首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Differentiation of Acanthamoeba castellanii into dormant cysts occurs spontaneously in stationary phase cultures, or can be induced experimentally by starvation. Although no further increase in cell density occurred after induction in either case, incorporation of [H]thymidine into DNA continued at a reduced rate through the period when differentiated products (cyst wall components) were formed. No net accumulation of DNA occurred during differentiation, indicating that the DNA synthesis occurring at this time was balanced by breakdown. When either 5-fluorodeoxyuridine (FUdR) or hydroxyurea was added to exponentially growing cultures, growth was terminated and the subsequent spontaneous encystment was delayed in comparison with untreated stationary phase cultures. A similar delay was observed for experimentally induced encystment of FUdR-pretreated cells. In all cases, delay of encystment was correlated with inhibition of 32PO4 incorporation into DNA, and unexpectedly also into RNA. Addition of FUdR at zero-time of experimental induction of cells not previously exposed to FUdR, on the other hand, had no effect on encystment or on 32PO4 incorporation. The delay of encystment produced by FUdR and hydroxyurea, therefore, appeared to reflect a requirement for normal synthesis of DNA and/or RNA not only during encystment, but also during the period of exponential growth just before encystment induction.  相似文献   

2.
The burst of incorporation of 3H into DNA of mouse thymocytes during an incubation at 37° for 5 min. following a preincubation at 4° for 30 min. is markedly inhibited by papaverine (0.1 mM). This event is accompanied by an efflux of 3H into the medium, largely in the form of thymidine. No enhanced efflux of 3H is detected when DNA synthesis is blocked by hydroxyurea (1 mM). While it is uncertain that papaverine has a separate effect on DNA synthesis, the reduced incorporation into DNA could be explained by its ability to increase the breakdown of intracellular thymidine phosphates.  相似文献   

3.
Guinea pig peritoneal exudate macrophages actively incorporated [3H]thymidine into trichloroacetic acid-insoluble fraction in vitro. The incorporation of [3H]thymidine was almost completely inhibited by aphidicolin, an inhibitor of DNA polymerase alpha and an autoradiograph showed heavy labeling in nuclei of 15% of macrophage populations. These results indicate that the observed thymidine incorporation was due to a nuclear DNA synthesis. The [3H]thymidine incorporation was markedly suppressed when macrophages were activated by immunoadjuvants such as muramyl dipeptide (MDP) or bacterial lipopolysaccharide (LPS). The suppression of [3H]thymidine incorporation by MDP was neither due to the decrease in thymidine transport through the cell membrane, nor due to dilution by newly synthesized "cold" thymidine. An autoradiograph revealed that MDP markedly decreased the number of macrophages the nuclei of which were labeled by [3H]thymidine. These results suggest that the suppression of [3H]thymidine incorporation by the immunoadjuvants reflects a true inhibition of DNA synthesis. The inhibition of DNA synthesis by MDP was also observed in vivo. Further, it was strongly suggested that the inhibition was not caused by some mediators, such as prostaglandin E2, released from macrophages stimulated by the immunoadjuvants but caused by a direct triggering of the adjuvants at least at the early stage of activation. Cyclic AMP appears to be involved in the inhibitory reaction.  相似文献   

4.
The incorporation of [14C]deoxycytidine, [3H]deoxyuridine, and [3H]thymidine, respectively into pyrimidine bases of DNA has been measured in rapidly proliferating P815 mouse mastocytoma cells in the presence of hydroxyurea. The incorporation of [14C]deoxycytidine-derived radioactivity into DNA cytosines is increased when compared to the incorporation into DNA thymines. The [3H]deoxyuridine-derived radioactivity is incorporated solely into DNA thymines and this incorporation is inhibited by hydroxyurea in a dose-dependent manner. This suggests an inhibitory effect of hydroxyurea on the thymidylate synthase which was proved in experiments in which the conversion of deoxyuridine monophosphate into deoxythymidine monophosphate catalysed by a crude enzyme preparation from P815 cells was inhibited in the presence of hydroxyurea. Enzymatic DNA methylation as measured by the conversion of incorporated [14C]deoxycytidine into 5-methylcytosines was not affected by hydroxyurea.  相似文献   

