首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The feeding mechanisms of two labrid fishes (Cheilinus chlorurus and C. diagrammus: Labridae: Perciformes) are modeled using four-bar linkage theory from mechanical engineering. The actions of the feeding mechanisms are simulated by a computer program that uses morphometric data to calculate the geometry of mechanism structure. The predictions of three different four-bar linkages regarding the kinematics of feeding are compared to the movements observed through hign speed (200 fps) cinematography. A previously unidentified four-bar chain was found to be an accurate model of the mechanism by which upper jaw protrusion, maxillary rotation, and gape increase occur in Cheilinus. This mechanism involves the anterior jaws including the mandible, maxilla, premaxilla, palatine, and suspensorium. The accuracy of two previously described four-bar linkages was also tested by comparison of model predictions and film results. The opercular linkage proposed by Anker ('74) as a mechanism of jaw depression via opercular levation was found to be a poor predictor of feeding movements. This four-bar chain involves the opercle, suspensorium, interopercle, and mandible. Muller ('87) proposed a mechanism of hyoid depression involving cranial elevation due to epaxial muscle contraction as input motion The links in this mechanism include the neurocranium and hyomandibula, hyoid, sternohyoideus muscle, and pectoral girdle. This model was an accurate predictor of hyoid depression in Cheilinus when simultaneous cranial elevation and sternohyoideus contraction were simulated. Quantitative kinematic models involve simplifying assumptions when applied to complex musculoskeletal systems, but such models have a wide range of applications to vertebrate functional morphology.  相似文献   

2.
Jaw protrusion is an important component of prey capture in fishes, although the mechanics of protrusion have thus far been studied largely in teleosts. Elasmobranchs are also able to protrude their jaws (Tricas and McCosker [1984] Proc. Cal. Acad. Sci. 43: 221–238; Tricas [1985] Mem. S. Calif. Acad. Sci. 8:81–91.; Frazzetta and Prange [1987] Copeia 4:979–993). Several related features of the feeding apparatus contribute to jaw protrusion in sharks. Labial cartilages form an extendible series attached dorsally to the anterolateral face of the palatoquadrate and ventrally to the anteroventral surface of Meckel's cartilage. The labial cartilage chain swings anterolaterally as the lower jaw is depressed, thrusting the labial margins forward to form a circular oral opening and displacing the jaw apparatus towards the food; this pattern is analogous to halecomorph and primitive actinopterygian fishes in which the maxilla swings forward (Lauder [1979] J. Zool. Lond. 187:543–578). The palatoquadrate and Meckel's cartilage also project anteriorly and represent the major contribution to protrusion. These movements occur simultaneously with enlargement of the oral cavity to generate suction. The wobbegong sharks (Orectolobidae) are specialized for jaw protrusion. The spotted wobbegong protrudes its jaw by 33% of its chondrocranial length using two different mechanical systems. In the first mechanism of jaw protrusion, the intermandibularis and interhyoideus muscles medially compress the lower jaw and hyomandibulae. Compression of the lower jaw results in a more acute symphyseal angle so that the anteroposterior alignment of the lower jaw increases due to the rotation of each lower jaw towards a saggital orientation. Distal compression of the hyomandibulae at their attachments to the jaws swings the jaws forward. The second mechanism involves rotation of the ceratohyal around a posterior process of the lower jaw, pushing the hyomandibulae anteroventrally, thereby pushing the jaw articulation ventrally and anteriorly to protrude the jaws. © 1994 Wiley-Liss, Inc.  相似文献   

