首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optical motion capture is commonly used in biomechanics to measure human kinematics. However, no studies have yet examined the accuracy of optical motion capture in a large capture volume (>100 m3), or how accuracy varies from the center to the extreme edges of the capture volume. This study measured the dynamic 3D errors of an optical motion capture system composed of 42 OptiTrack Prime 41 cameras (capture volume of 135 m3) by comparing the motion of a single marker to the motion reported by a ThorLabs linear motion stage. After spline interpolating the data, it was found that 97% of the capture area had error below 200 μm. When the same analysis was performed using only half (21) of the cameras, 91% of the capture area was below 200 μm of error. The only locations that exceeded this threshold were at the extreme edges of the capture area, and no location had a mean error exceeding 1 mm. When measuring human kinematics with skin-mounted markers, uncertainty of marker placement relative to underlying skeletal features and soft tissue artifact produce errors that are orders of magnitude larger than the errors attributed to the camera system itself. Therefore, the accuracy of this OptiTrack optical motion capture system was found to be more than sufficient for measuring full-body human kinematics with skin-mounted markers in a large capture volume (>100 m3).  相似文献   

2.
The trunk has a multi-segmental structure and is composed of the cervical, thoracic, and lumber spines and surrounding soft tissue elements; this allows flexible deformation during dynamic movements. The purpose of this study was to quantitatively assess trunk deformation during dynamic movement. Ten male subjects performed running at four different speeds: 8 km/h, 10 km/h, 12 km/h, and 14 km/h. Forty reflective markers were placed on the backs of these individuals to define 56 small triangular areas, and three-dimensional kinematic data was recorded with a motion capture system. The coefficients of variation (CV) of the horizontal and vertical lengths between two adjacent markers and the standard deviation (SD) of the normal vectors of triangular areas were calculated as measures for translational and angular trunk deformation, respectively. Up to about 14% of CV and 78° of SD appeared as the measure of translational and angular deformation, respectively. These results imply that the trunk underwent a significant amount of position-specific deformation. These findings would be useful in the construction of an optimal trunk segment model to represent the complex and flexible trunk movement during dynamic movements.  相似文献   

3.
Instrumented-pointers are often used to calibrate anatomical landmarks in biomechanical analyses. However, little is known about the effect of altering the orientation of the pointer during calibration on the co-ordinates recorded. Incorrect positioning of a landmark influences the axes created, and thus the kinematic data recorded. This study aimed to investigate the reliability of the pointer method for anatomical calibration. Two points were drawn onto a fixed box to resemble knee joint epicondyles, then a custom-made pointer was used to define the positions of these landmarks in three-dimensions. Twenty different pointer-orientations were chosen, and the position of the pointer in each of these orientations was recorded 8 times. Euclidean distances between single points were calculated for both landmarks and compared statistically (α = 0.05). Average Euclidean distances between all reconstructed points were 3.2±1.4 mm (range: 0.3–7.1 mm) for one landmark and 3.3±1.5 mm (range: 0.3–7.9mm) for the other. The x- and y-co-ordinates recorded differed statistically when the pointer was moved about the X and Y axes (anterior/posterior and superior/inferior to landmark) (p < 0.05). No statistical differences were found between co-ordinates recorded when the pointer was moved around the Z axes (p > 0.05). ICC values for all co-ordinates were excellent, highlighting the reliability of the method (ICC > 0.90). These results support this method of anatomical calibration; however, we recommend that pointers be consistently held in a neutral oriented position (where the handle is not anterior, posterior, superior or inferior to the landmark) during calibration, to reduce the likelihood of calibration errors.  相似文献   