5.
At 0°C, CHO cells efficiently incorporated [3H]thymidine into the nucleotide fraction, but not into DNA. Upon reincubation of asynchronous cultures at 37°C, 15–25% of the radioactivity contained in the cellular nucleotide fraction was released, in the form of thymidine, into the culture medium. At 0°C, however, radioactivity of the nucleotide fraction was retained within the cells. Similarly, dTMP phosphatase (EC 3.1.3.35) in cell extracts was active at 37°C, but not at 0°C, whereas thymidine kinase (EC 2.7.1.21) was active at both temperatures. If synchronous cultures in Gl phase were prelabeled at 0°C and reincubated at 37°C, almost all radioactivity in the nucleotide fraction was released into the medium, whereas in S-phase cultures nearly all radioactivity of the nucleotide fraction was incorporated into DNA. In synchronous S-phase cultures treated with hydroxyurea, radioactivity in the nucleotide fraction was released into the medium at a rate considerably lower than that observed for Gl-phase cells. Rates of endogenous synthesis of thymidine nucleotides were calculated from changes of cellular thymidine nucleotide content, incorporation of thymidine nucleotides into DNA and release of thymidine into the medium during reincubation of prelabeled cultures in thymidine-free medium. The results obtained (see Table III) reveal marked differences between Gl and S phases with respect to the determinants of thymidine nucleotide metabolism.  相似文献   

6.
Production of dissolved macromolecules by ambient autotrophic and heterotrophic microbial populations was measured in a eutrophic Florida reservoir by in situ labeling with various radioactive substrates. When [3H]thymidine was used as the precursor, production of labeled dissolved DNA, RNA, and protein was observed. The rate of production of labeled dissolved macromolecules was 3.1% the rate of cellular incorporation of [3H]thymidine, and the production of dissolved DNA represented 2.3% the rate of cellular DNA incorporation. Microautotrophic populations labeled with NaH[14C]CO3 produced dissolved RNA and protein at rates of 0.24 and 0.11 micrograms of C/liter per h, respectively, or 1.8% the total rate of carbon fixation, with no measurable dissolved DNA production. In an attempt to specifically label phytoplankton DNA, samples were incubated with [3H]adenine or 32Pi in the presence and absence of the photosynthetic inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Although DCMU inhibited 14C fixation by approximately 99%, this antimetabolite had only a slight effect on [3H]adenine incorporation and no effect on 32P incorporation into cellular macromolecules. Significant amounts of dissolved DNA were produced in both [3H]adenine and 32Pi incubations, but again DCMU had no effect on the production rates. These results indicate that actively growing populations of both phytoplankton and bacterioplankton produced dissolved RNA and protein, while only active bacterioplankton produced measurable quantities of dissolved DNA. Dead or senescent phytoplankton may have produced dissolved DNA, but would not be measured in the relatively short incubations used. These findings also indicate that [3H]adenine and 32Pi primarily labeled heterotrophic bacterioplankton and not phytoplankton in this environment.  相似文献   

7.
Production of dissolved macromolecules by ambient autotrophic and heterotrophic microbial populations was measured in a eutrophic Florida reservoir by in situ labeling with various radioactive substrates. When [3H]thymidine was used as the precursor, production of labeled dissolved DNA, RNA, and protein was observed. The rate of production of labeled dissolved macromolecules was 3.1% the rate of cellular incorporation of [3H]thymidine, and the production of dissolved DNA represented 2.3% the rate of cellular DNA incorporation. Microautotrophic populations labeled with NaH[14C]CO3 produced dissolved RNA and protein at rates of 0.24 and 0.11 micrograms of C/liter per h, respectively, or 1.8% the total rate of carbon fixation, with no measurable dissolved DNA production. In an attempt to specifically label phytoplankton DNA, samples were incubated with [3H]adenine or 32Pi in the presence and absence of the photosynthetic inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Although DCMU inhibited 14C fixation by approximately 99%, this antimetabolite had only a slight effect on [3H]adenine incorporation and no effect on 32P incorporation into cellular macromolecules. Significant amounts of dissolved DNA were produced in both [3H]adenine and 32Pi incubations, but again DCMU had no effect on the production rates. These results indicate that actively growing populations of both phytoplankton and bacterioplankton produced dissolved RNA and protein, while only active bacterioplankton produced measurable quantities of dissolved DNA. Dead or senescent phytoplankton may have produced dissolved DNA, but would not be measured in the relatively short incubations used. These findings also indicate that [3H]adenine and 32Pi primarily labeled heterotrophic bacterioplankton and not phytoplankton in this environment.  相似文献   