3.
Synopsis Luciocephalus pulcher possesses one of the most protrusible jaws known among teleosts, the premaxillae extending anteriorly a distance of 33% of the head length during feeding. Jaw bone movement during feeding proceeds according to a stereotypical pattern and resembles that of other teleosts except for extreme cranial elevation and premaxillary protrusion. Anatomical specializations associated with cranial elevation include: a highly modified first vertebra with a separate neural spine, articular fossae on the posterior aspect, greatly enlarged zygapophyses on the second vertebra with complex articular condyles, and highly pinnate multi-layered epaxial musculature with multiple tendinous insertions on the skull. Luciocephalus, despite the extreme jaw protrusion, does not use suction during prey capture: rather, the prey is captured by a rapid lunge (peak velocity of about 150 cm per sec) and is surrounded by the open mouth. Previous hypotheses of the function of upper jaw protrusion are reviewed in relation to jaw movements inLuciocephalus. Protrusion is not obligatorily linked with suction feeding; behavioral aspects of the feeding process limit the possible range of biological roles of a given morphological specialization, and make prediction of role from structure risky.  相似文献   

4.
Karel F.  Liem 《Journal of Zoology》1979,189(1):93-125
Electromyography, motion analysis, osteology, myology and feeding behaviour of a morphologically specialized monophyletic lineage of cichlids in Lake Tanganyika have revealed that Eretmodus, Spathodus and Tanganicodus possess a feeding apparatus with a more extensive functional repertoire than that of any other teleost studied to date. When collecting a wide range of foods by inertial suction this trophic group can employ two strategies, a preprogrammed cyclical, energy saving pattern, or a modulated mode effected by extensive overlap of the firing patterns of multiple muscles resulting in a precise control of the magnitude and direction of suction. When dislodging sessile prey from the substrate the complexity of electromyographic and kinematic patterns increases. Because upper jaw protrusion can be effected and controlled independently from the complex couplings causing mouth opening and movements of the suspensory apparatus, a new decoupled model of upper jaw protrusion is proposed. The decoupled model predicts that upper jaw protrusion can be effected directly by contraction of epaxial muscles that raise the neurocranium, causing the premaxillae to slide anteroventrally. Upper jaw protrusion can be modulated continuously and directly by balanced cocontractions of antagonistic muscle sets giving the decoupled model an improved function over a very extensive range. The morphologically symmetrical muscular apparatus can function asymmetrically. Very pronounced asymmetrical firings of multiple muscles produce a continuously modulated jaw mechanism with an extensive repertoire.  相似文献   

5.
In birds, the ability to move the upper beak relative to the braincase has been the subject of many functional morphological investigations, but in many instances the adaptive significance of cranial kinesis remains unclear. Alternatively, cranial kinesis may be considered a consequence of the general design of the skull, rather than an adaptive trait as such. The present study reviews some results related to the mechanism and functional significance of cranial kinesis in birds. Quantitative three-dimensional X-ray has shown that in skulls morphologically as divers as paleognaths and neognaths the mechanism for elevation of the upper beak is very similar. One of the mechanisms proposed for avian jaw movement is a mechanical coupling of the upper and the lower jaw movement by the postorbital ligament. Such a mechanical coupling would necessitate upper beak elevation. However, independent control of upper and lower jaw has been shown to occur during beak movements in birds. Moreover, kinematic modeling and force measurements suggests that the maximum extensibility of collagen, in combination with the short distance of the insertion of the postorbital ligament to the quadrato-mandibular articulation do not constitute a block to lower jaw depression. The lower jaw ligaments serve to limit the maximal extension of the mandibula. It is suggested here that cranial kinesis in avian feeding may have evolved as a consequence of an increase in eye size. This increase in size led to a reduction of bony bars in the lateral aspect of the skull enabling the transfer of quadrate movement to the upper jaw. The selective forces favoring the development of a kinetic upper beak in birds may be subtle and act in different ecological contexts. Simultaneous movement of the upper and lower jaw not only increases the velocity of beak movements, but with elevated upper beak also less force is required to open the lower jaw. However, the penalty of increased mobility of elements in a lightweight skull and a large eye is potential instability of skull elements during biting, smaller bite forces and limitations on joint reaction forces. Such a lightly built, kinetic skull may have evolved in animals that feed on small plant material or insects. This type of food does not require the resistance of large external forces on the jaws as in carnivores eating large prey.  相似文献   

