首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low back pain (LBP) is one of the most common symptoms reported in adults. However, the contribution of postural control on the lumbar spine and hips during squatting has not been carefully investigated in individuals with LBP. The aim of this study was to compare three-dimensional kinematic changes of the lumbar spine and hips between subjects with and without idiopathic chronic LBP during squatting activities. In total, 30 subjects enrolled in the study (15 control subjects and 15 subjects with idiopathic chronic LBP). All participants were asked to perform squatting activities five times repeatedly while holding a load of 2 kg in a basket. The outcome measures included the Oswestry Disability Index (ODI) and kinematic angular displacement for the hips and lumbar spine. The LBP group demonstrated increased range of motion (ROM) in flexion of the dominant (T = ?2.14, p = 0.03) and non-dominant (T = ?2.11, p = 0.03) hips during squatting. The lumbar spine flexion ROM significantly decreased (T = 2.20, p = 0.03). The kinematic changes demonstrated interactions with region × group (F = 5.56, p = 0.02), plane × group (F = 4.36, p = 0.04), and region × plane (F = 2292.47, p = 0.001). The ODI level demonstrated significant interaction on combined effects of body region and plane (F = 4.91, p = 0.03). Therefore, the LBP group utilized a compensation strategy to increase hip flexion with a stiffened lumbar spine in the sagittal plane during squatting. This compensatory kinematic strategy could apply to clinical management used to enhance lumbar spine flexibility in subjects with idiopathic chronic LBP.  相似文献   

2.
This prospective study examined normalized stability differences based on dominance side and visual feedback. Subjects with low back pain (LBP) (n = 26; 9 men, 17 women) and without LBP (n = 28; 11 men, 17 women) participated in this study. All subjects were asked to maintain single leg standing balance with the contralateral hip flexed 90° for 25 s. The outcome measures included normalized holding duration and stability. The combined rotation (Rxyz) was also calculated to compare the upper and lower thorax and lumbar axes relative to the core spine axis. The holding duration was significantly different between groups (T = ?2.21, p = 0.03). The subjects without recurrent LBP (control group) demonstrated longer hold duration times (24.60 ± 4.2 s) than the subjects with recurrent LBP (21.2 ± 7.1 s). For the normalized hold duration, there was a significant difference between groups based on visual input (F = 7.13, p = 0.009). There was also a significant difference in standing stability based on visual input (F = 93.93, p = 0.0001) and trunk area (F = 101.51, p = 0.0001). In addition, the normalized stability was significantly different based on dominance and visual input (F = 11.28, p = 0.002). Therefore, trunk stability could prompt an uncoordinated bracing effect with poor proprioception from injury to passive structures or due to interference of pain during central processing of information in subjects with recurrent LBP.  相似文献   

3.
ObjectiveThe objective of this study was to measure hamstring muscle eccentric and concentric strength in individuals with and without low back pain (LBP). Two composite scores for the relative balance of eccentric to concentric strength at the different movement velocities were calculated (the DEC and SEC), to determine whether or not self perceived pain, disability, or fear avoidance measures were associated with hamstring strength characteristics.DesignCross-sectional repeated measures design.SettingUniversity laboratory.ParticipantsFifteen individuals with chronic LBP and 15 matched controls.Main outcome measuresIsokinetic eccentric and concentric strength at 30° s?1 and 120° s?1. Composite scores (DEC and SEC) based on peak torque were calculated to evaluate the relationship between the different muscle actions across the test velocities. Self report measures included the Oswestry disability index, general health and well being, fear avoidance, and pain.ResultsEccentric/concentric strength ratio at 30° s?1 was higher for the LBP group (F(1,58) = 4.81, p = 0.032). The SEC was also higher for the LBP (F(1,58) = 5.97, p = 0.018). Fear avoidance beliefs and mental well-being were significantly associated with the SEC only in the LBP group (adjusted r2 = 0.26, (F(2,27) = 5.8, p = .008). For the control group both the DEC and SEC were associated with self report measures. Matched differences between groups’ for the SEC were best explained by fear avoidance beliefs about work (adjusted r2 = 0.12, F(1,28) = 5.1, p = 0.03).ConclusionReduced concentric relative to eccentric strength is best identified by the SEC. The SEC was significantly associated with impaired self report measures of fear avoidance and mental well being in individuals with LBP. Differences between groups for the SEC were best explained by fear avoidance beliefs about work.  相似文献   