8.
The pathway for the acquisition of thymidylate in the obligate bacterial parasite Rickettsia prowazekii was determined. R. prowazekii growing in host cells with or without thymidine kinase failed to incorporate into its DNA the [3H]thymidine added to the culture. In the thymidine kinase-negative host cells, the label available to the rickettsiae in the host cell cytoplasm would have been thymidine, and in the thymidine kinase-positive host cells, it would have been both thymidine and TMP. Further support for the inability to utilize thymidine was the lack of thymidine kinase activity in extracts of R. prowazekii. However, [3H]uridine incorporation into the DNA of R. prowazekii was demonstrable (973 +/- 57 dpm/3 x 10(8) rickettsiae). This labeling of rickettsial DNA suggests the transport of uracil, uridine, uridine phosphates (UXP), or 2'-deoxyuridine phosphates, the conversion of the labeled precursor to thymidylate, and subsequent incorporation into DNA. This is supported by the demonstration of thymidylate synthase activity in extracts of R. prowazekii. The enzyme was determined to have a specific activity of 310 +/- 40 pmol/min/mg of protein and was inhibited greater than or equal to 70% by 5-fluoro-dUMP. The inability of R. prowazekii to utilize uracil was suggested by undetectable uracil phosphoribosyltransferase activity and by its inability to grow (less than 10% of control) in a uridine-starved mutant cell line (Urd-A) supplemented with 50 microM to 1 mM uracil. In contrast, the rickettsiae were able to grow in Urd-A cells that were uridine starved and supplemented with 20 microM uridine (117% of control). However, no measurable uridine kinase activity could be measured in extracts of R. prowazekii. Normal rickettsial growth (92% of control) was observed when the host cell was blocked with thymidine so that the host cell's dUXP pool was depressed to a level inadequate for growth and DNA synthesis in the host cell. Taken together, these data strongly suggest that rickettsiae transport UXP from the host cell's cytoplasm and that they synthesize TTP from UXP.  相似文献   

9.
Human peripheral lymphocytes were activated by ConA in serum-free culture medium, supplemented by BSA. Incorporation of [3H]thymidine into DNA, of [3H]uridine into RNA and of oleate or acetate into membrane phospholipids was investigated. DNA synthesis could be completely inhibited by αMM or by anti-ConA-IgG. Fab and F(ab)2 fragments of the anti-ConA were equally active. When αMM or anti-ConA was added to cultures at different times after stimulation with ConA, incorporation of [3H]thymidine into DNA (measured after 72 h) could be prevented up to 6–8 h completely and up to 20–30 h partially. Incorporation of [3H]uridine into RNA could be arrested at any time of the culture up to 40 h at the level it had reached but did not reverse to the level of unstimulated cells for a long time. In contrast, incorporation of oleate into lecithin returned to the level of unstimulated cells within 2–3 h after removal of ConA. This suggests that the activation of the phospholipid turnover in stimulated cells is a direct consequence of the presence of the mitogen at the membrane and thus may be a critical initial event in lymphocyte activation.  相似文献   

