首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
This work aims at identifying the thymocyte subpopulation able to support human immunodeficiency virus (HIV) replication under the biological stimuli of the thymic microenvironment. In this report we demonstrate that interaction with thymic epithelial cells (TEC) induces a high-level replication of the T-tropic primary isolate HIV-1(B-LAIp) exclusively in the mature CD4(+) CD8(-) CD3(+) thymocytes. Tumor necrosis factor (TNF) and interleukin-7 (IL-7), secreted during this interaction, are critical cytokines for HIV long terminal repeat transactivation through NF-kappaB-dependent activation. TNF is the major inducer of NF-kappaB and particularly of the p50-p65 complex, whereas IL-7 acts as a cofactor by sustaining the expression of the p75 TNF receptor. The requirement for TNF is further confirmed by the observation that the inability of the intermediate CD4(+) CD8(-) CD3(-) thymocytes to replicate the virus is associated with a defect in TNF production during their interaction with TEC and correlates with the absence of nuclear NF-kappaB activity in these freshly isolated thymocytes. Addition of exogenous TNF to the intermediate thymocyte cultures induces NF-kappaB activity and is sufficient to promote HIV replication in the cocultures with TEC. The other major subpopulation expressing the CD4 receptor, namely, the double-positive (DP) CD4(+) CD8(+) CD3(+/-) thymocytes, despite the entry of the virus, do not produce a significant level of virus, presumably because they are unresponsive to TNF and IL-7. Together, these data suggest that in vivo, despite an efficient entry of the virus in all the CD4(+) subpopulations, a high viral load may be generated exclusively within the mature CD4(+) CD8(-) CD3(+) subset of thymocytes. However, under conditions of inflammatory response after infection, TNF might also be present in the intermediate thymocyte compartment, leading to efficient HIV replication in these cells.  相似文献   

2.
Early infection of the thymus with the human immunodeficiency virus (HIV) may explain the more rapid disease progression among children infected in utero than in children infected intrapartum. Therefore, we analyzed infection of thymocytes in vitro by HIV type 1 primary isolates, obtained at or near birth, from 10 children with different disease outcomes. HIV isolates able to replicate in the thymus and impact thymopoiesis were present in all infants, regardless of the timing of viral transmission and the rate of disease progression. Isolates from newborns utilized CCR5, CXCR4, or both chemokine receptors to enter thymocytes. Viral expression was observed in discrete thymocyte subsets postinfection with HIV isolates using CXCR4 (X4) and isolates using CCR5 (R5), despite the wider distribution of CXCR4 in the thymus. In contrast to previous findings, the X4 primary isolates were not more cytopathic for thymocytes than were the R5 isolates. The cytokines interleukin-2 (IL-2), IL-4, and IL-7 increased HIV replication in the thymus by inducing differentiation and expansion of mature CD27(+) thymocytes expressing CXCR4 or CCR5. IL-2 and IL-4 together increased expression of CXCR4 and CCR5 in this population, whereas IL-4 and IL-7 increased CXCR4 but not CCR5 expression. IL-2 plus IL-4 increased the viral production of all pediatric isolates, but IL-4 and IL-7 had a significantly higher impact on the replication of X4 isolates compared to R5 isolates. Our studies suggest that coreceptor use by HIV primary isolates is important but is not the sole determinant of HIV pathogenesis in the thymus.  相似文献   

