a slower rate than singletons, and mothers rearing “twins” produced significantly fewer offspring the following season. Am. J. Primatol. 43:259–264, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
The extraction of chlorophyll-protein (CP) complexes from thylakoids by the detergent octyl glucoside is strongly affected by pretreatment of the thylakoids with trypsin or cations. In these experiments, washed thylakoids were incubated in the presence of 0.5 μm to 5 mm Mg2+, pelleted, and extracted with octyl glucoside (30 mm). Increasing amounts of Mg2+ depressed extractability of all CP complexes, but especially the chlorophyll a + b-containing light-harvesting complex (LHC). This cation effect is observed with other cations which promote thylakoid stacking (5 mm Mn2+ or Ca2+, 50 mm Na+). However, the effect is not merely due to stacking, since low concentrations of Mg2+ (0.5 μmto 0.5 mm) have a marked effect on extractability but have no effect on light scattering (OD 550 nm), an indicator of stacking. Furthermore, trypsin treatment of thylakoids stacked with 5 mm Mg2+ caused a significant reversal of stacking, but had little effect on extractability. Trypsin treatment of unstacked membranes resulted in increased extractability of all CP complexes, but especially of the LHC. Cation-treated membranes are also significantly different from those “stacked” at pH 4.5. While the latter do show decreased extractability, there is no change in the chlorophyll ab ratio of the extract, and the membranes cannot be “unstacked” with trypsin. We conclude that octyl glucoside extractability reflects the lateral interaction of CP complexes with each other and with other components in the same plane of the membrane. It is clear that divalent cations have several effects on thylakoid membranes, not all of which are due to their ability to promote stacking.  相似文献   

12.
“Chick-a-dee” calls of the black-capped chickadee (Parus atricapillus) constitute a combinatorial system of animal communication, apparently the only such system yet described. Four note-types, which may be omitted or repeated a variable number of times, occur in a fixed sequence (A–B–C–D) to constitute calls. Quantitative analyses determining the nature of departures from first-order transitional probabilities between successive notes revealed a variety of results that point consistently to two underlying features of calls. (1) Some constraint operates to limit the length of calls, as manifest in shortening of repetition-strings and omitting of note-types expected to follow. (2) There is an opposing tendency to include at least one or two D-notes at the end of a call, regardless of the overall length. The second feature suggests important semantic properties of D-notes, especially the ratio of D s to other note-types and the flock-specific acoustical structure of D-notes. The constraint on length of call does not appear intimately related to semantic causes, but may instead be determined by the maximum duration of continuous phonation, in parallel with the fundamental breath-group of human speech. In this respect, a “chick-a-dee” call resembles an entire “natural sentence” of spoken human language.  相似文献   

13.
Under strong light, photosystem II (PSII) of oxygenic photosynthetic organisms is inactivated, and this phenomenon is called photoinhibition. In a widely accepted model, photoinhibition is induced by excess light energy, which is absorbed by chlorophyll but not utilized in photosynthesis. Using monochromatic light from the Okazaki Large Spectrograph and thylakoid membranes from Thermosynechococcus elongatus, we observed that UV and blue light inactivated the oxygen-evolving complex much faster than the photochemical reaction center of PSII. These observations suggested that the light-induced damage was associated with a UV- and blue light-absorbing center in the oxygen-evolving complex of PSII. The action spectrum of the primary event in photodamage to PSII revealed the strong effects of UV and blue light and differed considerably from the absorption spectra of chlorophyll and thylakoid membranes. By contrast to the photoinduced inactivation of the oxygen-evolving complex in untreated thylakoid membranes, red light efficiently induced inactivation of the PSII reaction center in Tris-treated thylakoid membranes, and the action spectrum resembled the absorption spectrum of chlorophyll. Our observations suggest that photodamage to PSII occurs in two steps. Step 1 is the light-induced inactivation of the oxygen-evolving complex. Step 2, occurring after step 1 is complete, is the inactivation of the PSII reaction center by light absorbed by chlorophyll. We confirmed our model by illumination of untreated thylakoid membranes with blue and UV light, which inactivated the oxygen-evolving complex, and then with red light, which inactivated the photochemical reaction center.  相似文献   

