首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Upper body movements during walking provide information about balance control and gait stability. Typically developing (TD) children normally present a progressive decrease of accelerations from the pelvis to the head, whereas children with cerebral palsy (CP) exhibit a general increase of upper body accelerations. However, the literature describing how they are transmitted from the pelvis to the head is lacking. This study proposes a multilevel motion sensor approach to characterize upper body accelerations and how they propagate from pelvis to head in children with CP, comparing with their TD peers. Two age- and gender-matched groups of 20 children performed a 10m walking test at self-selected speed while wearing three magneto-inertial sensors located at pelvis, sternum, and head levels. The root mean square value of the accelerations at each level was computed in a local anatomical frame and its variation from lower to upper levels was described using attenuation coefficients. Between-group differences were assessed performing an ANCOVA, while the mutual dependence between acceleration components and the relationship between biomechanical parameters and typical clinical scores were investigated using Regression Analysis and Spearman’s Correlation, respectively (α = 0.05). New insights were obtained on how the CP group managed the transmission of accelerations through the upper body. Despite a significant reduction of the acceleration from pelvis to sternum, children with CP do not compensate for large accelerations, which are greater than in TD children. Furthermore, those with CP showed negative sternum-to-head attenuations, in agreement with the documented rigidity of the head-trunk system observed in this population. In addition, the estimated parameters proved to correlate with the scores used in daily clinical practice. The proposed multilevel approach was fruitful in highlighting CP-TD gait differences, supported the in-field quantitative gait assessment in children with CP and might prove beneficial to designing innovative intervention protocols based on pelvis stabilization.  相似文献   

2.
The purpose of this study was to examine how inducing fatigue of the 1) lumbar erector spinae and 2) cervical erector spinae (CES) muscles affected the ability to maintain head stability during walking. Triaxial accelerometers were attached to the head, upper trunk, and lower trunk to measure accelerations in the vertical, anterior-posterior, and mediolateral directions during walking. Using three accelerometers enabled two adjacent upper body segments to be defined: the neck segment and trunk segment. A transfer function was applied to root mean square acceleration, peak power, and harmonic data derived from spectral analysis of accelerations to quantify segmental gain. The structure of upper body accelerations were examined using measures of signal regularity and smoothness. The main findings were that head stability was only affected in the anterior-posterior direction, as accelerations of the head were less regular following CES fatigue. Furthermore, following CES fatigue, the central nervous system altered the attenuation properties of the trunk segment in the anterior-posterior direction, presumably to enhance head stability. Following lumbar erector spinae fatigue, the trunk segment had greater gain and increased regularity and smoothness of accelerations in the mediolateral direction. Overall, the results of this study suggest that erector spinae fatigue differentially altered segmental attenuation during walking, according to the level of the upper body that was fatigued and the direction that oscillations were attenuated. A compensatory postural response was not only elicited in the sagittal plane, where greater segmental attenuation occurred, but also in the frontal plane, where greater segmental gain occurred.  相似文献   

3.
Transitory tasks, such as gait termination, involve interactions between neural and biomechanical factors that challenge postural stability and head stabilization patterns in older adults. The aim of the study was to compare upper body patterns of acceleration during planned gait termination at different speeds between young and older women. Ten young and 10 older women were asked to carry out three gait termination trials at slow, comfortable and fast speed. A stereophotogrammetric system and a 15-body segments model were used to calculate antero-posterior whole-body Center of Mass (AP CoM) speed and to reconstruct the centroids of head, trunk and pelvis segments. RMS of three-dimensional linear accelerations were calculated for each segment and the transmission of acceleration between two segments was expressed as a percentage difference. Older women reported lower AP CoM speed and acceleration RMS of the three upper body segments than young women across the three speed conditions. A lower pelvis-to-trunk attenuation of accelerations in the transverse plane was observed in older compared to young women, and mainly in the medio-lateral direction. As possible explanations, older women may not need to reduce acceleration as young women because of their lower progression speed and the subsequent acceleration at upper body levels. On the other hand, older women may prioritize a decrease in the whole body progression speed at expense of the involvement of upper body segments. This limits the attenuation of the accelerations, particularly in the transverse plane, implying an increased dynamic unbalance in performing this transitory task.  相似文献   