3.
The interaction of thymocytes with thymic epithelial cells in the absence of an exogenous antigen was studied in vitro. Thymic, but not splenic epithelial cells induced apoptosis of thymocytes. A thymic epithelial cell line (TEC) induced apoptosis of thymocytes but not of splenic T-cells. The target population for TEC-induced death were immature CD4(+)8(+) (double positive), but not mature single positive thymocytes. TEC also induced DNA fragmentation in day 18 foetal thymocytes, most of which are CD4(+)8(+) cells. Radiation leukemia virus (RadLV)-transformed thymic lymphoma clones expressing various phenotypes reflected this sensitivity, in that a CD4(+)8(+)3(+) clone apoptosed by thymic epithelial cells or TEC. Other, single positive or double negative clones were resistant. Thymocytes from C3H (H-2(k)), C57BL/6 (H-2(b)) and Balb/C (H-2(d)) mice apoptosed equally in response to either C57BL/6 thymic epithelial cells or TEC (H-2(b) x H-2(d)). Likewise, thymocytes from MRLIpr((-/-)) and B6Ipr((-/-)) mice, which do not express CD95 were also apoptosed by TEC.The data suggest that thymic epithelial cells induce MHC non-restricted, Fas-independent apoptosis of immature thymocytes. This response may reflect a mechanism through which thymocytes expressing TcR with no affinity to self MHC/peptide complexes are eliminated.  相似文献   

4.
We investigated the effect of IL-10 on replication of primary CXCR4-dependent (X4) HIV-1 strains by monocyte-derived dendritic cells (DCs) and macrophages (M Phis). M Phis efficiently replicated CXCR4-dependent HIV-1 (X4 HIV-1) strains NDK and VN44, whereas low levels of p24 were detected in supernatants of infected DCs. IL-10 significantly increased X4 HIV-1 replication by DCs but blocked viral production by M Phis as determined by p24 levels and semiquantitative nested PCR. IL-10 up-regulated CXCR4 mRNA and protein expression on DCs and M Phis, suggesting that IL-10 enhances virus entry in DCs but blocks an entry and/or postentry step in M Phis. The effect of IL-10 on the ability of DCs and M Phis to transmit virus to autologous CD4(+) T lymphocytes was investigated in coculture experiments. DCs exhibited a greater ability than did M Phis to transmit a vigorous infection to CD4(+) T cells despite their very low replication capacity. IL-10 had no effect on HIV-1 replication in DC:T cell cocultures but markedly decreased viral production in M Phi:T cell cocultures. These results demonstrate that IL-10 has opposite effects on the replication of primary X4 HIV-1 strains by DCs and M Phis. IL-10 increases X4-HIV-1 replication in DCs but does not alter their capacity to transmit virus to CD4(+) T lymphocytes. These findings suggest that increased levels of IL-10 observed in HIV-1-infected patients with disease progression may favor the replication of X4 HIV-1 strains in vivo.  相似文献   

5.
Human immunodeficiency virus type 1 (HIV-1) primary infection is characterized by the use of CCR5 as a coreceptor for viral entry, which is associated with the non-syncytium-inducing (NSI) phenotype in lymphoid cells. Syncytium-inducing (SI) variants of HIV-1 appear in advanced stages of HIV-1 infection and are characterized by the use of CXCR4 as a coreceptor. The emergence of SI variants is accompanied by a rapid decrease in the number of T cells. However, it is unclear why SI variants emerge and what factors trigger the evolution of HIV from R5 to X4 variants. Interleukin-7 (IL-7), a cytokine produced by stromal cells of the thymus and bone marrow and by keratin, is known to play a key role in T-cell development. We evaluated IL-7 levels in plasma of healthy donors and HIV-positive patients and found significantly higher levels in HIV-positive patients. There was a negative correlation between circulating IL-7 levels and CD4(+) T-cell count in HIV-positive patients (r = -0.621; P < 0.001), suggesting that IL-7 may be involved in HIV-induced T-cell depletion and disease progression. IL-7 levels were higher in individuals who harbored SI variants and who had progressed to having CD4 cell counts of lower than 200 cells/microl than in individuals with NSI variants at a similar stage of disease. IL-7 induced T-cell proliferation and up-regulated CXCR4 expression in peripheral blood mononuclear cells in vitro. Taken together, our results suggest a role for IL-7 in the maintenance of T-cell regeneration and depletion by HIV in infected individuals and a possible relationship between IL-7 levels and the emergence of SI variants.  相似文献   