10.
DNA synthesis in regenerating liver was studied to determine whether the onset of stimulated DNA synthesis preceded the onset of increased incorporation of thymidine into DNA. Thymidine incorporation into hepatic DNA was not stimulated 15 h after operation, but was stimulated after 18 h; peak stimulation occurred 30 h after operation. Thymidine kinase activity was stimulated 24 h after operation; highest kinase activity was observed at 36 h. The onset of stimulated DNA synthesis was estimated by following the incorporation of labeled aspartic acid, sodium formate, adenine or orotic acid into appropriate DNA bases, viz., thymine, adenine, adenine or cytosine, respectively. Incorporation of adenine and orotic acid was stimulated between 15 h and 18 h after operation; incorporation of aspartic acid and sodium formate was stimulated between 18 h and 21 h after operation.The incorporation of thymidine into DNA was accelerated by stress stimulus and was inhibited by hydrocortisone. Changes in thymidine kinase activity also were correspondingly accelerated or delayed. Incorporation of labeled thymidine, adenine, formate, orotic acid or thymine into appropriate DNA bases, viz., thymine, adenine, adenine, cytosine or thymine, respectively, was stimulated by stress stimulus or was inhibited by hydrocortisone.It was concluded from these data that stimulation of DNA synthesis and of thymidine incorporation into DNA was essentially synchronized in regenerating rat liver. Results from this study were compared with results from similar studies in 2 other tissues, and the limitations, attendant with using thymidine incorporation into DNA as an indicator of stimulated DNA synthesis, were discussed.  相似文献   

11.
Treatment of L-cells with hydroxyurea markedly inhibits the incorporation of [3H]thymidine into DNA. The 3H incorporation that persists during hydroxyurea inhibition is largely into 7S DNA chains. The labelled fragments can be chased into higher MW DNA, suggesting that they are intermediates in the replication process. This interpretation concurs with that of earlier reports which describe a similar effect of hydroxyurea on the replication of viral DNA.  相似文献   

12.
Incorporation of radiolabeled thymidine is commonly used to investigate DNA damage. Using a filter-binding assay, we observed that the addition of various doses of [methyl-3H]thymidine (0.2 and 2 microCi/ml) or [2-14C]thymidine (0.02 and 0.2 microCi/ml) in the culture medium for 2 days, a standard method for cell-labeling, induces DNA fragmentation in HL-60 human promyelocytic cells. This effect was dose- and time-dependent and the DNA fragments were not protein-linked since the levels of DNA fragmentation were identical in the presence and in the absence of proteinase K (0.5 mg/ml). Radiolabeled thymidine-induced DNA fragmentation was associated with an inhibition of cell growth, but cells remained able to exclude trypan blue, suggesting that plasma membrane integrity was conserved, except at very high doses of [methyl-3H]thymidine (2 microCi/ml). By agarose-gel electrophoresis, the DNA-fragmentation was demonstrated to be internucleosomal with a typical ladder pattern. Addition of unlabeled thymidine to the culture medium prevented DNA fragmentation in a dose-dependent manner, indicating that radiolabeled thymidine incorporation in DNA was directly responsible for DNA fragmentation. We conclude that radiolabeling of DNA using thymidine incorporation can induce DNA fragmentation in some cell lines such as HL-60. This observation must be taken into account in methods using radiolabeling to study DNA damage in these cells.  相似文献   

13.
When Raji cells were cultured for 3 days in serum-free medium, addition of 2-deoxy-D-ribose at the start of culture inhibited incorporation of [3H]thymidine and cell division. At deoxyribose concentrations between 1 and 5 mM, viability was 80% or greater after 3 days of culture even though 5 mM deoxyribose inhibited thymidine incorporation 95-99%. Inhibition by deoxyribose could be completely reversed if the culture medium was replaced with fresh medium up to 8 hr after the start of culture. The inhibition was specific for deoxyribose since other monosaccharides had no effect. Inhibition of DNA synthesis did not appear to be due to depletion of essential nutrients in the medium since the percentage inhibition of thymidine incorporation by cells cultured either in suboptimal serum-free media or in media supplemented with 0.025-5% human AB serum was similar. When DNA repair synthesis was measured as hydroxyurea-resistant thymidine incorporation, addition of deoxyribose to Raji cultures caused increased thymidine incorporation. These results, together with data from others, suggest that deoxyribose damages DNA.  相似文献   