4.
The preparatory motion of a defensive motion in contact sport such as basketball should be small and involve landing on both feet for strict time and motion constraints. We thus proposed the movement creating a unweighted state. Ten basketball players performed a choice reaction sidestepping task with and without the voluntary, continuous vertical fluctuation movement. The results indicated that the preparatory movement shortened the time of their sidestep initiation (301 vs. 314 ms, p = 0.011) and reaching performance (883 vs. 910 ms, p = 0.018) but did not increase their peak ground reaction force or movement velocity. The mechanism of the improvement was estimated to be the following: in the preparation phase, the vertical body fluctuation created the force fluctuation; after the direction signal, the unweighted state can shorten the time required to initiate the sidestepping (unweighted: 279 ms; weighted: 322 ms, p = 0.002); around the initiation phase, the dropping down of the body and weighted state can contribute to the reaching performance. We conducted additional experiment investigating muscle–tendon-complex dynamics and muscle activity using ultrasound device and electromyography. The result suggests that the building up of active state of muscle might explain the improvement of sidestepping performance.  相似文献   

5.
The use of surface electromyography (SEMG) in vibration studies is problematic since motion artifacts occupy the same frequency band with the SEMG signal containing information on synchronous motor unit activity. We hypothesize that using a harsher, 80–500 Hz band-pass filter and using rectification can help eliminate motion artifacts and provide a way to observe synchronous motor unit activity that is phase locked to vibration using SEMG recordings only. Multi Motor Unit (MMU) action potentials using intramuscular electrodes along with SEMG were recorded from the gastrocnemius medialis (GM) of six healthy male volunteers. Data were collected during whole body vibration, using vibration frequencies of 30 Hz, 35 Hz, 40 Hz or 50 Hz. A computer simulation was used to investigate the efficacy of filtering under different scenarios: with or without artifacts and/or motor unit synchronization. Our findings indicate that motor unit synchronization took place during WBV as verified by MMU recordings. A harsh filtering regimen along with rectification proved successful in demonstrating motor unit synchronization in SEMG recordings. Our findings were further supported by the results from the computer simulation, which indicated that filtering and rectification was efficient in discriminating motion artifacts from motor unit synchronization. We suggest that the proposed signal processing technique may provide a new methodology to evaluate the effects of vibration treatments using only SEMG. This is a major advantage, as this non-intrusive method is able to overcome movement artifacts and also indicate the synchronization of underlying motor units.  相似文献   

6.
AimTo assess target volume coverage during prostate image-guided radiotherapy based on bony anatomy alignment and to assess possibility of safety margin reduction.BackgroundImplementation of IGRT should influence safety margins. Utilization of cone-beam CT provides current 3D anatomic information directly in irradiation position. Such information enables reconstruction of the actual dose distribution.Materials and methodsSeventeen prostate patients were treated with daily bony anatomy image-guidance. Cone-beam CT (CBCT) scans were acquired once a week immediately after bony anatomy alignment. After the prostate, seminal vesicles, rectum and bladder were contoured, the delivered dose distribution was reconstructed. Target dose coverage was evaluated by the proportion of the CTV encompassed by the 95% isodose. Original plans employed a 1 cm safety margin. Alternative plans assuming a smaller 7 mm margin between CTV and PTV were evaluated in the same way. Rectal and bladder volumes were compared with the initial ones. Rectal and bladder volumes irradiated with doses higher than 75 Gy, 70 Gy, 60 Gy, 50 Gy and 40 Gy were analyzed.ResultsIn 12% of reconstructed plans the prostate coverage was not sufficient. The prostate underdosage was observed in 5 patients. Coverage of seminal vesicles was not satisfactory in 3% of plans. Most of the target underdosage corresponded to excessive rectal or bladder filling. Evaluation of alternative plans assuming a smaller 7 mm margin revealed 22% and 11% of plans where prostate and seminal vesicles coverage, respectively, was compromised. These were distributed over 8 and 7 patients, respectively.ConclusionSufficient dose coverage of target volumes was not achieved for all patients. Reducing of safety margin is not acceptable. Initial rectal and bladder volumes cannot be considered representative for subsequent treatment.  相似文献   