6.
T/NK progenitors are present in the thymus; however, the thymus predominantly promotes T cell development. In this study, we demonstrated that human thymic epithelial cells (TEC) inhibit NK cell development. Most ex vivo human thymocytes express CD1a, indicating that thymic progenitors are predominantly committed to the T cell lineage. In contrast, the CD1a(-)CD3(-)CD56(+) NK population comprises only 0.2% (n = 7) of thymocytes. However, we observed increases in the percentage (20- to 25-fold) and absolute number (13- to 71-fold) of NK cells when thymocytes were cultured with mixtures of either IL-2, IL-7, and stem cell factor or IL-15, IL-7, and stem cell factor. TEC, when present in the cultures, inhibited the increases in the percentage (3- to 10-fold) and absolute number (3- to 25-fold) of NK cells. Furthermore, we show that TEC-derived soluble factors inhibit generation of NK-CFU and inhibit IL15- or IL2-driven NK cell differentiation from thymic CD34(+) triple-negative thymocytes. The inhibitory activity was found to be associated with a 8,000- to 30,000 Da fraction. Thus, our data demonstrate that TEC inhibit NK cell development from T/NK CD34(+) triple negative progenitors via soluble factor(s), suggesting that the human thymic microenvironment not only actively promotes T cell maturation but also controls the development of non-T lineage cells such as the NK lineage.  相似文献   

7.
Human thymocytes are readily infected with human immunodeficiency virus type 1 (HIV-1) in vivo and in vitro. In this study, we found that the kinetics of replication and cytopathic effects of two molecular isolates, NL4-3 and JR-CSF, in postnatal thymocytes are best explained by the distribution of chemokine receptors used for viral entry. CXCR4 was expressed at high levels on most thymocytes, whereas CCR5 expression was restricted to only 0.1 to 2% of thymocytes. The difference in the amount of proviral DNA detected after infection of fresh thymocytes with NL4-3 or JR-CSF correlated with the levels of CXCR4 and CCR5 surface expression. Anti-CCR5 blocking studies showed that low levels of CCR5 were necessary and sufficient for JR-CSF entry in thymocytes. Interleukin-2 (IL-2), IL-4, and IL-7, cytokines normally present in the thymus, influenced the expression of CXCR4 and CCR5 on thymocytes and thus increased the infectivity and spread of both NL4-3 and JR-CSF in culture. NL4-3 was produced by both immature and mature thymocytes, whereas JR-CSF production was restricted to the mature CD1/CD69+ population. Although CXCR4 and CCR5 distribution readily explained viral entry in mature CD69+ and immature CD69 cells, and correlated with proviral DNA distribution, we found that viral production was favored in CD69+ cells. Therefore, while expression of CD4 and appropriate coreceptors are essential determinants of viral entry, factors related to activation and stage-specific maturation contribute to HIV-1 replication in thymocyte subsets. These results have direct implications for HIV-1 pathogenesis in pediatric patients.  相似文献   

8.
The emergence of X4 human immunodeficiency virus type 1 (HIV-1) strains in HIV-1-infected individuals has been associated with CD4(+) T-cell depletion, HIV-mediated CD8(+) cell apoptosis, and an impaired humoral response. The bicyclam AMD3100, a selective antagonist of CXCR4, selected for the outgrowth of R5 virus after cultivation of mixtures of the laboratory-adapted R5 (BaL) and X4 (NL4-3) HIV strains in the presence of the compound. The addition of AMD3100 to peripheral blood mononuclear cells infected with X4 or R5X4 clinical HIV isolates displaying the syncytium-inducing phenotype resulted in a complete suppression of X4 variants and a concomitant genotypic change in the V2 and V3 loops of the envelope gp120 glycoprotein. The recovered viruses corresponded genotypically and phenotypically to R5 variants in that they could no longer use CXCR4 as coreceptor or induce syncytium formation in MT-2 cells. Furthermore, the phenotype and genotype of a cloned R5 HIV-1 virus converted to those of the R5X4 virus after prolonged culture in lymphoid cells. However, these changes did not occur when the infected cells were cultured in the presence of AMD3100, despite low levels of virus replication. Our findings indicate that selective blockade of the CXCR4 receptor prevents the switch from the less pathogenic R5 HIV to the more pathogenic X4 HIV strains, a process that heralds the onset of AIDS. In this article, we show that it could be possible to redirect the evolution of HIV so as to impede the emergence of X4 strains or to change the phenotype of already-existing X4 isolates to R5.  相似文献   