14.
Using pulse labeling techniques with [3H]thymidine or [3H]cytidine, combined with DNA fiber autoradiography, we have investigated the direction and rate of DNA chain growth in mammalian cells. In general, chain elongation proceeds bidirectionally from the common origin of pairs of adjacent replication sections. This type of replication is noted whether the DNA is labeled first with [3H]thymidine of high specific activity, followed by [3H]thymidine of low specific activity or the sequence is reversed. Approximately one-fifth of the growing points have unique origins and in these replication units, chain growth proceeds in one direction only. Fluorodeoxyuridine and hydroxyurea both inhibit DNA chain propagation. Fluorodeoxyuridine exerts its effect on chain growth within 15–23 min, while the effect of hydroxyurea is evident within 15 min under conditions where the endogenous thymidine pool has been depleted by prior treatment with fluorodeoxyuridine. Puromycin has no effect on chain growth until 60 min after addition of the compound, even though thymidine incorporation is more than 50% reduced within 15 min. After 2 h of treatment with puromycin, the rate of chain growth is reduced by 50%, whereas thymidine incorporation is reduced by 75%. Cycloheximide reduces the rates of DNA chain growth and thymidine incorporation 50% within 15 min, and, on prolonged treatment, the decrease in rate of chain growth generally parallels the reduction in thymidine incorporation.  相似文献   

15.
Insulin-like growth factor-binding protein-1 (IGFBP-1) was purified from human midtrimester amniotic fluid using monoclonal anti-IGFBP-1 affinity column. Two peaks were obtained in anion exchange chromatography. Both had the same molecular mass of 30 kDa. In monolayer cultures of fetal skin fibroblasts both forms of IGFBP-1 inhibited binding of [125I]IGF-I onto the cells, but amplified the IGF-I-stimulated [3H]thymidine incorporation into the same cells. Radiolabeled IGFBP-1 did not bind to the cells. No detectable IGFBP-1 was released into conditioned medium from the cells, and they contained no specific IGFBP-1 mRNA. Recently we found that the same IGFBP-1 preparation inhibits IGF-I-stimulated [3H]thymidine incorporation into human hyperstimulated granulosa cells. These results show that, depending on target cells, the same protein is capable of either stimulating or inhibiting DNA synthesis.  相似文献   

16.
In vitro incorporation of [Me-3H] thymidine and [5-3H] uridine into human platelets was demonstrated. Thymidine incorporation was inhibited by three specific inhibitors of DNA synthesis: hydroxyurea, cytosine arabinoside and daunomycin. The effect was dose-dependent. Uridine uptake by platelets was found to be inhibited by specific inhibitors of RNA synthesis such as actinomycin D, rifampicin and vincristine, the effect of actinomycin D being dose dependent. The drug also led to a time-dependent inhibition of protein synthesis when preincubated with platelets. The platelet RNA profile on polyacrylamide gel was demonstrated to be similar to that of embryonic mouse erythroblast RNA. Synthesis of all three fractions, 28 S, 18 S and 4 S, was inhibited by actinomycin D. These findings show that human platelets are capable of DNA and RNA synthesis, and that these activities play a role in controlling protein synthesis in these cells. Detectable amounts of DNA have been found in whole human platelets, and in isolated mitochondria derived from these cells. Isolated platelet mitochondria incorporated [3H] thymidine and [3H] uridine into their macromolecules. These activities were inhibited by daunomycin and by both rifampicin and actinomycin D, respectively. These results support the assumption that DNA and RNA synthesis found in intact cell preparations takes place most probably in platelet mitochondria.  相似文献   

17.
Earlier studies from this laboratory suggested that embryonic chick bones in organ culture released into the culture medium a specific inhibitor of bone cell proliferation as defined by inhibition of [3H]TdR incorporation into DNA. Dialysis and membrane ultrafiltration experiments suggested that the inhibitory substance (IS) had a molecular weight between 6000 and 14,000. However, subsequent studies on the purification of IS have revealed that the inhibitory activity in bone-conditioned medium is of lower molecular weight and has several properties in common with thymidine (TdR): (1) IS coeluted with [3H]TdR upon gel filtration chromatography on Sephadex G-10. (2) IS bound to charcoal but not to cation or anion exchange resins. (3) Bone-conditioned medium decreased incorporation of [3H]TdR into the free [3H]TdR pool of cells in monolayer culture. (4) Conditioned medium inhibited [3H]TdR incorporation into [3H]thymidine monophosphate in a reaction catalyzed by thymidine kinase. The equivalent concentration of TdR in conditioned medium as estimated by thymidine kinase assay was sufficient to account for the reduction in [3H]TdR incorporation into bone cell DNA. No evidence was found for a specific inhibitor of bone cell proliferation other than TdR. Hence we conclude that the inhibitory effect of IS is due to dilution of [3H]TdR by nonradioactive TdR. Furthermore, media conditioned by several tumor cell lines also contained a low-molecular-weight component which inhibited [3H]TdR incorporation. The results suggest that organ- and cell-conditioned media can contain significant concentrations of TdR which can artifactually inhibit [3H]TdR incorporation in cell proliferation assays.  相似文献   