7.
AimPatient setup errors were aimed to be reduced in radiotherapy (RT) of head-and-neck (H&N) cancer. Some remedies in patient setup procedure were proposed for this purpose.BackgroundRT of H&N cancer has challenges due to patient rotation and flexible anatomy. Residual position errors occurring in treatment situation and required setup margins were estimated for relevant bony landmarks after the remedies made in setup process and compared with previous results.Materials and methodsThe formation process for thermoplastic masks was improved. Also image matching was harmonized to the vertebrae in the middle of the target and a 5 mm threshold was introduced for immediate correction of systematic errors of the landmarks. After the remedies, residual position errors of bony landmarks were retrospectively determined from 748 orthogonal X-ray images of 40 H&N cancer patients. The landmarks were the vertebrae C1–2, C5–7, the occiput bone and the mandible. The errors include contributions from patient rotation, flexible anatomy and inter-observer variation in image matching. Setup margins (3D) were calculated with the Van Herk formula.ResultsSystematic residual errors of the landmarks were reduced maximally by 49.8% (p  0.05) and the margins by 3.1 mm after the remedies. With daily image guidance the setup margins of the landmarks were within 4.4 mm, but larger margins of 6.4 mm were required for the mandible.ConclusionsRemarkable decrease in the residual errors of the bony landmarks and setup margins were achieved through the remedies made in the setup process. The importance of quality assurance of the setup process was demonstrated.  相似文献   

8.
The human hip joint is normally represented as a spherical hinge and its centre of rotation is used to construct femoral anatomical axes and to calculate hip joint moments. The estimate of the hip joint centre (HJC) position using a functional approach is affected by stereophotogrammetric errors and soft tissue artefacts. The aims of this study were (1) to assess the accuracy with which the HJC position can be located using stereophotogrammetry and (2) to investigate the effects of hip motion amplitude on this accuracy. Experiments were conducted on four adult cadavers. Cortical pins, each equipped with a marker cluster, were implanted in the pelvis and femur, and eight skin markers were attached to the thigh. Recordings were made while an operator rotated the hip joint exploiting the widest possible range of motion. For HJC determination, a proximal and a distal thigh skin marker cluster and two recent analytical methods, the quartic sphere fit (QFS) method and the symmetrical centre of rotation estimation (SCoRE) method, were used. Results showed that, when only stereophotogrammetric errors were taken into account, the analytical methods performed equally well. In presence of soft tissue artefacts, HJC errors highly varied among subjects, methods, and skin marker clusters (between 1.4 and 38.5 mm). As expected, larger errors were found in the subject with larger soft tissue artefacts. The QFS method and the distal cluster performed generally better and showed a mean HJC location accuracy better than 10 mm over all subjects. The analysis on the effect of hip movement amplitude revealed that a reduction of the amplitude does not improve the HJC location accuracy despite a decrease of the artefact amplitude.  相似文献   

9.
To reduce the impact of the soft tissue artefact (STA) on the estimate of skeletal movement using stereophotogrammetric and skin-marker data, multi-body kinematics optimisation (MKO) and extended Kalman filters (EKF) have been proposed. This paper assessed the feasibility and efficiency of these methods when they embed a mathematical model of the STA and simultaneously estimate the ankle, knee and hip joint kinematics and the model parameters. A STA model was used that provides an estimate of the STA affecting the marker-cluster located on a body segment as a function of the kinematics of the adjacent joints. The MKO and the EKF were implemented with and without the STA model. To assess these methods, intra-cortical pin and skin markers located on the thigh, shank, and foot of three subjects and tracked during the stance phase of running were used. Embedding the STA model in MKO and EKF reduced the average RMS of marker tracking from 12.6 to 1.6 mm and from 4.3 to 1.9 mm, respectively, showing that a STA model trial-specific calibration is feasible. Nevertheless, with the STA model embedded in MKO, the RMS difference between the estimated and the reference joint kinematics determined from the pin markers slightly increased (from 2.0 to 2.1 deg) On the contrary, when the STA model was embedded in the EKF, this RMS difference was slightly reduced (from 2.0 to 1.7 deg) thus showing a better potentiality of this method to attenuate STA effects and improve the accuracy of joint kinematics estimate.  相似文献   