14.
15.
C.J. Arntzen  C.L. Ditto 《BBA》1976,449(2):259-274
When isolated chloroplasts from mature pea (Pisum sativum) leaves were treated with digitonin under “low salt” conditions, the membranes were extensively solubilized into small subunits (as evidenced by analysis with small pore ultrafilters). From this solubilized preparation, a photochemically inactive chlorophyll · protein complex (chlorophyll ab ratio, 1.3) was isolated. We suggest that the detergent-derived membrane fragment from mature membranes is a structural complex within the membrane which contains the light-harvesting chlorophyll ab protein and which acts as a light-harvesting antenna primarily for Photosystem II.Cations dramatically alter the structural interaction of the light-harvesting complex with the photochemically active system II complex. This interaction has been measured by determining the amount of protein-bound chlorophyll b and Photosystem II activity which can be released into dispersed subunits by digitonin treatment of chloroplast lamellae. When cations are present to cause interaction between the Photosystem II complex and the light-harvesting pigment · protein, the combined complexes pellet as a “heavy” membranous fraction during differential centrifugation of detergent treated lamellae. In the absence of cations, the two complexes dissociate and can be isolated in a “light” submembrane preparation from which the light-harvesting complex can be purified by sucrose gradient centrifugation.Cation effects on excitation energy distribution between Photosystems I and II have been monitored by following Photosystem II fluorescence changes under chloroplast incubation conditions identical to those used for detergent treatment (with the exception of chlorophyll concentration differences and omission of detergents). The cation dependency of the pigment · protein complex and Photosystem II reaction center interactions measured by detergent fractionation, and regulation of excitation energy distribution as measured by fluorescence changes, were identical. We conclude that changes in substructural organization of intact membranes, involving cation induced changes in the interaction of intramembranous subunits, are the primary factors regulating the distribution of excitation energy between Photosystems II and I.  相似文献   

16.
Adele Post 《Polar Biology》1990,10(4):241-245
Summary Variation in leaf pigmentation from green to ginger is observed for Ceratodon purpureus (Hedw.) Brid. in Antarctica. Electron microscopy of ginger and green leaves reveals less thylakoid stacking, a response to greater light exposure, in the ginger leaves. In extremely exposed sites C. purpureus has low chlorophyll a/b ratios which correlate with decreased 77K chlorophyll fluorescence, indicating damage to chlorophyll a. Pigment analysis of ginger moss shows that even when the chlorophyll a/b ratio has not decreased the pigment composition differs from green moss. The increase in anthocyanin and decrease in chlorophyll concentrations largely account for the visual change from green to ginger. The ratio of total carotenoid to chlorophyll varies from 0.35 in green moss to 0.55 in the ginger moss, with violaxanthin increased preferentially. Since these changes in pigmentation are consistent with photoprotection and they are linked to light dependent variations in chloroplast structure, it appears that photoprotective pigments are a useful adaptation for the bright Antarctic environment.  相似文献   

17.
Hard carbons (HCs) are promising anodes of sodium‐ion batteries (SIBs) due to their high capacity, abundance, and low cost. However, the sodium storage mechanism of HCs remains unclear with no consensus in the literature. Here, based on the correlation between the microstructure and Na storage behavior of HCs synthesized over a wide pyrolysis temperature range of 600–2500 °C, an extended “adsorption–insertion” sodium storage mechanism is proposed. The microstructure of HCs can be divided into three types with different sodium storage mechanisms. The highly disordered carbon, with d002 (above 0.40 nm) large enough for sodium ions to freely transfer in, has a “pseudo‐adsorption” sodium storage mechanism, contributing to sloping capacity above 0.1 V, together with other conventional “defects” (pores, edges, heteroatoms, etc.). The pseudo‐graphitic carbon (d‐spacing in 0.36–0.40 nm) contributes to the low‐potential (<0.1 V) plateau capacity through “interlayer insertion” mechanism, with a theoretical capacity of 279 mAh g?1 for NaC8 formation. The graphite‐like carbon with d002 below 0.36 nm is inaccessible for sodium ion insertion. The extended “adsorption–insertion” model can accurately explain the dependence of the sodium storage behavior of HCs with different microstructures on the pyrolysis temperature and provides new insight into the design of HC anodes for SIBs.  相似文献   