18.
Human lymphocytes in the quiescent state were exposed to UVC radiation. After irradiation the cells were allowed to repair for various times in the presence of [3H]thymidine or [3H]deoxycytidine in the culture medium. Hydroxyurea was not used to suppress semiconservative DNA replication in the small number of growing cells. After incubation DNA strand breaks were detected by the DNA-unwinding method and the amount of 3H incorporation in DNA was measured by liquid scintillation counting. The results show that the yield of DNA strand breaks and the amount of unscheduled DNA synthesis (UDS) can be measured from the same lymphocyte sample. A low background 3H incorporation in untreated cells could be achieved even in the absence of hydroxyurea. This requires, however, that 3H incorporation is measured only in the double-stranded DNA and that [3H]dCyd is used instead of [3H]dThd as the labelled deoxynucleoside.  相似文献   

19.
The validity of using the incorporation of [3H]thymidine into DNA as an indicator of epidermal keratinocyte proliferation in vitro has been investigated. Other parameters of cell proliferation, direct count of cell number and measurement of DNA content, consistently fail to correlate with changes in [3H]thymidine incorporation into DNA in primary and first passage cultures of rabbit and human epidermal keratinocytes. Maximum incorporation of [3H]thymidine precedes the active growth period by three days. Incorporation declines markedly during the proliferative period. Thymidine kinase activity decreases during the proliferative growth phase. Incorporation of another pyrimidine nucleotide precursor, [14C]aspartic acid, suggests that in epidermal keratinocytes in vitro the extent of utilization of the salvage and the de novo pathways may be inversely related. In such cases [3H]thymidine incorporation into TCA precipitable material fails to reflect accurately cell proliferation.  相似文献   

20.
Normal human fibroblasts treated with r-7,t-8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) yielded DNA polymerase alpha with elevated levels of activity, incorporated [3H]thymidine as a function of unscheduled DNA synthesis, and exhibited restoration of normal DNA-strand length as a function of unscheduled DNA synthesis. Lipoprotein-deficient fibroblasts treated with BPDE did not show elevated levels of DNA polymerase alpha activity, exhibited minimal [3H]thymidine incorporation, and had fragmented DNA after 24 h of repair in the absence of lipoprotein or phosphatidylinositol supplementation. When DNA polymerase beta activity was inhibited, cells with normal lipoprotein uptake exhibited [3H]thymidine incorporation into BPDE-damaged DNA but did not show an increase in DNA-strand length. DNA polymerase alpha activity and [3H]thymidine incorporation in lipoprotein-deficient fibroblasts increased to normal levels when the cells were permeabilized and low-density lipoproteins or phosphatidylinositol were introduced into the cells. DNA polymerase alpha isolated from normal human fibroblasts, but not from lipoprotein-deficient fibroblasts, showed increased specific activity after the cells were treated with BPDE. When BPDE-treated lipoprotein-deficient fibroblasts were permeabilized and 32P-ATP was introduced into the cells along with lipoproteins, 32P-labeled DNA polymerase alpha with significantly increased specific activity was isolated from the cells. These data suggest that treatment of human fibroblasts with BPDE initiates unscheduled DNA synthesis, as a function of DNA excision repair, which is correlated with increased activity of DNA polymerase alpha, and that increased DNA polymerase alpha activity may be correlated with phosphorylation of the enzyme in a reaction that is stimulated by low-density lipoprotein or by the lipoprotein component, phosphatidylinositol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号