10.
The aim of this study was to describe the characteristics of spasticity, quantified as muscle activity during stretch, during passive and active movement. For this cross sectional study 19 stroke patients with spasticity in the lower limb were recruited. Reflex activity was studied with surface electromyography of knee flexor and extensor muscles during passive and active movement of the lower leg.On both the affected and unaffected side, root mean square values of the knee extensor muscles, while stretched, were higher during active than during passive movement (p < 0.05). For the vastus lateralis (VL) the correlation was moderate (ρ = 0.54, p = 0.022), for the rectus femoris (RF) high (ρ = 0.83, p < 0.001). For the semitendinosus (ST) the correlation was low (ρ = 0.27) and not significant.During active movement the correlation between VL activity and activity of the antagonist ST, as an indicator for co-contraction of the affected muscles, was marked (ρ = 0.73, p = 0.001). A moderate negative correlation was found between reflex activity of RF during passive stretch and the active range of motion (ρ = ?0.51, p = 0.027).The results show that a passive stretch test alone is insufficient either as assessment method for spasticity during active motor tasks or as a measure for motor control.  相似文献   

11.
The objective of this study is to develop an automatic clip localization procedure for breast cancer patient setup based on Digital Tomosynthesis (DTS) and to characterize its performance with respect to the overall registration accuracy and robustness. The study was performed under an IRB-approved protocol for 12 breast cancer patients with surgical clips implanted around the tumor cavity. The registration of DTS images to planning CTs was performed using an automatic algorithm developed to overcome specific challenges of localization and registration of clips in the breast setup images. The automatic method consisted of auto-segmentation (intensity-based thresholding with a priori knowledge about clip size and location to distinguish clips from bony features) and auto-registration of the segmented clip clusters. To determine the inherent accuracy and robustness of the registration algorithm, additional simulated DTS data was analyzed. The developed algorithm is efficient in removing false positives and negatives and provides an accuracy of better than 2.3 mm for 60° and 3.3 mm for 40° DTS. When incorporated in clinical software, this algorithm helps to facilitate fast and accurate setup evaluation with minimal dose delivered to patients.  相似文献   

12.
While the neuroprotective benefits of estrogen and progesterone in critical illness are well established, the data regarding the effects of androgens are conflicting. Surgical repair of congenital heart disease is associated with significant morbidity and mortality, but there are scant data regarding the postoperative metabolism of sex steroids in this setting. The objective of this prospective observational study was to compare the postoperative sex steroid patterns in pediatric patients undergoing major cardiac surgery (MCS) versus those undergoing less intensive non-cardiac surgery. Urinary excretion rates of estrogen, progesterone, and androgen metabolites (μg/mmol creatinine/m2 body surface area) were determined in 24-h urine samples before and after surgery using gas chromatography–mass spectrometry in 29 children undergoing scheduled MCS and in 17 control children undergoing conventional non-cardiac surgery. Eight of the MCS patients had Down’s syndrome. There were no significant differences in age, weight, or sex between the groups. Seven patients from the MCS group showed multi-organ dysfunction after surgery. Before surgery, the median concentrations of 17β-estradiol, pregnanediol, 5α-dihydrotestosterone (DHT), and dehydroepiandrosterone (DHEA) were (control/MCS) 0.1/0.1 (NS), 12.4/11.3 (NS), 4.7/4.4 (NS), and 2.9/1.1 (p = 0.02). Postoperatively, the median delta 17β-estradiol, delta pregnanediol, delta DHT, and delta DHEA were (control/MCS) 0.2/6.4 (p = 0.0002), −3.2/23.4 (p = 0.013), −0.6/3.7 (p = 0.0004), and 0.5/4.2 (p = 0.004). Postoperative changes did not differ according to sex. We conclude that MCS, but not less intensive non-cardiac surgery, induced a distinct postoperative increase in sex steroid levels. These findings suggest that sex steroids have a role in postoperative metabolism following MCS in prepubertal children.  相似文献   