6.
7.
Cleaner fishes are well known for removing and consuming ectoparasites off other taxa. Observers have noted that cleaners continuously “pick” ectoparasites from the bodies of their respective client organisms, but little is known about the kinematics of cleaning. While a recent study described the jaw morphology of cleaners as having small jaw‐closing muscles and weak bite forces, it is unknown how these traits translate into jaw movements during feeding to capture and remove ectoparasites embedded in their clients. Here, we describe cranial morphology and kinematic patterns of feeding for three species of cleaner wrasses. Through high‐speed videography of cleaner fishes feeding in two experimental treatments, we document prey capture kinematic profiles for Labroides dimidiatus, Larabicus quadrilineatus, and Thalassoma lutescens. Our results indicate that cleaning in labrids may be associated with the ability to perform low‐displacement, fast jaw movements that allow for rapid and multiple gape cycles on individually targeted items. Finally, while the feeding kinematics of cleaners show notable similarities to those of “picker” cyprinodontiforms, we find key differences in the timing of events. In fact, cleaners generally seem to be able to capture prey twice as fast as cyprinodontiforms. We thus suggest that the kinematic patterns exhibited by cleaners are indicative of picking behavior, but that “pickers” may be more kinematically diverse than previously thought. J. Morphol. 276:1377–1391, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
Iharkutosuchus makadii is a basal eusuchian crocodylian with multicusped teeth discovered from the Upper Cretaceous of Hungary. Skull and dentition morphology indicates an active food processing for this crocodylian. First among crocodylians, a combination of different analyses, including cranial adductor muscle reconstruction, tooth wear pattern, and enamel microstructure studies, is applied here to support this hypothesis. Data provide unambiguous evidence for significant dental occlusion that was a result of a unique, transverse mandibular movement. Reconstruction of the jaw adductors demonstrates strong muscles responsible for slow but active jaw closure as the motor of transverse jaw movement; nevertheless muscles producing rapid jaw closure were reduced. Macrowear orientations show a dominantly transverse movement of the mandibles completed by a slight anteroposterior component. Along with quadrate morphology, macrowear further indicates that this motion was accomplished by alternate rotation of the mandibles about the quadrate condyles. Dental morphology and wear patterns suggest two types of power stroke: a slicing–crushing stroke associated dominantly with anterior tooth–food–tooth contact (with a low degree of transverse mandibular movement) during in the early stage of mastication, and a grinding stroke with significant posterior tooth–tooth contact and a dynamic transverse movement occurring later. The patterns of microwear show a diverse diet for Iharkutosuchus including both soft and hard items. This is also supported by the microstructure of the thick, wrinkled enamel built up mostly by poorly developed columnar units. Based on wear patterns, ontogenetic variation in feeding habits of Iharkutosuchus is also recognized. J. Morphol., 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Upper jaw protrusion is hypothesized to improve feeding performance in teleost fishes by enhancing suction production and stealth of the feeding event. However, many cyprinodontiform fishes (mid-water feeders, such as mosquitofish, killifish, swordtails, mollies and pupfish) use upper jaw protrusion for "picking" prey out of the water column or off the substrate; this feeding mode may require improved jaw dexterity, but does not necessarily require increased stealth and/or suction production. We describe functional aspects of the bones, muscles and ligaments of the anterior jaws in three cyprinodontiform genera: Fundulus (Fundulidae), Gambusia and Poecilia (Poeciliidae). All three genera possess a premaxillomandibular ligament that connects the premaxilla of the upper jaw to the mandible. The architecture of this ligament is markedly different from the upper-lower jaw connections previously described for basal atherinomorphs or other teleosts, and this loose ligamentous connection allows for more pronounced premaxillary protrusion in this group relative to closely related outgroup taxa. Within poeciliids, a novel insertion of the second division of the adductor mandibulae (A2) onto the premaxilla has also evolved, which allows this jaw adductor to actively retract the premaxilla during mouth closing. This movement is in contrast with most other teleosts, where the upper jaw is retracted passively via pressure applied by the adduction of the lower jaw. We postulate that this mechanism of premaxillary protrusion mediates the cyprinodontiforms' ability to selectively pick specific food items from the water column, surface or bottom, as a picking-based feeding mechanism requires controlled and coordinated "forceps-like" movements of the upper and lower jaws. This mechanism is further refined in some poeciliids, where direct muscular control of the premaxillae may facilitate picking and/or scraping material from the substrate.  相似文献   