9.
Developing thymocytes undergo maturation while migrating through the thymus and ultimately emigrate from the organ to populate peripheral lymphoid tissues. The process of thymic emigration is controlled in part via receptor-ligand interactions between the chemokine stromal-derived factor (SDF)-1, and its cognate receptor CXCR4, and sphingosine 1-phosphate (S1P) and its receptor S1PR. The precise mechanism by which S1P/S1PR and CXCR4/SDF-1 contribute to thymic emigration remains unclear. We proposed that S1P-dependent and -independent mechanisms might coexist and involve both S1P-induced chemoattraction and SDF-1-mediated chemorepulsion or fugetaxis of mature thymocytes. We examined thymocyte emigration in thymi from CXCR4-deficient C57BL/6 embryos in a modified assay, which allows the collection of CD62L(high) and CD69(low) recent thymic emigrants. We demonstrated that single-positive (SP) CD4 thymocytes, with the characteristics of recent thymic emigrants, failed to move away from CXCR4-deficient fetal thymus in vitro. We found that the defect in SP CD4 cell emigration that occurred in the absence of CXCR4 signaling was only partially overcome by the addition of the extrathymic chemoattractant S1P and was not associated with abnormalities in thymocyte maturation and proliferative capacity or integrin expression. Blockade of the CXCR4 receptor in normal thymocytes by AMD3100 led to the retention of mature T cells in the thymus in vitro and in vivo. The addition of extrathymic SDF-1 inhibited emigration of wild-type SP cells out of the thymus by nullifying the chemokine gradient. SDF-1 was also shown to elicit a CXCR4-dependent chemorepellent response from fetal SP thymocytes. These novel findings support the thesis that the CXCR4-mediated chemorepellent activity of intrathymic SDF-1 contributes to SP thymocyte egress from the fetal thymus.  相似文献   

10.
11.
CCR5-utilizing (R5) and CXCR4-utilizing (X4) strains of human immunodeficiency virus type 1 (HIV-1) have been studied intensively in vitro, but the pathologic correlates of such differential tropism in vivo remain incompletely defined. In this study, X4 and R5 strains of HIV-1 were compared for tropism and pathogenesis in SCID-hu Thy/Liv mice, an in vivo model of human thymopoiesis. The X4 strain NL4-3 replicates quickly and extensively in thymocytes in the cortex and medulla, causing significant depletion. In contrast, the R5 strain Ba-L initially infects stromal cells including macrophages in the thymic medulla, without any obvious pathologic consequence. After a period of 3 to 4 weeks, Ba-L infection slowly spreads through the thymocyte populations, occasionally culminating in thymocyte depletion after week 6 of infection. During the entire time of infection, Ba-L did not mutate into variants capable of utilizing CXCR4. Therefore, X4 strains are highly cytopathic after infection of the human thymus. In contrast, infection with R5 strains of HIV-1 can result in a two-phase process in vivo, involving apparently nonpathogenic replication in medullary stromal cells followed by cytopathic replication in thymocytes.  相似文献   