4.
Background: Steady-state gait characteristics appear promising as predictors of falls in stroke survivors. However, assessing how stroke survivors respond to actual gait perturbations may result in better fall predictions. We hypothesize that stroke survivors who fall have a diminished ability to adequately adjust gait characteristics after gait is perturbed. This study explored whether gait characteristics of perturbed gait differ between fallers and non fallers. Method: Chronic stroke survivors were recruited by clinical therapy practices. Prospective falls were monitored over a six months follow up period. We used the Gait Real-time Analysis Interactive Lab (GRAIL, Motekforce Link B.V., Amsterdam) to assess gait. First we assessed gait characteristics during steady-state gait and second we examined gait responses after six types of gait perturbations. We assessed base of support gait characteristics and margins of stability in the forward and medio-lateral direction. Findings: Thirty eight stroke survivors complete our gait protocol. Fifteen stroke survivors experienced falls. All six gait perturbations resulted in a significant gait deviation. Forward stability was reduced in the fall group during the second step after a ipsilateral perturbation. Interpretation: Although stability was different between groups during a ipsilateral perturbation, it was caused by a secondary strategy to keep up with the belt speed, therefore, contrary to our hypothesis fallers group of stroke survivors have a preserved ability to cope with external gait perturbations as compared to non fallers. Yet, our sample size was limited and thereby, perhaps minor group differences were not revealed in the present study.  相似文献   

5.
Patients with diabetic peripheral neuropathy are significantly more likely to fall while walking than subjects with intact sensation. While it has been suggested that these patients walk slower to improve locomotor stability, slower speeds are also associated with increased locomotor variability, and increased variability has traditionally been equated with loss of stability. If the latter were true, this would suggest that slowing down, as a locomotor control strategy, should be completely antithetical to the goal of maintaining stability. The present study resolves these seemingly paradoxical findings by using methods from nonlinear time series analysis to directly quantify the sensitivity of the locomotor system to local perturbations that are manifested as natural kinematic variability. Fourteen patients with severe peripheral neuropathy and 12 gender-, age-, height-, and weight-matched non-diabetic controls participated. Sagittal plane angles of the right hip, knee, and ankle joints and tri-axial accelerations of the trunk were measured during 10 min of continuous overground walking at self-selected speeds. Maximum finite-time Lyapunov exponents were computed for each time series to quantify the local dynamic stability of these movements. Neuropathic patients exhibited slower walking speeds and better local dynamic stability of upper body movements in the horizontal plane than did control subjects. The differences in local dynamic stability were significantly predicted by differences in walking speed, but not by differences in sensory status. These results support the hypothesis that reductions in walking speed are a compensatory strategy used by neuropathic patients to maintain dynamic stability of the upper body during level walking.  相似文献   

6.
《Journal of biomechanics》2014,47(16):3876-3881
The primary purpose of this study was to systematically evaluate and compare the predictive power of falls for a battery of stability indices, obtained during normal walking among community-dwelling older adults. One hundred and eighty seven community-dwelling older adults participated in the study. After walking regularly for 20 strides on a walkway, participants were subjected to an unannounced slip during gait under the protection of a safety harness. Full body kinematics and kinetics were monitored during walking using a motion capture system synchronized with force plates. Stability variables, including feasible-stability-region measurement, margin of stability, the maximum Floquet multiplier, the Lyapunov exponents (short- and long-term), and the variability of gait parameters (including the step length, step width, and step time), were calculated for each subject. Sensitivity of predicting slip outcome (fall vs. recovery) was examined for each stability variable using logistic regression. Results showed that the feasible-stability-region measurement predicted fall incidence among these subjects with the highest sensitivity (68.4%). Except for the step width (with an sensitivity of 60.2%), no other stability variables could differentiate fallers from those who did not fall for the sample included in this study. The findings from the present study could provide guidance to identify individuals at increased risk of falling using the feasible-stability-region measurement or variability of the step width.  相似文献   

