首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although genetic studies have contributed greatly to our understanding of the colonization of Near and Remote Oceania, important gaps still exist. One such gap is the Solomon Islands, which extend between Bougainville and Vanuatu, thereby bridging Near and Remote Oceania, and include both Austronesian-speaking and Papuan-speaking groups. Here, we describe patterns of mitochondrial DNA (mtDNA) and nonrecombining Y chromosome (NRY) variation in over 700 individuals from 18 populations in the Solomons, including 11 Austronesian-speaking groups, 3 Papuan-speaking groups, and 4 Polynesian Outliers (descended via back migration from Polynesia). We find evidence for ancient (pre-Lapita) colonization of the Solomons in old NRY paragroups as well as from M2-M353, which probably arose in the Solomons ~9,200 years ago and is the most frequent NRY haplogroup there. There are no consistent genetic differences between Austronesian-speaking and Papuan-speaking groups, suggesting extensive genetic contact between them. Santa Cruz, which is located in Remote Oceania, shows unusually low frequencies of mtDNA and NRY haplogroups of recent Asian ancestry. This is in apparent contradiction with expectations based on archaeological and linguistic evidence for an early (~3,200 years ago), direct colonization of Santa Cruz by Lapita people from the Bismarck Archipelago, via a migration that "leapfrogged" over the rest of the Solomons. Polynesian Outliers show dramatic island-specific founder events involving various NRY haplogroups. We also find that NRY, but not mtDNA, genetic distance is correlated with the geographic distance between Solomons groups and that historically attested spheres of cultural interaction are associated with the recent genetic structure of Solomons groups, as revealed by mtDNA HV1 sequence and Y-STR haplotype diversity. Our results fill an important lacuna in human genetic studies of Oceania and aid in understanding the colonization and genetic history of this region.  相似文献   

2.
We analyzed 40 single nucleotide polymorphism and 19 short tandem repeat Y-chromosomal markers in a large sample of 1,525 indigenous individuals from 14 populations in the Caucasus and 254 additional individuals representing potential source populations. We also employed a lexicostatistical approach to reconstruct the history of the languages of the North Caucasian family spoken by the Caucasus populations. We found a different major haplogroup to be prevalent in each of four sets of populations that occupy distinct geographic regions and belong to different linguistic branches. The haplogroup frequencies correlated with geography and, even more strongly, with language. Within haplogroups, a number of haplotype clusters were shown to be specific to individual populations and languages. The data suggested a direct origin of Caucasus male lineages from the Near East, followed by high levels of isolation, differentiation, and genetic drift in situ. Comparison of genetic and linguistic reconstructions covering the last few millennia showed striking correspondences between the topology and dates of the respective gene and language trees and with documented historical events. Overall, in the Caucasus region, unmatched levels of gene-language coevolution occurred within geographically isolated populations, probably due to its mountainous terrain.  相似文献   

3.
This study provides the frequencies of four mitochondrial DNA (mtDNA) haplogroups of 233 native South Amerindians in eight populations living in the Beni Department of Bolivia, including six populations not previously studied. Linguistically, these populations belong to the three principal South Amerindian language stocks, Andean, Equatorial-Tucanoan, and Ge-Pano-Carib. Frequency analyses under geographic, historic, linguistic, and genetic configurations using the theta statistic of Weir (Weir 1990) and analysis of molecular variance (AMOVA) show similar results. Results are also similar when phenetic cluster is used. Aymara belongs almost exclusively to haplogroup B, Quechua- and Moseten-speaking tribes belong to haplogroups A and B, but the first tribe presents high frequencies of haplogroup B. Yuracare, Trinitario, and Ignaciano exhibit high frequencies of A, B, and C haplogroups, and the Movima present a large proportion of haplogroup C. There is some correspondence between mtDNA haplogroup frequencies and language affiliation and historical connections, but less so with geographic aspects. The present study provides a context for understanding the relationship between different Amerindian populations living in a multiethnic area of Bolivia.  相似文献   