4.
It is generally accepted that spine control and stability are relevant for the prevention and rehabilitation of low back pain (LBP). However, there are conflicting results in the literature in regards to how these variables are modified in the presence of LBP. The aims of the present work were twofold: (1) to use noxious stimulation to induce LBP in healthy individuals to assess the direct effects of pain on control (quantified by the time-dependent behavior of kinematic variance), and (2) to assess whether the relationship between pain and control is moderated by psychological features (i.e. pain catastrophizing (PC) and kinesiophobia). Participants completed three conditions (baseline, pain, recovery) during a task involving completion of 35 cycles of a repetitive unloaded spine flexion/extension movement. The neuromuscular control of spine movements was assessed during each condition using maximum finite-time Lyapunov exponents (λmax). Nociceptive stimulus involved injection of hypertonic saline into the interspinous ligament, eliciting pain that was greater than baseline and recovery (p < 0.001). Although there was no overall main effect of the nociceptive stimulation (i.e. pain) on λmax when the whole group was included in the statistical model (p = 0.564), when data were considered separately for those with high and low PC, two distinct and well established responses to the pain were observed. Specifically, those with high PC tightened their control (i.e. stabilized), whereas those with low PC loosened their control (i.e. destabilized). This study provides evidence that individuals’ beliefs and attitudes towards pain are related to individual-specific motor behaviors, and suggests that future research studying spine control/stability and LBP should account for these variables.  相似文献   

5.
The purpose of this study was to examine the muscular activities and kinetics of the trunk during unstable sitting in healthy and LBP subjects. Thirty-one healthy subjects and twenty-three LBP subjects were recruited. They were sat on a custom-made chair mounted on a force plate. Each subject was asked to regain balance after the chair was tilted backward at 20°, and then released. The motions of the trunk and trunk muscle activity were examined. The internal muscle moment and power at the hip and lumbar spine joints were calculated using the force plate and motion data. No significant differences were found in muscle moment and power between healthy and LBP subjects (p > 0.05). The duration of contraction of various trunk muscles and co-contraction were significantly longer in the LBP subjects (p < 0.05) when compared to healthy subjects, and the reaction times of the muscles were also significantly reduced in LBP subjects (p < 0.05). LBP subjects altered their muscle strategies to maintain balance during unstable sitting, but these active mechanisms appear to be effective as trunk balance was not compromised and the internal moment pattern remained similar. The changes in muscle strategies may be the causes of LBP or the result of LBP with an attempt to protect the spine.  相似文献   

6.
7.

Background

Postural balance is vital for safely carrying out many daily activities, such as locomotion. The purpose of this study was to determine how changes in normal standing (NS) and standing with toe-extension (SWT) impact postural control during quiet standing. Furthermore, the research aimed to examine the extent to which the effect of these factors differed between genders.

Methodology/Principal Findings

Thirty healthy young adults (age = 21.2±1.3 y; height = 1.63±0.07 m; mass = 56.0±9.3 kg) with no prior lower limb injuries participated in the study. A postural stability test using the Biodex Balance System was used for both NS and SWT conditions. The three measurements from the BBS were Overall Stability Index (OSI), Medial-Lateral Stability Index (MLSI) and Anterior-Posterior Stability Index (APSI). No significant difference was found between NS and SWT in the OSI, MLSI or APSI (F 2, 28 = 3.357, p = 0.077). The main difference between the stability index scores was significant (F 2, 28 = 275.1, p<0.001). The Bonferroni post-hoc test showed significant differences between the OSI and MLSI (p<0.001); the OSI and APSI (p<0.001); and the MLSI and the APSI (p<0.001). Significant differences were found during NS (p<0.001), for the MLSI when compared with the APSI, but this was not found during the SWT condition. Additionally, no gender effects were proven to exist that altered postural sway during quiet standing.

Conclusions/Significance

This study reveals significant interaction between the stability indices measured; OSI, APSI and MLSI in both NS and SWT. Standing with toe extended does not have a significant impact on an individual’s ability to control their balance during normal quiet standing. However, the findings revealed that the sway tendency in the medial-lateral direction might serve as a factor in an individual’s ability to regain balance.  相似文献   