7.
Wearable sensors have potential for quantitative, gait-based, point-of-care fall risk assessment that can be easily and quickly implemented in clinical-care and older-adult living environments. This investigation generated models for wearable-sensor based fall-risk classification in older adults and identified the optimal sensor type, location, combination, and modelling method; for walking with and without a cognitive load task. A convenience sample of 100 older individuals (75.5 ± 6.7 years; 76 non-fallers, 24 fallers based on 6 month retrospective fall occurrence) walked 7.62 m under single-task and dual-task conditions while wearing pressure-sensing insoles and tri-axial accelerometers at the head, pelvis, and left and right shanks. Participants also completed the Activities-specific Balance Confidence scale, Community Health Activities Model Program for Seniors questionnaire, six minute walk test, and ranked their fear of falling. Fall risk classification models were assessed for all sensor combinations and three model types: multi-layer perceptron neural network, naïve Bayesian, and support vector machine. The best performing model was a multi-layer perceptron neural network with input parameters from pressure-sensing insoles and head, pelvis, and left shank accelerometers (accuracy = 84%, F1 score = 0.600, MCC score = 0.521). Head sensor-based models had the best performance of the single-sensor models for single-task gait assessment. Single-task gait assessment models outperformed models based on dual-task walking or clinical assessment data. Support vector machines and neural networks were the best modelling technique for fall risk classification. Fall risk classification models developed for point-of-care environments should be developed using support vector machines and neural networks, with a multi-sensor single-task gait assessment.  相似文献   

8.
Currently there is no commonly accepted way to define, much less quantify, locomotor stability. In engineering, "orbital stability" is defined using Floquet multipliers that quantify how purely periodic systems respond to perturbations discretely from one cycle to the next. For aperiodic systems, "local stability" is defined by local divergence exponents that quantify how the system responds to very small perturbations continuously in real time. Triaxial trunk accelerations and lower extremity sagittal plane joint angles were recorded from ten young healthy subjects as they walked for 10 min over level ground and on a motorized treadmill at the same speed. Maximum Floquet multipliers (Max FM) were computed at each percent of the gait cycle (from 0% to 100%) for each time series to quantify the orbital stability of these movements. Analyses of variance comparing Max FM values between walking conditions and correlations between Max FM values and previously published local divergence exponent results were computed. All subjects exhibited orbitally stable walking kinematics (i.e., magnitudes of Max FM < 1.0), even though these same kinematics were previously found to be locally unstable. Variations in orbital stability across the gait cycle were generally small and exhibited no systematic patterns. Walking on the treadmill led to small, but statistically significant improvements in the orbital stability of mediolateral (p = 0.040) and vertical (p = 0.038) trunk accelerations and ankle joint kinematics (p = 0.002). However, these improvements were not exhibited by all subjects (p < or = 0.012 for subject x condition interaction effects). Correlations between Max FM values and previously published local divergence exponents were inconsistent and 11 of the 12 comparisons made were not statistically significant (r2 < or = 19.8%; p > or = 0.049). Thus, the variability inherent in human walking, which manifests itself as local instability, does not substantially adversely affect the orbital stability of walking. The results of this study will allow future efforts to gain a better understanding of where the boundaries lie between locally unstable movements that remain orbitally stable and those that lead to global instability (i.e., falling).  相似文献   

9.
Transition tasks between static and dynamic situations may challenge head stabilization and balance in older individuals. The study was designed to investigate differences between young and older women in the upper body motion during the voluntary task of gait initiation. Seven young (25 ± 2.3 years) and seven older healthy women (78 ± 3.4 years) were required to stand on a force platform and initiate walking at their self-selected preferred speed. Angles of head, neck and trunk were measured by motion analysis in the sagittal plane and a cross-correlation analysis was performed on segments pairs. Variability of head and neck angular displacements, as indicated by average standard deviation, was significantly greater in the older than in the young participants. The young women maintained dynamic stability of the upper body, as forward flexion of the trunk was consistently counteracted by coordinated head–neck extension. Differently, movement patterns employed by the older women also included a rigid motion of all upper body segments leaning forward as a single unit. These results demonstrated that older women perform the transition from standing to walking with greater variability in the patterns of upper body motion compared to young women.  相似文献   