10.
Studies of ontogenetic series of trichomycterids and other catfishes reveal that the suspensorium of siluroids is highly specialized; several synapomorphies separate siluroids from other teleosts. In siluroids, the palatoquadrate is divided into pars autopalatina and pars pterygoquadrata and both are usually connected by the autopaiatine-metapterygoid ligament. The pterygoquadrate is broadly joined to the dorsal limb of the hyoid arch, forming a cartilaginous hyomandibular-symplectic-pterygoquadrate plate in early ontogeny. This produces a special alignment of the hyomandibula and quadrate which is characteristic of siluroids. A symplectic bone is absent. The interhyal is absent in trichomycterids and astroblepids. Dorsal and ventral limbs of the hyoid arch are connected by a ligament. A rudimentary interhyal and this ligament are present in primitive siluroids such as diplomystids and nematogenyids as well as loricariids. The metapterygoid arises as an anterior ossification of the pars pterygoquadrata in siluroids. The formation and position of the metapterygoid exhibit two patterns: (1) the metapterygoid develops as an ossification of a cartilaginous projection positioned between the future hyomandibula and quadrate in primitive catfishes (e.g., Diplomystes) as well as in Nematogenys, callichthyids, loricariids, and astroblepids; (2) the metapterygoid arises as an ossification of the cartilaginous projection (pterygoid process) positioned just above the articular facet of the quadrate for the lower jaw. An ossified anterior chondral pterygoid process of the complex quadrate is present in trichomycterids, whereas the process is absent (simple quadrate) in catfishes such as diplomystids, nematogenyids, callichthyids, and loricariids. The anterior membranous process of the quadrate of Astroblepus is non-homologous with the chondral pterygoid process of trichomycterids; both structures arose independently within the loricarioids. Despite topological relationships, the origin and development of bones reveal the presence of a chondral hyomandibula which develops a large meinbranous outgrowth during ontogeny and a chondral metapterygoid in trichomycterids. The presence of a compound hyomandibula + metapterygoid or a compound metapterygoid + ectopterygoid + entopterygoid have no developmental support in trichomycterines or other siluroids. The “entopterygoid” of Nematogenys and Diplomystes arises as an ossification of a ligament. The dermal entopterygoid of other ostariophysans and the “entopterygoid” are homologous. An ectopterygoid or tendon bone “ectopterygoid” is absent in loricarioids. The suspensorium is an important structural system which has significant evolutionary transformations which characterize loricarioid subgroups; however, no character, of the suspensorium supports the monophyly of the loricarioids.  相似文献   