8.
Central Nervous System modulates the motor activities of all trunk muscles to concurrently regulate the intra-abdominal and intra-thoracic pressures. The study aims to evaluate the effect of inspiratory and expiratory loads on abdominal muscle activity during breathing in healthy subjects. Twenty-three higher education students (21.09 ± 1.56 years; 8 males) breathed at a same rhythm (inspiration: two seconds; expiration: four seconds) without load and with 10% of the maximal inspiratory or expiratory pressures, in standing. Surface electromyography was performed to assess the activation intensity of rectus abdominis, external oblique and transversus abdominis/internal oblique muscles, during inspiration and expiration. During inspiration, transversus abdominis/internal oblique activation intensity was significantly lower with inspiratory load when compared to without load (p = 0.009) and expiratory load (p = 0.002). During expiration, the activation intensity of all abdominal muscles was significantly higher with expiratory load when compared to without load (p < 0.05). The activation intensity of external oblique (p = 0.036) and transversus abdominis/internal oblique (p = 0.022) was significantly higher with inspiratory load when compared to without load. Transversus abdominis/internal oblique activation intensity was significantly higher with expiratory load when compared to inspiratory load (p < 0.001).Transversus abdominis/internal oblique seems to be the most relevant muscle to modulate the intra-abdominal pressure for the breathing mechanics.  相似文献   

9.
The aim of this study was to evaluate electromyographic (EMG) responses of erector spinae (ES) and lower limbs’ muscles to dynamic forward postural perturbation (FPP) and backward postural perturbation (BPP) in patients with adolescent idiopathic scoliosis (AIS) and in a healthy control group. Ten right thoracic AIS patients (Cobb = 21.6 ± 4.4°) and 10 control adolescents were studied. Using bipolar surface electrodes, EMG activities of ES muscle at T10 (EST10) and L3 (ESL3) levels, biceps femoris (BF), gastrocnemius lateralis (G) and rectus femoris (RF) muscles in the right and the left sides during FPP and BPP were evaluated. Muscle responses were measured over a 1s time window after the onset of perturbation. In FPP test, the EMG responses of right EST10, ESL3 and BF muscles in the scoliosis group were respectively about 1.40 (p = 0.035), 1.43 (p = 0.07) and 1.45 (p = 0.01) times greater than those in control group. Also, in BPP test, at right ESL3 muscle of the scoliosis group the EMG activity was 1.64 times higher than that in the control group (p = 0.01). The scoliosis group during FPP displayed asymmetrical muscle responses in EST10 and BF muscles. This asymmetrical muscle activity in response to FPP is hypothesized to be a possible compensatory strategy rather than an inherent characteristic of scoliosis.  相似文献   

10.
Greater fatigability across lumbar extensors has been reported in persons with chronic low back pain (LBP), however, extensor atrophy tends to be local to the site of pain. Therefore, specific ultrasound guided local and remote intramuscular electromyographic recordings were undertaken during an isometric horizontal trunk hold in two carefully matched cohorts; persons with and without LBP. The test was performed to self-determined maximal hold time, and the control group held the horizontal position longer (P < 0.001). A power spectral analysis was performed to calculate the normalized median frequency (NMF) slope for both the first and last 30 s of the fatigue test due to the group difference in hold times. There were no significant group differences in NMF slope at the first 30 s of testing (P = 0.650). The NMF slope for the first and last 30 s was not different in healthy subjects (P = 0.688), but was different in persons with LBP, illustrated by shallowing of the slope at the last 30 s of the test (P = 0.008). A between muscle comparison in the LBP group showed greater non-linear behavior in the deep multifidus (painful region) in contrast to T10 longissimus thoracis (nonpainful region) (P = 0.013). Possible explanations for these findings are discussed.  相似文献   

11.
Purpose of the studyThe influence of the stomatognathic apparatus on body posture is a continuously discussed topic with contrasting results. The aim of this study is to analyze differences in postural stability between subjects with and without myogenous TMD.Methods25 subjects affected by myogenous TMD according with DC/TMD (6 males, 19 females; mean age 31.75 ± 6.68 years) and a healthy control group of 19 subjects (4 Males, 15 Females; mean age 27.26 ± 3.85 years) were enrolled in the study.Both groups underwent a posturo-stabilometric force platform exam under different mandibular and visual conditions. Sway area and sway velocity of the COP (Center Of foot Pressure) posturo-stabilometric parameters were evaluated and compared applying Mann-U-Whitney statistical test.ResultsThe sway area and sway velocity parameters resulted statistically significantly higher in the TMD group (sway area p < 0.01; sway velocity p < 0.05) in mandibular maximum intercuspation and rest positions with eyes open.ConclusionsThis study demonstrates a significant difference in body postural stability between subjects with myogenous TMD and healthy controls. In particular, sway area and sway velocity postural parameters are increased in these subjects.  相似文献   