10.
Pathological movement patterns like crouch gait are characterized by abnormal kinematics and muscle activations that alter how muscles support the body weight during walking. Individual muscles are often the target of interventions to improve crouch gait, yet the roles of individual muscles during crouch gait remain unknown. The goal of this study was to examine how muscles contribute to mass center accelerations and joint angular accelerations during single-limb stance in crouch gait, and compare these contributions to unimpaired gait. Subject-specific dynamic simulations were created for ten children who walked in a mild crouch gait and had no previous surgeries. The simulations were analyzed to determine the acceleration of the mass center and angular accelerations of the hip, knee, and ankle generated by individual muscles. The results of this analysis indicate that children walking in crouch gait have less passive skeletal support of body weight and utilize substantially higher muscle forces to walk than unimpaired individuals. Crouch gait relies on the same muscles as unimpaired gait to accelerate the mass center upward, including the soleus, vasti, gastrocnemius, gluteus medius, rectus femoris, and gluteus maximus. However, during crouch gait, these muscles are active throughout single-limb stance, in contrast to the modulation of muscle forces seen during single-limb stance in an unimpaired gait. Subjects walking in crouch gait rely more on proximal muscles, including the gluteus medius and hamstrings, to accelerate the mass center forward during single-limb stance than subjects with an unimpaired gait.  相似文献   

11.
Lower limb amputation substantially disrupts motor and proprioceptive function. People with lower limb amputation experience considerable impairments in walking ability, including increased fall risk. Understanding the biomechanical aspects of the gait of these patients is crucial in improving their gait function and their quality of life. In the present study, 9 persons with unilateral transtibial amputation and 13 able-bodied controls walked on a large treadmill in a Computer Assisted Rehabilitation Environment (CAREN). While walking, subjects were either not perturbed, or were perturbed either by continuous mediolateral platform movements or by continuous mediolateral movements of the visual scene. Means and standard deviations of both step lengths and step widths increased significantly during both perturbation conditions (all p<0.001) for both groups. Measures of variability, local and orbital dynamic stability of trunk movements likewise exhibited large and highly significant increases during both perturbation conditions (all p<0.001) for both groups. Patients with amputation exhibited greater step width variability (p=0.01) and greater trunk movement variability (p=0.04) during platform perturbations, but did not exhibit greater local or orbital instability than healthy controls for either perturbation conditions. Our findings suggest that, in the absence of other co-morbidities, patients with unilateral transtibial amputation appear to retain sufficient sensory and motor function to maintain overall upper body stability during walking, even when substantially challenged. Additionally, these patients did not appear to rely more heavily on visual feedback to maintain trunk stability during these walking tasks.  相似文献   

12.
The purpose of this study was to determine the inter- and intra-examiner reliability, and stride-to-stride reliability, of an accelerometer-based gait analysis system which measured 3D accelerations of the upper and lower body during self-selected slow, preferred and fast walking speeds. Eight subjects attended two testing sessions in which accelerometers were attached to the head, neck, lower trunk, and right shank. In the initial testing session, two different examiners attached the accelerometers and performed the same testing procedures. A single examiner repeated the procedure in a subsequent testing session. All data were collected using a new wireless gait analysis system, which features near real-time data transmission via a Bluetooth network. Reliability for each testing condition (4 locations, 3 directions, 3 speeds) was quantified using a waveform similarity statistic known as the coefficient of multiple determination (CMD). CMD's ranged from 0.60 to 0.98 across all test conditions and were not significantly different for inter-examiner (0.86), intra-examiner (0.87), and stride-to-stride reliability (0.86). The highest repeatability for the effect of location, direction and walking speed were for the shank segment (0.94), the vertical direction (0.91) and the fast walking speed (0.91), respectively. Overall, these results indicate that a high degree of waveform repeatability was obtained using a new gait system under test-retest conditions involving single and dual examiners. Furthermore, differences in acceleration waveform repeatability associated with the reapplication of accelerometers were small in relation to normal motor variability.  相似文献   

13.
Falls pose a tremendous risk to those over 65 and most falls occur during locomotion. Older adults commonly walk slower, which many believe helps improve walking stability. While increased gait variability predicts future fall risk, increased variability is also caused by walking slower. Thus, we need to better understand how differences in age and walking speed independently affect dynamic stability during walking. We investigated if older adults improved their dynamic stability by walking slower, and how leg strength and flexibility (passive range of motion (ROM)) affected this relationship. Eighteen active healthy older and 17 healthy younger adults walked on a treadmill for 5min each at each of 5 speeds (80-120% of preferred). Local divergence exponents and maximum Floquet multipliers (FM) were calculated to quantify each subject's inherent local dynamic stability. The older subjects walked with the same preferred walking speeds as the younger subjects (p=0.860). However, these older adults still exhibited greater local divergence exponents (p<0.0001) and higher maximum FM (p<0.007) than the younger adults at all walking speeds. These older adults remained more locally unstable (p<0.04) even after adjusting for declines in both strength and ROM. In both age groups, local divergence exponents decreased at slower speeds and increased at faster speeds (p<0.0001). Maximum FM showed similar changes with speed (p<0.02). Both younger and older adults exhibited decreased instability by walking slower, in spite of increased variability. These increases in dynamic instability might be more sensitive indicators of future fall risk than changes in gait variability.  相似文献   