4.
The genetic ancestry of Polynesians can be traced to both Asia and Melanesia, which presumably reflects admixture occurring between incoming Austronesians and resident non-Austronesians in Melanesia before the subsequent occupation of the greater Pacific; however, the genetic impact of the Austronesian expansion to Melanesia remains largely unknown. We therefore studied the diversity of nonrecombining Y chromosomal (NRY) and mitochondrial (mt) DNA in the Admiralty Islands, located north of mainland Papua New Guinea, and updated our previous data from Asia, Melanesia, and Polynesia with new NRY markers. The Admiralties are occupied today solely by Austronesian-speaking groups, but their human settlement history goes back 20,000 years prior to the arrival of Austronesians about 3,400 years ago. On the Admiralties, we found substantial mtDNA and NRY variation of both Austronesian and non-Austronesian origins, with higher frequencies of Asian mtDNA and Melanesian NRY haplogroups, similar to previous findings in Polynesia and perhaps as a consequence of Austronesian matrilocality. Thus, the Austronesian language replacement on the Admiralties (and elsewhere in Island Melanesia and coastal New Guinea) was accompanied by an incomplete genetic replacement that is more associated with mtDNA than with NRY diversity. These results provide further support for the "Slow Boat" model of Polynesian origins, according to which Polynesian ancestors originated from East Asia but genetically mixed with Melanesians before colonizing the Pacific. We also observed that non-Austronesian groups of coastal New Guinea and Island Melanesia had significantly higher frequencies of Asian mtDNA haplogroups than of Asian NRY haplogroups, suggesting sex-biased admixture perhaps as a consequence of non-Austronesian patrilocality. We additionally found that the predominant NRY haplogroup of Asian origin in the Admiralties (O-M110) likely originated in Taiwan, thus providing the first direct Y chromosome evidence for a Taiwanese origin of the Austronesian expansion. Furthermore, we identified a NRY haplogroup (K-P79, also found on the Admiralties) in Polynesians that most likely arose in the Bismarck Archipelago, providing the first direct link between northern Island Melanesia and Polynesia. These results significantly advance our understanding of the impact of the Austronesian expansion and human history in the Pacific region.  相似文献   

5.
Progress in the mapping of population genetic substructure provides a core source of data for the reconstruction of the demographic history of our species and for the discovery of common signals relevant to disease research: These two aspects of enquiry overlap in their empirical data content and are especially informative at continental and subcontinental levels. In the present study of the variation of the Y chromosome pool of ethnic Russians, we show that the patrilineages within the pre-Ivan the Terrible historic borders of Russia have two main distinct sources. One of these antedates the linguistic split between West and East Slavonic-speaking people and is common for the two groups; the other is genetically highlighted by the pre-eminence of haplogroup (hg) N3 and is most parsimoniously explained by extensive assimilation of (or language change in) northeastern indigenous Finno-Ugric tribes. Although hg N3 is common for both East European and Siberian Y chromosomes, other typically Siberian or Mongolian hgs (Q and C) have negligible influence within the studied Russian Y chromosome pool. The distribution of all frequent Y chromosome haplogroups (which account for 95% of the Y chromosomal spectrum in Russians) follows a similar north-south clinal pattern among autosomal markers, apparent from synthetic maps. Multidimensional scaling (MDS) plots comparing intra ethnic and interethnic variation of Y chromosome in Europe show that although well detectable, intraethnic variation signals do not cross interethnic borders, except between Poles, Ukrainians, and central-southern Russians, thereby revealing their overwhelmingly shared patrilineal ancestry.  相似文献   

6.
Mitochondrial DNA (mtDNA) variation was studied in population of Oroks (n = 61), the indigenous inhabitants of Eastern Siberia. Most of the mtDNA types examined fell into five haplogroups (C, D, G, M10, and Y) typical of Eastern Eurasian populations. For three haplogroups (D, C, and M10), the founder effect was established. In one individual, a unique lineage belonging to haplogroup HV and typical of Caucasoids was detected.  相似文献   

7.
Indian subcontinent harbours both the human mtDNA macrohaplogroups M and N, of which M is the most prevalent. In this study, we discuss the overall distribution of the various haplogroups and sub-haplogroups of M among the different castes and tribes to understand their diverse pattern with respect to geographical location and linguistic affiliation of the populations. An overview of about 170 studied populations, belonging to four distinct linguistic families and inhabiting different geographic zones, revealed wide diversity of about 22 major haplogroups of M. The tribal populations belonging to the same linguistic family but inhabiting different geographical regions (Dravidian and Austro-Asiatic speakers) exhibited differences in their haplogroup diversity. The northern and southern region castes showed greater diversity than the castes of other regions.  相似文献   