12.
People with non-specific low back pain (LBP) show hampered performance of dynamic tasks such as sit-to-stance-to-sit movement. However, the underlying mechanisms remain obscure. Therefore, the aim of this study was to assess if proprioceptive impairments influence the performance of the sit-to-stance-to-sit movement.First, the proprioceptive steering of 20 healthy subjects and 106 persons with mild LBP was identified during standing using muscle vibration. Second, five sit-to-stance-to-sit repetitions on a stable support and on foam were performed as fast as possible. Total duration, phase duration, center of pressure (COP) displacement, pelvic and thoracic kinematics were analyzed.People with LBP used less lumbar proprioceptive afference for postural control compared to healthy people (P < 0.0001) and needed more time to perform the five repetitions in both postural conditions (P < 0.05). These time differences were determined in the stance and sit phases (transition phases), but not in the focal movement phases. Moreover, later onsets of anterior pelvic rotation initiation were recorded to start both movement sequences (P < 0.05) and to move from sit-to-stance on foam (P < 0.05).Decreased use of lumbar proprioceptive afference in people with LBP seemed to have a negative influence on the sit-to-stance-to-sit performance and more specifically on the transition phases which demand more control (i.e. sit and stance). Furthermore, slower onsets to initiate the pelvis rotation to move from sit-to-stance illustrate a decrease in pelvic preparatory movement in the LBP group.  相似文献   

13.
Technical advancements in instrumentation and analytical methods have improved the ability of assessing balance control. This study investigated the effects of early stages of aging on postural sway using traditional and contemporary postural indices from different domains. Eleven healthy young adults and fourteen healthy non-faller older adults performed two postural tasks: (a) functional limits of stability and (b) unperturbed bipedal stance for 120 s. Postural indices from spatial, temporal, frequency, and structural domains were extracted from the body’s center of pressure (COP) signals and its Rambling and Trembling components. Results revealed a preservation of functional limits of upright stability in older adults accompanied by larger, faster, and shakier body sway in both anterior-posterior and medio-lateral directions; increased medio-lateral sway frequency; increased irregularity of body sway pattern in time in both directions; and increased area, variability, velocity, and jerkiness of both rambling and trembling components of the COP displacement in the anterior-posterior direction (p < 0.02). Such changes might be interpreted as compensatory adjustments to the age-related decline of sensory, neural, and motor functions. In conclusion, balance assessment using postural indices from different domains extracted from the COP displacement was able to capture subtle effects of the natural process of aging on the mechanisms of postural control. Our findings suggest the use of such indices as potential markers for postural instability and fall risk in older adults.  相似文献   

14.
BackgroundLow back pain (LBP) development has been associated with occupational standing. Increased hip and trunk muscle co-activation is considered to be predisposing for LBP development during standing in previously asymptomatic individuals. The purpose of this work was to investigate muscle activation and LBP responses to a prescribed exercise program. Pain-developing (PD) individuals were expected to have decreased LBP and muscle co-activation following exercise intervention.MethodsElectromyography (EMG) data were recorded from trunk and hip muscle groups during 2-h of standing. An increase of >10 mm on visual analog scale (VAS) during standing was threshold for PD categorization. Participants were assigned to progressive exercise program with weekly supervision or control (usual activity) for 4 weeks then re-tested.ResultsForty percent were categorized as PD on day 1, VAS = 24.2 (±4.0) mm. PD exercisers (PDEX) had lower VAS scores (8.93 ± 3.66 mm) than PD control (PDCON) (16.5 ± 6.3 mm) on day 2 (p = 0.007). Male PDEX had decreased gluteus medius co-activation levels (p < 0.05) on day 2.DiscussionThe exercise program proved beneficial in reducing LBP during standing. There were changes in muscle activation patterns previously associated with LBP. Predisposing factors for LBP during standing were shown to change positively with appropriate exercise intervention.  相似文献   

15.
Torque steadiness and low-frequency fatigue (LFF) were examined in the human triceps brachii after concentric or eccentric fatigue protocols. Healthy young males (n = 17) performed either concentric or eccentric elbow extensor contractions until the eccentric maximal voluntary torque decreased to 75% of pre-fatigue for both (concentric and eccentric) protocols. The number of concentric contractions was greater than the number of eccentric contractions needed to induce the same 25% decrease in eccentric MVC torque (52.2 ± 2.9 vs. 41.5 ± 2.1 for the concentric and eccentric protocols, respectively, p < .01). The extent of peripheral fatigue was ~12% greater after the concentric compared to the eccentric protocol (twitch amplitude), whereas LFF (increase in double pulse torque/single pulse torque), was similar across protocols. Steadiness, or the ability for a subject to hold a submaximal isometric contraction, was ~20 % more impaired during the Ecc protocol (p = .052). Similarly, the EMG activity required to hold the torque steady was nearly 20% greater after the eccentric compared to concentric protocol. These findings support that task dependent eccentric contractions preferentially alter CNS control during a precision based steadiness task.  相似文献   