14.
It has been shown that gait parameters vary systematically with the slope of the surface when walking uphill (UH) or downhill (DH) (Andriacchi et al., 1977; Crowe et al., 1996; Kawamura et al., 1991; Kirtley et al., 1985; McIntosh et al., 2006; Sun et al., 1996). However, gait trials performed on inclined surfaces have been subject to certain technical limitations including using fixed speed treadmills (TMs) or, alternatively, sampling only a few gait cycles on inclined ramps. Further, prior work has not analyzed upper body kinematics. This study aims to investigate effects of slope on gait parameters using a self-paced TM (SPTM) which facilitates more natural walking, including measuring upper body kinematics and gait coordination parameters.Gait of 11 young healthy participants was sampled during walking in steady state speed. Measurements were made at slopes of +10°, 0° and −10°. Force plates and a motion capture system were used to reconstruct twenty spatiotemporal gait parameters. For validation, previously described parameters were compared with the literature, and novel parameters measuring upper body kinematics and bilateral gait coordination were also analyzed.Results showed that most lower and upper body gait parameters were affected by walking slope angle. Specifically, UH walking had a higher impact on gait kinematics than DH walking. However, gait coordination parameters were not affected by walking slope, suggesting that gait asymmetry, left-right coordination and gait variability are robust characteristics of walking. The findings of the study are discussed in reference to a potential combined effect of slope and gait speed. Follow-up studies are needed to explore the relative effects of each of these factors.  相似文献   

15.
Locomotor malfunction represents a major problem in some neurological disorders like stroke and spinal cord injury. Robot-assisted walking devices have been used during rehabilitation of patients with these ailments for regaining and improving walking ability. Previous studies showed the advantage of brain-computer interface (BCI) based robot-assisted training combined with physical therapy in the rehabilitation of the upper limb after stroke. Therefore, stroke patients with walking disorders might also benefit from using BCI robot-assisted training protocols. In order to develop such BCI, it is necessary to evaluate the feasibility to decode walking intention from cortical patterns during robot-assisted gait training. Spectral patterns in the electroencephalogram (EEG) related to robot-assisted active and passive walking were investigated in 10 healthy volunteers (mean age 32.3±10.8, six female) and in three acute stroke patients (all male, mean age 46.7±16.9, Berg Balance Scale 20±12.8). A logistic regression classifier was used to distinguish walking from baseline in these spectral EEG patterns. Mean classification accuracies of 94.0±5.4% and 93.1±7.9%, respectively, were reached when active and passive walking were compared against baseline. The classification performance between passive and active walking was 83.4±7.4%. A classification accuracy of 89.9±5.7% was achieved in the stroke patients when comparing walking and baseline. Furthermore, in the healthy volunteers modulation of low gamma activity in central midline areas was found to be associated with the gait cycle phases, but not in the stroke patients. Our results demonstrate the feasibility of BCI-based robotic-assisted training devices for gait rehabilitation.  相似文献   

16.
A protocol prescribing leg motion during the swing phase is developed for the planar lateral leg spring model of locomotion. Inspired by experimental observations regarding insect leg function when running over rough terrain, the protocol prescribes the angular velocity of the swing-leg relative to the body in a feedforward manner, yielding natural variations in the leg touch-down angle in response to perturbations away from a periodic orbit. Analysis of the reduced order model reveals that periodic gait stability and robustness to external perturbations depends strongly upon the angular velocity of the leg at touch-down. While the leg angular velocity at touch-down provides control over gait stability and can be chosen to stabilize unstable gaits, the resulting basin of stability is much smaller than that observed for the original lateral leg spring model with a fixed leg touch-down angle. Comparisons to experimental leg angular velocity data for running cockroaches reveal that while the proposed protocol is qualitatively correct, smaller leg angular accelerations occur during the second half of the swing phase. Modifications made to the recirculation protocol to better match experimental observations yield large improvements in the basin of stability.  相似文献   