8.
The human settlement of the Pacific Islands represents one of the most recent major migration events of mankind. Polynesians originated in Asia according to linguistic evidence or in Melanesia according to archaeological evidence. To shed light on the genetic origins of Polynesians, we investigated over 400 Polynesians from 8 island groups, in comparison with over 900 individuals from potential parental populations of Melanesia, Southeast and East Asia, and Australia, by means of Y chromosome (NRY) and mitochondrial DNA (mtDNA) markers. Overall, we classified 94.1% of Polynesian Y chromosomes and 99.8% of Polynesian mtDNAs as of either Melanesian (NRY-DNA: 65.8%, mtDNA: 6%) or Asian (NRY-DNA: 28.3%, mtDNA: 93.8%) origin, suggesting a dual genetic origin of Polynesians in agreement with the "Slow Boat" hypothesis. Our data suggest a pronounced admixture bias in Polynesians toward more Melanesian men than women, perhaps as a result of matrilocal residence in the ancestral Polynesian society. Although dating methods are consistent with somewhat similar entries of NRY/mtDNA haplogroups into Polynesia, haplotype sharing suggests an earlier appearance of Melanesian haplogroups than those from Asia. Surprisingly, we identified gradients in the frequency distribution of some NRY/mtDNA haplogroups across Polynesia and a gradual west-to-east decrease of overall NRY/mtDNA diversity, not only providing evidence for a west-to-east direction of Polynesian settlements but also suggesting that Pacific voyaging was regular rather than haphazard. We also demonstrate that Fiji played a pivotal role in the history of Polynesia: humans probably first migrated to Fiji, and subsequent settlement of Polynesia probably came from Fiji.  相似文献   

9.
In this study, we analyzed the mitochondrial DNA (mtDNA) variation in 202 individuals representing one Itel'men and three Koryak populations from different parts of the Kamchatka peninsula. All mtDNAs were subjected to high resolution restriction (RFLP) analysis and control region (CR) sequencing, and the resulting data were combined with those available for other Siberian and east Asian populations and subjected to statistical and phylogenetic analysis. Together, the Koryaks and Itel'men were found to have mtDNAs belonging to three (A, C, and D) of the four major haplotype groups (haplogroups) observed in Siberian and Native American populations (A–D). In addition, they exhibited mtDNAs belonging to haplogroups G, Y, and Z, which were formerly called “Other” mtDNAs. While Kamchatka harbored the highest frequencies of haplogroup G mtDNAs, which were widely distributed in eastern Siberian and adjacent east Asian populations, the distribution of haplogroup Y was restricted within a relatively small area and pointed to the lower Amur River–Sakhalin Island region as its place of origin. In contrast, the pattern of distribution and the origin of haplogroup Z mtDNAs remained unclear. Furthermore, phylogenetic and statistical analyses showed that Koryaks and Itel'men had stronger genetic affinities with eastern Siberian/east Asian populations than to those of the north Pacific Rim. These results were consistent with colonization events associated with the relatively recent immigration to Kamchatka of new tribes from the Siberian mainland region, although remnants of ancient Beringian populations were still evident in the Koryak and Itel'men gene pools. Am J Phys Anthropol 108:1–39, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

10.
The mtDNAs of 145 individuals representing the aboriginal populations of Chukotka-the Chukchi and Siberian Eskimos-were subjected to RFLP analysis and control-region sequencing. This analysis showed that the core of the genetic makeup of the Chukchi and Siberian Eskimos consisted of three (A, C, and D) of the four primary mtDNA haplotype groups (haplogroups) (A-D) observed in Native Americans, with haplogroup A being the most prevalent in both Chukotkan populations. Two unique haplotypes belonging to haplogroup G (formerly called "other" mtDNAs) were also observed in a few Chukchi, and these have apparently been acquired through gene flow from adjacent Kamchatka, where haplogroup G is prevalent in the Koryak and Itel'men. In addition, a 16111C-->T transition appears to delineate an "American" enclave of haplogroup A mtDNAs in northeastern Siberia, whereas the 16192C-->T transition demarcates a "northern Pacific Rim" cluster within this haplogroup. Furthermore, the sequence-divergence estimates for haplogroups A, C, and D of Siberian and Native American populations indicate that the earliest inhabitants of Beringia possessed a limited number of founding mtDNA haplotypes and that the first humans expanded into the New World approximately 34,000 years before present (YBP). Subsequent migration 16,000-13,000 YBP apparently brought a restricted number of haplogroup B haplotypes to the Americas. For millennia, Beringia may have been the repository of the respective founding sequences that selectively penetrated into northern North America from western Alaska.  相似文献   