12.
13.
Thymic stromal cells, including cortical thymic epithelial cells (cTEC) produce many humoral factors, such as cytokines and eicosanoids to modulate thymocyte homeostasis, thereby regulating the peripheral immune responses. In this study, we identified fatty acid-binding protein (FABP4), an intracellular fatty acid chaperone, in the mouse thymus, and examined its role in the control of cytokine production in comparison with FABP5. By immunofluorescent staining, FABP4(+) cells enclosing the thymocytes were scattered throughout the thymic cortex with a spatial difference from the FABP5(+) cell that were distributed widely throughout the cTEC. The FABP4(+) cells were immunopositive for MHC class II, NLDC145 and cytokeratin 8, and were identified as part of cTEC. The FABP4(+) cells were identified as thymic nurse cells (TNC), a subpopulation of cTEC, by their active phagocytosis of apoptotic thymocytes. Furthermore, FABP4 expression was confirmed in the isolated TNC at the gene and protein levels. To explore the function of FABP in TNC, TSt-4/DLL1 cells stably expressing either FABP4 or FABP5 were established and the gene expressions of various cytokines were examined. The gene expression of interleukin (IL)-7 and IL-18 was increased both in FABP4 and FABP5 over-expressing cells compared with controls, and moreover, the increase in their expressions by adding of stearic acids was significantly enhanced in the FABP4 over-expressing cells. These data suggest that both FABPs are involved in the maintenance of T lymphocyte homeostasis through the modulation of cytokine production, which is possibly regulated by cellular fatty acid-mediated signaling in TEC, including TNC.  相似文献   

14.
It was recently demonstrated that there are CD4(+) macrophages, which exhibit strong phagocytic activity, in the thymus. They are suggested to play an important role for the elimination of apoptotic thymocytes. However, the origin and nature of CD4(+) macrophages in the thymus remain unexplored. In this study, we describe that the most immature intrathymic progenitors (CD25(-)/CD44(+)/FcR(+)) give rise to CD4(+) macrophages by oncostatin M-responsive thymic epithelial cells (ORTEC) in an IL-7-dependent manner. Neither conditioned medium of ORTEC nor a mixture of cytokines induced CD4(+) macrophages, and oncostatin M receptor was not expressed in thymocytes, suggesting that the development of CD4(+) macrophages from the immature thymocytes requires a direct interaction with ORTEC. These results collectively suggest that the development of CD4(+) macrophages from the intrathymic T cell progenitors is induced by thymic epithelial cells.  相似文献   

15.
Expression of CD28 is highly regulated during thymic development, with CD28 levels extremely low on immature thymocytes but increasing dramatically as CD4- CD8- cells initiate expression of TCRbeta. B7-1 and B7-2, the ligands for CD28, have a restricted distribution in the thymic cortex where immature thymocytes reside and are more highly expressed in the medulla where the most mature thymocytes are located. To determine the importance of this regulated CD28/B7 expression for T cell development, we examined the effect of induced CD28 signaling of immature thymocytes in CD28/B7-2 double-transgenic mice. Strikingly, we found that differentiation to the CD4+ CD8+ stage in CD28/B7-2 transgenics proceeds independent of the requirement for TCRbeta expression manifest in wild-type thymocytes, occurring even in Rag- or CD3epsilon- knockouts. These findings indicate that signaling of immature thymocytes through CD28 in the absence of TCR- or pre-TCR-derived signals can promote an aberrant pathway of T cell differentiation and highlight the importance of finely regulated physiologic expression of CD28 and B7 in maintaining integrity of the "beta" checkpoint for pre-TCR/TCR-dependent thymic differentiation.  相似文献   

16.
IL-7 is a critical component of thymopoiesis in animals and has recently been shown to play an important role in T cell homeostasis. Although there is increasing interest in the use of IL-7 for the treatment of lymphopenia caused by the HIV type 1, evidence that IL-7 may accelerate HIV replication has raised concerns regarding its use in this setting. We sought to identify the effects of IL-7 on human thymocyte survival and to determine the impact of IL-7 administration on in vivo HIV infection of the human thymus. Using in vitro analysis, we show that IL-7 provides potent anti-apoptotic and proliferative signals to early thymocyte progenitors. Analysis of CD34(+) subpopulations demonstrates that surface IL-7 receptor is expressed on most CD34(high)CD5(+)CD1a(-) thymocytes and that this subpopulation appears to be one of the earliest maturation stages responsive to the effects of IL-7. Thus, IL-7 provides survival signals to human thymocytes before surface expression of CD1a. CD4(+)CD8(+) thymocytes are relatively unresponsive to IL-7, although IL-7 protects these cells from dexamethasone-induced apoptosis. IL-7 has a predominantly proliferative effect on mature CD4(+)CD3(+)CD8(-) and CD8(+)CD3(+)CD4(-) thymocytes. In contrast to the in vitro findings, we observe that in vivo administration of IL-7 to SCID-hu Thy/Liv mice does not appear to enhance thymocyte survival nor does it appear to accelerate HIV infection. Given the growing interest in the use of IL-7 for the treatment of human immunodeficiency, these findings support additional investigation into its in vivo effects on thymopoiesis and HIV infection.  相似文献   