16.
17.
《Reproductive biology》2014,14(4):298-301
The acute effects of short-term glutamate administration on the number of antral follicles and ovulation rate were examined in adult goats. Neither live weight (44.5 ± 1.3 kg) nor body condition (3.3 ± 0.8 units) differed between the control (untreated) and glutamate-treated (0.175 mg/kg) animals (p > 0.05). However, the number of antral follicles (3.4 vs. 2.1, p = 0.05) and ovulation rate (2.5 vs. 1.5, p = 0.05) was higher in the glutamate-administered group than in the controls.  相似文献   

18.
The purpose of this study was to determine if 8 weeks of exercise affects motor control in people with chronic low back pain (CLBP), measured by anticipatory (APAs) and compensatory postural adjustments (CPAs). APAs and CPAs were measured prior to and following 8 weeks in two groups of people with CLBP: an exercise group (n = 12) who attended three exercise sessions per week for 8 weeks; and a non-exercise control group (n = 12) who were advised to continue their usual activities for the duration of the study. APAs and CPAs were recorded during unilateral arm flexion, bilaterally from rectus abdominis (RA), transverse abdominis/internal oblique (TA/IO), and erector spinae (ES) via surface electromyography. Analysis of muscle onsets and APA amplitudes suggests APAs did not change for either group. Ipsi-lateral TA/IO CPAs increased for the exercise group and ipsi-lateral TA/IO CPAs decreased for the control group. Only exercise promoted a pattern of TA/IO activity during CPAs similar to healthy individuals, suggesting improved control of rotational torques. These results show motor control improvement following exercise in people with CLBP, highlighted by improved side specific control of TA/IO.  相似文献   

19.
Individuals with knee OA often exhibit greater co-contraction of antagonistic muscle groups surrounding the affected joint which may lead to increases in dynamic joint stiffness. These detrimental changes in the symptomatic limb may also exist in the contralateral limb, thus contributing to its risk of developing knee osteoarthritis. The purpose of this study is to investigate the interlimb symmetry of dynamic knee joint stiffness and muscular co-contraction in knee osteoarthritis.Muscular co-contraction and dynamic knee joint stiffness were assessed in 17 subjects with mild to moderate unilateral medial compartment knee osteoarthritis and 17 healthy control subjects while walking at a controlled speed (1.0 m/s). Paired and independent t-tests determined whether significant differences exist between groups (p < 0.05).There were no significant differences in dynamic joint stiffness or co-contraction between the OA symptomatic and OA contralateral group (p = 0.247, p = 0.874, respectively) or between the OA contralateral and healthy group (p = 0.635, p = 0.078, respectively). There was no significant difference in stiffness between the OA symptomatic and healthy group (p = 0.600); however, there was a slight trend toward enhanced co-contraction in the symptomatic knees compared to the healthy group (p = 0.051).Subjects with mild to moderate knee osteoarthritis maintain symmetric control strategies during gait.  相似文献   

20.
We examined the influence of the application of postural taping on the kinematics of the lumbo–pelvic–hip complex, electromyographic (EMG) activity of back extensor muscles, and the rating of perceived exertion (RPE) in the low back during patient transfer. In total, 19 male physical therapists with chronic low back pain performed patient transfers with and without the application of postural taping on the low back. The kinematics of the lumbo–pelvic–hip complex and EMG activity of the erector spinae were recorded using a synchronized 3-D motion capture system and surface EMG. RPE was measured using Borg’s CR-10 scale. Differences in kinematic data, EMG activity, and RPE between the two conditions were analyzed using a paired t-test. Peak angle and range of motion (ROM) of lumbar flexion, EMG activity of the erector spinae, and RPE decreased significantly, while peak angle and ROM of pelvic anterior tilt and hip flexion increased significantly during patient transfer under the postural taping condition versus no taping (p < 0.05). These findings suggest that postural taping can change back extensor muscle activity and RPE as well as the kinematics of the lumbo–pelvic–hip complex in physical therapists with chronic low back pain during patient transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号