11.
A total of 63 binary polymorphisms and 10 short tandem repeats (STRs) were genotyped on a sample of 2,344 Y chromosomes from 18 Native American, 28 Asian, and 5 European populations to investigate the origin(s) of Native American paternal lineages. All three of Greenberg's major linguistic divisions (including 342 Amerind speakers, 186 Na-Dene speakers, and 60 Aleut-Eskimo speakers) were represented in our sample of 588 Native Americans. Single-nucleotide polymorphism (SNP) analysis indicated that three major haplogroups, denoted as C, Q, and R, accounted for nearly 96% of Native American Y chromosomes. Haplogroups C and Q were deemed to represent early Native American founding Y chromosome lineages; however, most haplogroup R lineages present in Native Americans most likely came from recent admixture with Europeans. Although different phylogeographic and STR diversity patterns for the two major founding haplogroups previously led to the inference that they were carried from Asia to the Americas separately, the hypothesis of a single migration of a polymorphic founding population better fits our expanded database. Phylogenetic analyses of STR variation within haplogroups C and Q traced both lineages to a probable ancestral homeland in the vicinity of the Altai Mountains in Southwest Siberia. Divergence dates between the Altai plus North Asians versus the Native American population system ranged from 10,100 to 17,200 years for all lineages, precluding a very early entry into the Americas.  相似文献   

12.
The gene pool structure was studied for the indigenous population of the Sakha Republic (Yakutia). The composition and frequencies of Y-chromosome haplotypes in Yakuts were characterized. Six haplogroups were observed: C3×M77, C3c, N*, N2, N3a, and R1a1, N3a being the most common (89%). The gene diversity computed from the haplogroup frequencies was low in all samples examined. Gene differentiation was analyzed by AMOVA with two marker systems (haplogroup frequencies and Y-chromosomal microsatellite haplotypes) and was estimated at 0.24 and 2.85%, respectively. The frequencies and molecular phylogeny of the YSTR haplotypes were studied for the N3a haplogroup. In total, 40 haplotypes were found in Yakuts. Evenks and Yakuts displayed highly specific overlapping N3a haplotype spectra, atypical for other Siberian ethnic groups. Cluster analysis with N3a YSTR haplotypes showed that Yakuts are isolated from other Turkic-speaking populations of Southern Siberia. The genetic diversity generation time was estimated at 4450 ± 1960 years for the Yakut haplotype spectrum. In contrast to mtDNA data, the results suggest a significant contribution of the local Paleolithic component to the Y-chromosome gene pool of Yakuts. Ethnogenetic reconstructions were inferred from the diversity and phylogeography of the N3a haplogroup in Siberia.  相似文献   

13.
An analysis of mtDNA polymorphism in eight populations of aboriginal residents (N = 519) of the Far East has been performed. The majority of haplogroups revealed in the examined groups were of East Eurasian origin. Haplogroup D was revealed in seven populations and its frequency varied from 2.8% in Koryaks to 28.3% and 28.9% in Nanaians and Evenks, respectively. Chukchi and Koryak populations, which belong to the same language family, exhibited haplogroup G, which has the same motive and indicates the genetic kinship of both populations. The presence of East Eurasian haplogroups A and D with a strong predominance of haplogroup A in Chukchi indicates the closer relationship of this population both with Asian and Canadian Eskimos and northern Atapasks on the other side of Bering Strait. The high level of genetic variability was revealed in populations belonging to the Tungus-Manjur group. The high frequency of east Eurasian haplogroups in Nanaians could result from close historical associations with Siberian Evenks.  相似文献   

14.
There are various conflicting hypotheses regarding the origins of the tribal groups of India, who belong to three major language groups--Austro-Asiatic, Dravidian and Tibeto-Burman. To test some of the major hypotheses we designed a genetic study in which we sampled tribal populations belonging to all the three language groups. We used a set of autosomal DNA markers, mtDNA restriction-site polymorphisms (RSPs) and mtDNA hypervariable segment-1 (HVS-1) sequence polymorphisms in this study. Using the unlinked autosomal markers we found that there is a fair correspondence between linguistic and genomic affinities among the Indian tribal groups. We reconstructed mtDNA RSP haplotypes and found that there is extensive haplotype sharing among all tribal populations. However, there is very little sharing of mtDNA HVS-1 sequences across populations, and none across language groups. Haplogroup M is ubiquitous, and the subcluster U2i of haplogroup U occurs in a high frequency. Our analyses of haplogroup and HVS-1 sequence data provides evidence in support of the hypothesis that the Austro-Asiatic speakers are the most ancient inhabitants of India. Our data also support the earlier finding that some of the western Eurasian haplogroups found in India may have been present in India prior to the entry of Aryan speakers. However, we do not find compelling evidence to support the theory that haplogroup M was brought into India on an "out of Africa" wave of migration through a southern exit route from Ethiopia. On the contrary, our data raise the possibility that this haplogroup arose in India and was later carried to East Africa from India.  相似文献   