18.
We investigated the effects of digalactosyl-diacylglycerol (DGDG) on the organization and thermal stability of thylakoid membranes, using wild-type Arabidopsis thaliana and the DGDG-deficient mutant, dgd1. Circular-dichroism measurements reveal that DGDG-deficiency hampers the formation of the chirally organized macrodomains containing the main chlorophyll a/b light-harvesting complexes. The mutation also brings about changes in the overall chlorophyll fluorescence lifetimes, measured in whole leaves as well as in isolated thylakoids. As shown by time-resolved measurements, using the lipophylic fluorescence probe Merocyanine 540 (MC540), the altered lipid composition affects the packing of lipids in the thylakoid membranes but, as revealed by flash-induced electrochromic absorbance changes, the membranes retain their ability for energization. Thermal stability measurements revealed more significant differences. The disassembly of the chiral macrodomains around 55°C, the thermal destabilization of photosystem I complex at 61°C as detected by green gel electrophoresis, as well as the sharp drop in the overall chlorophyll fluorescence lifetime above 45°C (values for the wild type—WT) occur at 4–7°C lower temperatures in dgd1. Similar differences are revealed in the temperature dependence of the lipid packing and the membrane permeability: at elevated temperatures MC540 appears to be extruded from the dgd1 membrane bilayer around 35°C, whereas in WT, it remains lipid-bound up to 45°C and dgd1 and WT membranes become leaky around 35 and 45°C, respectively. It is concluded that DGDG plays important roles in the overall organization of thylakoid membranes especially at elevated temperatures.  相似文献   

19.
The chloroplast membranes of Gonyaulax polyedra Stein were studied in replicas of rapidly frozen and fractured cells. The thylakoid EFs face lacked the large 15–16 nm particles characteristic of plants with the light-harvesting chlorophyll a/b protein, presumably because the principal light-harvesting protein of Gonyaulax is the small water-soluble peridinin-chlorophyll-protein and the chlorophyll a/b protein is absent. As in other plants, the EFs thylakoid fracture face carried more particles (4 ×) than EFuface. The PF faces of the thylakoid showed twice as many particles as did the EFs faces. No circadian differences in the number or size of thylakoid membrane particles could be detected. Three membranes comprise the chloroplast envelope in Gonyaulax. They could be clearly differentiated in freeze-fractured cells. The middle envelope membrane carried many fewer particles on both the EF and PF faces than did the other two envelope membranes. The PF faces of both the outer and inner envelope membranes showed more particles than the EF faces, as do many other membranes which have been examined.  相似文献   

20.
Abstract Moderately frost-hardy leaves of the wintergreen broadleaf woody shrubs Pyracantha coccinea and Ligustrum ovalifolium and the winter annual herb Spinacia oleracea were subjected to extended freezing stress up to 15 d at temperatures 2–8°C above the mean lethal temperature (LT50). After thawing, the fast kinetics of in vivo chlorophyll fluorescence of photosystem II (PSII) and the potential of linear photosynthetic electron transport of isolated thylakoid membranes was measured at room temperature. The lower the minimum freezing temperature and the longer the time of exposure, the greater was the suppression of the fluorescence signals of the leaves and decrease of the electron transport capacity of the thylakoid membranes. The pattern of inactivation of PSII -mediated electron flow, i.e. inhibition of photoreaction to photochemistry and/or electron donation to the photochemical reaction, during long-term freezing at temperatures somewhat above the LT50 of the leaves was similar to that observed earlier after relatively brief exposure of leaves and isolated thylakoid membranes to more severe freezing stress. As injury occurred during freezing in complete darkness, it is likely that prolonged winter stress under natural environmental conditions causes changes in the photosynthetic apparatus of moderately hardy leaves which are not due to photoinhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号