11.
Studies on the evolution of complex biological systems are difficult because the construction of these traits cannot be observed during the course of evolution. Complex traits are defined as consisting of multiple elements, often of differing embryological origins, with multiple linkages integrated to form a single functional unit. An example of a complex system is the cypriniform oral jaw apparatus. Cypriniform fishes possess an upper jaw characterized by premaxillary protrusion during feeding. Cypriniforms effect protrusion via the kinethmoid, a synapomorphy for the order. The kinethmoid is a sesamoid ossification suspended by ligaments attaching to the premaxillae, maxillae, palatines, and neurocranium. Upon mouth opening, the kinethmoid rotates as the premaxillae move anteriorly. Along with bony and ligamentous elements, there are three divisions of the adductor mandibulae that render this system functional. It is unclear how cypriniform jaws evolved because although the evolution of sesamoid elements is common, the incorporation of the kinethmoid into the protrusible jaw results in a function that is atypical for sesamoids. Developmental studies can show how biological systems are assembled within individuals and offer clues about how traits might have been constructed during evolution. We investigated the development of the protrusible upper jaw in zebrafish to generate hypotheses regarding the evolution of this character. Early in development, the adductor mandibulae arises as a single unit. The muscle divides after ossification of the maxillae, on which the A1 division will ultimately insert. A cartilaginous kinethmoid first develops within the intermaxillary ligament; it later ossifies at points of ligamentous attachment. We combine our structural developmental data with published kinematic data at key developmental stages and discuss potential functional advantages in possessing even the earliest stages of a system for protrusion. J. Morphol. 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
The comparative functional anatomy of feeding in Polypterus senegalus, Lepisosteus oculatus, and Amia calva, three primitive actinopterygian fishes, was studied by high-speed cinematography (200 frames per second) synchronized with electromyographic recordings of cranial muscle activity. Several characters of the feeding mechanism have been identified as primitive for actinopterygian fishes: (1) Mandibular depression is mediated by the sternohyoideus muscle via the hyoid apparatus and mandibulohyoid ligament. (2) The obliquus inferioris and sternohyoideus muscles exhibit synchronous activity at the onset of the expansive phase of jaw movement. (3) Activity in the adductor operculi occurs in a double burst pattern—an initial burst at the onset of the expansive phase, followed by a burst after the jaws have closed. (4) A median septum divides the sternohyoideus muscle into right and left halves which are asymmetrically active during chewing and manipulation of prey. (5) Peak hyoid depression occurs only after peak gape has been reached and the hyoid apparatus remains depressed after the jaws have closed. (6) The neurocranium is elevated by the epaxial muscles during the expansive phase. (7) The adductor mandibulae complex is divided into three major sections—an anterior (suborbital) division, a medial division, and a posterolateral division. In Polypterus, the initial strike lasts from 60 to 125 msec, and no temporal overlap in muscle activity occurs between muscles active at the onset of the expansive phase (sternohyoideus, obliquus superioris, epaxial muscles) and the jaw adductors of the compressive phase. In Lepisosteus, the strike is extremely rapid, often occuring in as little as 20 msec. All cranial muscles become active within 10 msec of each other, and there is extensive overlap in muscle activity periods. Two biomechanically independent mechanisms mediate mandibular depression in Amia, and this duality in mouth-opening couplings is a shared feature of the halecostome fishes. Mandibular depression by hyoid retraction, and intermandibular musculature, consisting of an intermandibularis posterior and interhyoideus, are hypothesized to be primitive for the Teleostomi.  相似文献   

13.
Protrusile jaws are a highly useful innovation that has been linked to extensive diversification in fish feeding ecology. Jaw protrusion can enhance the performance of multiple functions, such as suction production and capturing elusive prey. Identifying the developmental factors that alter protrusion ability will improve our understanding of fish diversification. In the zebrafish protrusion arises postmetamorphosis. Fish metamorphosis typically includes significant changes in trophic morphology, accompanies a shift in feeding niche and coincides with increased thyroid hormone production. We tested whether thyroid hormone affects the development of zebrafish feeding mechanics. We found that it affected all developmental stages examined, but that effects were most pronounced after metamorphosis. Thyroid hormone levels affected the development of jaw morphology, feeding mechanics, shape variation, and cranial ossification. Adult zebrafish utilize protrusile jaws, but an absence of thyroid hormone impaired development of the premaxillary bone, which is critical to jaw protrusion. Premaxillae from early juvenile zebrafish and hypothyroid adult zebrafish resemble those from adults in the genera Danionella, Devario, and Microdevario that show little to no jaw protrusion. Our findings suggest that evolutionary changes in how the developing skulls of danionin minnows respond to thyroid hormone may have promoted diversification into different feeding niches.  相似文献   