15.
The Utsat people do not belong to one of the recognized ethnic groups in Hainan, China. Some historical literature and linguistic classification confirm a close cultural relationship between the Utsat and Cham people; however, the genetic relationship between these two populations is not known. In the present study, we typed paternal Y chromosome and maternal mitochondrial (mt) DNA markers in 102 Utsat people to gain a better understanding of the genetic history of this population. High frequencies of the Y chromosome haplogroup O1a*-M119 and mtDNA lineages D4, F2a, F1b, F1a1, B5a, M8a, M*, D5, and B4a exhibit a pattern similar to that seen in neighboring indigenous populations. Cluster analyses (principal component analyses and networks) of the Utsat, Cham, and other ethnic groups in East Asia indicate that the Utsat are much closer to the Hainan indigenous ethnic groups than to the Cham and other mainland southeast Asian populations. These findings suggest that the origins of the Utsat likely involved massive assimilation of indigenous ethnic groups. During the assimilation process, the language of Utsat has been structurally changed to a tonal language; however, their Islamic beliefs may have helped to keep their culture and self-identification.  相似文献   

16.
The Y chromosomes of 549 individuals from Siberia and the Americas were analyzed for 12 biallelic markers, which defined 15 haplogroups. The addition of four microsatellite markers increased the number of haplotypes to 111. The major Native American founding lineage, haplogroup M3, accounted for 66% of male Y chromosomes and was defined by the biallelic markers M89, M9, M45, and M3. The founder haplotype also harbored the microsatellite alleles DYS19 (10 repeats), DYS388 (11 repeats), DYS390 (11 repeats), and DYS391 (10 repeats). In Siberia, the M3 haplogroup was confined to the Chukotka peninsula, adjacent to Alaska. The second major group of Native American Y chromosomes, haplogroup M45, accounted for about one-quarter of male lineages. M45 was subdivided by the biallelic marker M173 and by the four microsatellite loci alleles into two major subdivisions: M45a, which is found throughout the Americas, and M45b, which incorporates the M173 variant and is concentrated in North and Central America. In Siberia, M45a haplotypes, including the direct ancestor of haplogroup M3, are concentrated in Middle Siberia, whereas M45b haplotypes are found in the Lower Amur River and Sea of Okhotsk regions of eastern Siberia. Among the remaining 5% of Native American Y chromosomes is haplogroup RPS4Y-T, found in North America. In Siberia, this haplogroup, along with haplogroup M45b, is concentrated in the Lower Amur River/Sea of Okhotsk region. These data suggest that Native American male lineages were derived from two major Siberian migrations. The first migration originated in southern Middle Siberia with the founding haplotype M45a (10-11-11-10). In Beringia, this gave rise to the predominant Native American lineage, M3 (10-11-11-10), which crossed into the New World. A later migration came from the Lower Amur/Sea of Okhkotsk region, bringing haplogroup RPS4Y-T and subhaplogroup M45b, with its associated M173 variant. This migration event contributed to the modern genetic pool of the Na-Dene and Amerinds of North and Central America.  相似文献   

17.
Evenks and Evens, Tungusic-speaking reindeer herders and hunter-gatherers, are spread over a wide area of northern Asia, whereas their linguistic relatives the Udegey, sedentary fishermen and hunter-gatherers, are settled to the south of the lower Amur River. The prehistory and relationships of these Tungusic peoples are as yet poorly investigated, especially with respect to their interactions with neighbouring populations. In this study, we analyse over 500 complete mtDNA genome sequences from nine different Evenk and even subgroups as well as their geographic neighbours from Siberia and their linguistic relatives the Udegey from the Amur-Ussuri region in order to investigate the prehistory of the Tungusic populations. These data are supplemented with analyses of Y-chromosomal haplogroups and STR haplotypes in the Evenks, Evens, and neighbouring Siberian populations. We demonstrate that whereas the North Tungusic Evenks and Evens show evidence of shared ancestry both in the maternal and in the paternal line, this signal has been attenuated by genetic drift and differential gene flow with neighbouring populations, with isolation by distance further shaping the maternal genepool of the Evens. The Udegey, in contrast, appear quite divergent from their linguistic relatives in the maternal line, with a mtDNA haplogroup composition characteristic of populations of the Amur-Ussuri region. Nevertheless, they show affinities with the Evenks, indicating that they might be the result of admixture between local Amur-Ussuri populations and Tungusic populations from the north.  相似文献   