17.
In the periphery, IL-18 synergistically induces the expression of the Th1 cytokine IFN-gamma in the presence of IL-12 and the Th2 cytokines IL-5 and IL-13 in the presence of IL-2. Although the expression of these cytokines has been described in the thymus, their role in thymic development and function remains uncertain. We report here that freshly isolated thymocytes from C57BL/6 and BALB/c mice stimulated in vitro with IL-2-plus-IL-18 or IL-12-plus-IL-18 produce large amounts of IFN-gamma and IL-13. Analysis of the thymic subsets, CD4(-)CD8(-) (DN), CD4(+)CD8(+), CD4(+)CD8(-), and CD4(-)CD8(+) revealed that IL-18 in combination with IL-2 or IL-12 induces IFN-gamma and IL-13 preferentially from DN cells. Moreover, DN2 and DN3 thymocytes contained more IFN-gamma(+) cells than cells in the later stage of maturation. Additionally, IL-18 in combination with IL-2 induces CCR4 (Th2-associated) and CCR5 (Th1-associated) gene expression. In contrast, IL-18-plus-IL-12 specifically induced CCR5 expression. The IL-2-plus-IL-18 or IL-12-plus-IL-18 effect on IFN-gamma and IL-13 expression is dependent on Stat4 and NF-kappaB but independent of Stat6, T-bet, or NFAT. Furthermore, IL-12-plus-IL-18 induces significant thymocyte apoptosis when expressed in vivo or in vitro, and this effect is exacerbated in the absence of IFN-gamma. IL-12-plus-IL-18-stimulated thymocytes can also induce IA-IE expression on cortical and medullary thymic epithelial cells in an IFN-gamma-dependent manner. Thus, the combination of IL-2, IL-12, and IL-18 can induce phenotypic and functional changes in thymocytes that may alter migration, differentiation, and cell death of immature T cells inside the thymus and potentially affect the Th1/Th2 bias in peripheral immune compartments.  相似文献   

18.
The vast diversity of the T cell repertoire renders the adaptive immune response capable of recognizing a broad spectrum of potential antigenic peptides. However, certain T cell rearrangements are conserved for recognition of specific pathogens, as is the case for TCRgammadelta cells. In addition, an immunoregulatory class of T cells expressing the NK receptor protein 1A (CD161) responds to nonpeptide Ags presented on the MHC-like CD1d molecule. The effect of HIV-1 infection on these specialized T cells in the thymus was studied using the SCID-hu mouse model. We were able to identify CD161-expressing CD3(+) cells but not the CD1d-restricted invariant Valpha24/Vbeta11/CD161(+) NK T cells in the thymus. A subset of TCRgammadelta cells and CD161-expressing thymocytes express CD4, CXCR4, and CCR5 during development in the thymus and are susceptible to HIV-1 infection. TCRgammadelta thymocytes were productively infectable by both X4 and R5 virus, and thymic HIV-1 infection induced depletion of CD4(+) TCRgammadelta cells. Similarly, CD4(+)CD161(+) thymocytes were depleted by thymic HIV-1 infection, leading to enrichment of CD4(-)CD161(+) thymocytes. Furthermore, compared with the general CD4-negative thymocyte population, CD4(-)CD161(+) NK T thymocytes exhibited as much as a 27-fold lower frequency of virus-expressing cells. We conclude that HIV-1 infection and/or disruption of cells important in both innate and acquired immunity may contribute to the overall immune dysfunction seen in HIV-1 disease.  相似文献   