14.
Tetraodontiform fishes are characterized by jaws specialized for powerful biting and a diet dominated by hard-shelled prey. Strong biting by the oral jaws is an unusual feature among teleosts. We present a functional morphological analysis of the feeding mechanism of a representative tetraodontiform, Balistes vetula. As is typical for the order, long, sharp, strong teeth are mounted on the short, robust jaw bones of B. vetula. The neurocranium and suspensorium are enlarged and strengthened to serve as sites of attachment for the greatly hypertrophied adductor mandibulae muscles. Electromyographic recordings made from 11 cranial muscles during feeding revealed four distinct behaviors in the feeding repertoire of B. vetula. Suction is used effectively to capture soft prey and is associated with a motor pattern similar to that reported for many other teleosts. However, when feeding on hard prey, B. vetula directly bit the prey, exhibiting a motor pattern very different from that of suction feeding. During buccal manipulation, repeated cycles of jaw opening and closing (biting) were coupled with rapid movement of the prey in and out of the mouth. Muscle activity during buccal manipulation was similar to that seen during bite-captures. A blowing behavior was periodically employed during prey handling, as prey were forcefully “spit out” from the mouth, either to reposition them or to separate unwanted material from flesh. The motor pattern used during blowing was distinct from similar behaviors described for other fishes, indicating that this behaviors may be unique to tetraodontiforms. Thus B. vetula combines primitive behaviors and motor patterns (suction feeding and buccal manipulation) with specialized morphology (strong teeth, robust jaws, and hypertrophied adductor muscles) and a novel behavior (blowing) to exploit armored prey such as sea urchins molluscs, and crabs. © 1993 Wiley-Liss, Inc.  相似文献   

15.
Skull morphologies and dental wear patterns have been examined in four sauropod genera to evaluate their probable feeding mechanisms. Wear facets on teeth are generally confined to their apices in Brachiosaurus and Dicraeosaurus and they are sometimes also present on the mesial and distal carinae. Skull morphology and dental wear patterns in Diplodocus and Dicraeosaurus are consistent with a raking motion of the jaws during feeding. Diplodocus became mechanically adapted to feed in this way by evolving anteriorly directed teeth in the premaxilla and mesial parts of the maxilla, and by changing the direction of jaw adduction relative to the long axis of the skull. Similar features are present in the few known skulls of Apatosaurus and they may also have been present in Dicraeosaurus. In Brachiosaurus dental wear patterns also imply a raking motion of the jaws, although the more robust skull and teeth and the more vertically directed action of the jaw adductor muscles have led some to suggest the possibility of isognathous occlusion. Camarasaurus employed a powerful bite in its feeding, possibly with slight propaliny of the lower jaw, and its skull was modified to cope with increased stresses arising from mastication. Archaic sauropods appear largely to have employed isognathic occlusion in chopping off vegetation. The raking motion employed by diplodocids and dicraeosaurids was an advanced mode of cropping and stripping, linked evolutionarily to their highly apomorphic cranial morphology.  相似文献   

16.
We investigated the functional morphology of lingual prey capture in the blue‐tongued skink, Tiliqua scincoides, a lingual‐feeding lizard nested deep within the family Scincidae, which is presumed to be dominated by jaw‐feeding. We used kinematic analysis of high‐speed video to characterize jaw and tongue movements during prey capture. Phylogenetically informed principal components analysis of tongue morphology showed that, compared to jaw‐feeding scincids and lacertids, T. scincoides and another tongue‐feeding scincid, Corucia zebrata, are distinct in ways suggesting an enhanced ability for hydrostatic shape change. Lingual feeding kinematics show substantial quantitative and qualitative variation among T. scincoides individuals. High‐speed video analysis showed that T. scincoides uses significant hydrostatic elongation and deformation during protrusion, tongue‐prey contact, and retraction. A key feature of lingual prey capture in T. scincoides is extensive hydrostatic deformation to increase the area of tongue‐prey contact, presumably to maximize wet adhesion of the prey item. Adhesion is mechanically reinforced during tongue retraction through formation of a distinctive “saddle” in the foretongue that supports the prey item, reducing the risk of prey loss during retraction.  相似文献   