18.
We analyzed the frequency of four mitochondrial DNA haplogroups in 424 individuals from 21 Colombian Amerindian tribes. Our results showed a high degree of mtDNA diversity and genetic heterogeneity. Frequencies of mtDNA haplogroups A and C were high in the majority of populations studied. The distribution of these four mtDNA haplogroups from Amerindian populations was different in the northern region of the country compared to those in the south. Haplogroup A was more frequently found among Amerindian tribes in northern Colombia, while haplogroup D was more frequent among tribes in the south. Haplogroups A, C and D have clinal tendencies in Colombia and South America in general. Populations belonging to the Chibcha linguistic family of Colombia and other countries nearby showed a strong genetic differentiation from the other populations tested, thus corroborating previous findings. Genetically, the Ingano, Paez and Guambiano populations are more closely related to other groups of south eastern Colombia, as also inferred from other genetic markers and from archeological data. Strong evidence for a correspondence between geographical and linguistic classification was found, and this is consistent with evidence that gene flow and the exchange of customs and knowledge and language elements between groups is facilitated by close proximity.  相似文献   

19.
Derenko  M. V.  Lunkina  A. V.  Malyarchuk  B. A.  Zakharov  I. A.  Tsedev  Ts.  Park  K. S.  Cho  Y. M.  Lee  H. K.  Chu  Ch. H. 《Russian Journal of Genetics》2004,40(11):1292-1299
Using the data on mitochondrial DNA (mtDNA) restriction polymorphism, the gene pools of Koreans (N = 164) and Mongolians (N = 48) were characterized. It was demonstrated that the gene pools were represented by the common set of mtDNA haplogroups of East Asian origin (M*, M7, M8a, M10, C, D4, G*, G2, A, B*, B5, F1, and N*). In addition to this set, mtDNA haplogroups D5 and Y were identified in Koreans while Mongolians possessed haplogroup Z. Only in Mongolians, a European component with the frequency of 10.4% and represented by the mtDNA types belonging to haplogroups K, U4, and N1, was identified. Phylogenetic and statistical analyses of the data on mtDNA variation in the populations of South Siberia, Central, and East Asia suggested the existence of interpopulation differentiation within these regions, the main role in which was played by the geographical and linguistic factors. Analysis of the pairwise F ST distances demonstrated close genetic similarity of Koreans to Northern Chinese, which in turn, were clearly different from Southern Chinese populations. Mongolians occupied an intermediate position between the ethnic groups of South Siberia and Central/East Asia.  相似文献   

20.
The native peoples of Gorno Altai in southern Siberia represent a genetically diverse population and have been of great interest to anthropological genetics. In particular, the southern Altaian population is argued to be the best candidate for the New World ancestral population. In this study we sampled Altai-Kizhi from the southern Altaian village of Mendur-Sokkon, analyzed mtDNA RFLP markers and HVS-I sequences, and compared the results to other published mtDNA data from Derenko et al. (2003) and Shields et al. (1993) encompassing the same region. Because each independent study uses different sampling techniques in characterizing gene pools, in this paper we explore the accuracy and reliability of evolutionary studies on human populations. All the major Native American haplogroups (A, B, C, and D) were identified in the Mendur-Sokkon sample, including a single individual belonging to haplogroup X. The most common mtDNA lineages are C (35.7%) and D (13.3%), which is consistent with the haplogroup profiles of neighboring Siberian groups. The Mendur-Sokkon sample exhibits depressed HVS-I diversity values and neutrality test scores, which starkly differs from the Derenko et al. (2003) data set and more closely resembles the results for neighboring south Siberian groups. Furthermore, the multidimensional scaling plot of DA genetic distances does not cluster the Altai samples, showing different genetic affinities with various Asian groups. The findings underscore the importance of sampling strategy in the reconstruction of evolutionary history at the population level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号