19.
Cell surface receptors exploited by human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) for infection are major determinants of tropism. HIV-1 usually requires two receptors to infect cells. Gp120 on HIV-1 virions binds CD4 on the cell surface, triggering conformational rearrangements that create or expose a binding site for a seven-transmembrane (7TM) coreceptor. Although HIV-2 and SIV strains also use CD4, several laboratory-adapted HIV-2 strains infect cells without CD4, via an interaction with the coreceptor CXCR4. Moreover, the envelope glycoproteins of SIV of macaques (SIV(MAC)) can bind to and initiate infection of CD4(-) cells via CCR5. Here, we show that most primary HIV-2 isolates can infect either CCR5(+) or CXCR4(+) cells without CD4. The efficiency of CD4-independent infection by HIV-2 was comparable to that of SIV, but markedly higher than that of HIV-1. CD4-independent HIV-2 strains that could use both CCR5 and CXCR4 to infect CD4(+) cells were only able to use one of these receptors in the absence of CD4. Our observations therefore indicate (i) that HIV-2 and SIV envelope glycoproteins form a distinct conformation that enables contact with a 7TM receptor without CD4, and (ii) the use of CD4 enables a wider range of 7TM receptors to be exploited for infection and may assist adaptation or switching to new coreceptors in vivo. Primary CD4(-) fetal astrocyte cultures expressed CXCR4 and supported replication by the T-cell-line-adapted ROD/B strain. Productive infection by primary X4 strains was only triggered upon treatment of virus with soluble CD4. Thus, many primary HIV-2 strains infect CCR5(+) or CXCR4(+) cell lines without CD4 in vitro. CD4(-) cells that express these coreceptors in vivo, however, may still resist HIV-2 entry due to insufficient coreceptor concentration on the cell surface to trigger fusion or their expression in a conformation nonfunctional as a coreceptor. Our study, however, emphasizes that primary HIV-2 strains carry the potential to infect CD4(-) cells expressing CCR5 or CXCR4 in vivo.  相似文献   

20.
Rulli K  Lenz J  Levy LS 《Journal of virology》2002,76(5):2363-2374
A time course analysis of SL3-3 murine leukemia virus (SL3) infection in thymus and bone marrow of NIH/Swiss mice was performed to assess changes that occur during the early stages of progression to lymphoma. Virus was detectable in thymocytes, bone marrow, and spleen as early as 1 to 2 weeks postinoculation (p.i.). In bone marrow, virus infection was detected predominantly in immature myeloid or granulocytic cells. Flow cytometry revealed significant reductions of the Ter-119(+) and Mac-1(+) populations, and significant expansions of the Gr-1(+) and CD34(+) populations, between 2 and 4 weeks p.i. Analysis of colony-forming potential confirmed these findings. In the thymus, SL3 replication was associated with significant disruption in thymocyte subpopulation distribution between 4 and 7 weeks p.i. A significant thymic regression was observed just prior to the clonal outgrowth of tumor cells. Proviral long terminal repeats (LTRs) with increasing numbers of enhancer repeats were observed to accumulate exclusively in the thymus during the first 8 weeks p.i. Observations were compared to the early stages of infection with a virtually nonpathogenic SL3 mutant, termed SL3DeltaMyb5, which was shown by real-time PCR to be replication competent. Comparison of SL3 with SL3DeltaMyb5 implicated certain premalignant changes in tumorigenesis, including (i) increased proportions of Gr-1(+) and CD34(+) bone marrow progenitors, (ii) a significant increase in the proportion of CD4(-) CD8(-) thymocytes, (iii) thymic regression prior to tumor outgrowth, and (iv) accumulation of LTR enhancer variants. A model in which disrupted bone marrow hematopoiesis and thymopoiesis contribute to the development of lymphoma in the SL3-infected animal is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号