17.
Patterns of Evolution in the Feeding Mechanism of Actinopterygian Fishes   总被引:3,自引:2,他引:1  
SYNOPSIS. Structural and functional patterns in the evolutionof the actinopterygian feeding mechanism are discussed in thecontext of the major monophyletic lineages of ray-finned fishes.A tripartite adductor mandibulae contained in a maxillary-palatoquadratechamber and a single mechanism of mandibular depression mediatedby the obliquus inferioris, sternohyoideus, and hyoid apparatusare primitive features of the Actinopterygii. Halecostome fishesare characterized by having an additional mechanism of mandibulardepression, the levator operculi—opercular series coupling,and a maxilla which swings anteriorly during prey capture. Theseinnovations provide the basis for feeding by inertial suctionwhich is the dominant mode of prey capture throughout the halecostomeradiation. A remarkably consistent kinematic profile occursin all suction-feeding halecostomes. Teleost fishes possessa number of specializations in the front jaws including a geniohyoideusmuscle, loss of the primitive suborbital adductor component,and a mobile premaxilla. Structural innovations in teleost pharyngealjaws include fusion of the dermal tooth plates with endoskeletalgill arch elements, the occurrence of a pharyngeal retractormuscle, and a shift in the origin of the pharyngohyoideus. Thesespecializations relate to increased functional versatility ofthe pharyngeal jaw apparatus as demonstrated by an electromyographicstudy of pharyngeal muscle activity in Esox and Ambloplites.The major feature of the evolution of the actinopterygian feedingmechanism is the increase in structural complexity in both thepharyngeal and front jaws. Structural diversification is a functionof the number of independent biomechanical pathways governingmovement.  相似文献   

18.
The New World cichlids Petenia splendida and Caquetaia spp. possess extraordinarily protrusible jaws. We investigated the feeding behavior of extreme (here defined as greater than 30% head length) and modest jaw-protruding Neotropical cichlids by comparing feeding kinematics, cranial morphology, and feeding performance. Digital high-speed video (500 fps) of P. splendida, C. spectabile, and Astronotus ocellatus feeding on live guppy prey was analyzed to generate kinematic and performance variables. All three cichlid taxa utilized cranial elevation, lower jaw depression, and rotation of the suspensorium to protrude the jaws during feeding experiments. Extreme anterior jaw protrusion in P. splendida and C. spectabile resulted from augmented lower jaw depression and anterior rotation of the suspensorium. Morphological comparisons among eight cichlid species revealed novel anterior and posterior points of flexion within the suspensorium of P. splendida and Caquetaia spp. The combination of anterior and posterior loosening within the suspensorium in P. splendida and Caquetaia spp. permitted considerable anterior rotation of the suspensorium and contributed to protrusion of the jaws. Petenia splendida and C. spectabile exhibited greater ram distance and higher ram velocities than did A. ocellatus, resulting primarily from increased jaw protrusion. Petenia splendida and C. spectabile exhibited lower suction feeding performance than A. ocellatus, as indicated by lower suction-induced prey movements and velocities. Thus, extreme jaw protrusion in these cichlids may represent an adaptation for capturing elusive prey by enhancing the ram velocity of the predator but does not enhance suction feeding performance.  相似文献   

19.
20.
Cranial kinesis in sparrows refers to the rotation of the upper jaw around its kinetic joint with the braincase. Avian jaw mechanics may involve the coupled motions of upper and lower jaws, in which the postorbital ligament transfers forces from the lower jaw, through the quadrate, pterygoid, and jugal bones, to the upper jaw. Alternatively, jaw motions may be uncoupled, with the upper jaw moving independently of the lower jaw. We tested hypotheses of cranial kinesis through the use of quantitative computer models. We present a biomechanical model of avian jaw kinetics that predicts the motions of the jaws under assumptions of both a coupled and an uncoupled mechanism. In addition, the model predicts jaw motions under conditions of force transfer by either the jugal or the pterygoid bones. Thus four alternative models may be tested using the proposed model (coupled jugal, coupled pterygoid, uncoupled jugal, uncoupled pterygoid). All models are based on the mechanics of four-bar linkages and lever systems and use morphometric data on cranial structure as the basis for predicting cranial movements. Predictions of cranial motions are tested by comparison to kinematics of white-throated sparrows (Zonotrichia albicollis) during singing. The predicted relations between jaw motions for the coupled model are significantly different from video observations. We conclude that the upper and lower jaws are not coupled in white-throated sparrows. The range of jaw motions during song is consistent with a model in which independent contractions of upper and lower jaw muscles control beak motion. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号