17.
Current inverse dynamics models of the upper extremity (UE) are limited for the measurement of Lofstrand crutch-assisted gait. The objective of this study is to develop, validate, and demonstrate a three-dimensional (3-D) UE motion assessment system to quantify crutch-assisted gait in children. We propose a novel 3-D dynamic model of the UEs and crutches for quantification of joint motions, forces, and moments during Lofstrand crutch-assisted gait. The model is composed of the upper body (i.e., thorax, upper arms, forearms, and hands) and Lofstrand crutches to determine joint dynamics of the thorax, shoulders, elbows, wrists, and crutches. The model was evaluated and applied to a pediatric subject with myelomeningocele (MM) to demonstrate its effectiveness in the characterization of crutch gait during multiple walking patterns. The model quantified UE dynamics during reciprocal and swing-through crutch-assisted gait patterns. Joint motions and forces were greater during swing-through gait than reciprocal gait. The model is suitable for further application to pediatric crutch-user populations. This study has potential for improving the understanding of the biomechanics of crutch-assisted gait and may impact clinical intervention strategies and therapeutic planning of ambulation.  相似文献   

18.
Evaluating the effects of load carriage on gait balance stability is important in various applications. However, their quantification has not been rigorously addressed in the current literature, partially due to the lack of relevant computational indices. The novel Dynamic Gait Measure (DGM) characterizes gait balance stability by quantifying the relative effects of inertia in terms of zero-moment point, ground projection of center of mass, and time-varying foot support region. In this study, the DGM is formulated in terms of the gait parameters that explicitly reflect the gait strategy of a given walking pattern and is used for computational evaluation of the distinct balance stability of loaded walking. The observed gait adaptations caused by load carriage (decreased single support duration, inertia effects, and step length) result in decreased DGM values (p < 0.0001), which indicate that loaded walking motions are more statically stable compared with the unloaded normal walking. Comparison of the DGM with other common gait stability indices (the maximum Floquet multiplier and the margin of stability) validates the unique characterization capability of the DGM, which is consistently informative of the presence of the added load.  相似文献   

19.

Background

The timed up and go test (TUG) is a functional test which is increasingly used to evaluate patients with stroke. The outcome measured is usually global TUG performance-time. Assessment of spatiotemporal and kinematic parameters during the Oriented gait and Turn sub-tasks of the TUG would provide a better understanding of the mechanisms underlying patients’ performance and therefore may help to guide rehabilitation. The aim of this study was thus to determine the spatiotemporal and kinematic parameters which were most related to the walking and turning sub-tasks of TUG performance in stroke patients.

Methods

29 stroke patients carried out the TUG test which was recorded using an optoelectronic system in two conditions: spontaneous and standardized condition (standardized foot position and instructed to turn towards the paretic side). They also underwent a clinical assessment. Stepwise regression was used to determine the parameters most related to Oriented gait and Turn sub-tasks. Relationships between explanatory parameters of Oriented gait and Turn performance and clinical scales were evaluated using Spearman correlations.

Results

Step length and cadence explained 82% to 95% of the variance for the walking sub-tasks in both conditions. Percentage single support phase and contralateral swing phase (depending on the condition) respectively explained 27% and 56% of the variance during the turning sub-task in the spontaneous and standardized conditions.

Discussion and Conclusion

Step length, cadence, percentage of paretic single support phase and non-paretic swing phase, as well as dynamic stability were the main parameters related to TUG performance and they should be targeted in rehabilitation.  相似文献   

20.
Stability in legged locomotion   总被引:2,自引:0,他引:2  
Stability is a key element in a gait synthesis. Static stability margins are widely adopted in crawlers, while no similar approach has been developed for dynamically stable systems. Utilizing an analytical approach, we developed a set of easy-to-calculate stability indices to describe instantaneous static and dynamic (In)stability for a certain group of walking systems. The analysis is based on a thorough analysis of the interaction between ground reaction forces and the walking system. The indices are applicable to walking systems regardless of the number of legs or mechanical/biological design. We show that static and dynamic stability are independent of each other. We suggest a possible categorization of gait modes based on stability. Stability characteristics are analyzed in a healthy and highly pathological human gait. Finally, we discuss the applicability of the proposed methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号