13.
AimTo present practical examples of our new algorithm for reconstruction of 3D dose distribution, based on the actual MLC leaf movement.BackgroundDynaLog and RTplan files were used by DDcon software to prepare a new RTplan file for dose distribution reconstruction.Materials and methodsFour different clinically relevant scenarios were used to assess the feasibility of the proposed new approach: (1) Reconstruction of whole treatment sessions for prostate cancer; (2) Reconstruction of IMRT verification treatment plan; (3) Dose reconstruction in breast cancer; (4) Reconstruction of interrupted arc and complementary plan for an interrupted VMAT treatment session of prostate cancer. The applied reconstruction method was validated by comparing reconstructed and measured fluence maps. For all statistical analysis, the U Mann–Whitney test was used.ResultsIn the first two and the fourth cases, there were no statistically significant differences between the planned and reconstructed dose distribution (p = 0.910, p = 0.975, p = 0.893, respectively). In the third case the differences were statistically significant (p = 0.015). Treatment plan had to be reconstructed.ConclusionDeveloped dose distribution reconstruction algorithm presents a very useful QA tool. It provides means for 3D dose distribution verification in patient volume and allows to evaluate the influence of actual MLC leaf motion on the dose distribution.  相似文献   

14.
Skin marker-based motion analysis has been widely used in biomechanical studies and clinical applications. Unfortunately, the accuracy of knee joint secondary motions is largely limited by the nonrigidity nature of human body segments. Numerous studies have investigated the characteristics of soft tissue movement. Utilizing these characteristics, we may improve the accuracy of knee joint motion measurement. An optimizer was developed by incorporating the soft tissue movement patterns at special bony landmarks into constraint functions. Bony landmark constraints were assigned to the skin markers at femur epicondyles, tibial plateau edges, and tibial tuberosity in a motion analysis algorithm by limiting their allowed position space relative to the underlying bone. The rotation matrix was represented by quaternion, and the constrained optimization problem was solved by Fletcher's version of the Levenberg-Marquardt optimization technique. The algorithm was validated by using motion data from both skin-based markers and bone-mounted markers attached to fresh cadavers. By comparing the results with the ground truth bone motion generated from the bone-mounted markers, the new algorithm had a significantly higher accuracy (root-mean-square (RMS) error: 0.7 ± 0.1 deg in axial rotation and 0.4 ± 0.1 deg in varus-valgus) in estimating the knee joint secondary rotations than algorithms without bony landmark constraints (RMS error: 1.7 ± 0.4 deg in axial rotation and 0.7 ± 0.1 deg in varus-valgus). Also, it predicts a more accurate medial-lateral translation (RMS error: 0.4 ± 0.1 mm) than the conventional techniques (RMS error: 1.2 ± 0.2 mm). The new algorithm, using bony landmark constrains, estimates more accurate secondary rotations and medial-lateral translation of the underlying bone.  相似文献   

15.
At the Italian National Centre for Oncologic Hadrontherapy (CNAO) patients with upper-abdominal tumours are being treated with carbon ion therapy, adopting the respiratory gating technique in combination with layered rescanning and abdominal compression to mitigate organ motion. Since online imaging of the irradiated volume is not feasible, this study proposes a modelling approach for the estimation of residual motion of the target within the gating window. The model extracts a priori respiratory motion information from the planning 4DCT using deformable image registration (DIR), then combines such information with the external surrogate signal recorded during dose delivery. This provides estimation of a CT volume corresponding to any given respiratory phase measured during treatment. The method was applied for the retrospective estimation of tumour residual motion during irradiation, considering 16 patients treated at CNAO with the respiratory gating protocol. The estimated tumour displacement, calculated with respect to the reference end-exhale position, was always limited (average displacement is 0.32 ± 0.65 mm over all patients) and below the maximum motion defined in the treatment plan. This supports the hypothesis of target position reproducibility, which is the crucial assumption in the gating approach. We also demonstrated the use of the model as a simulation tool to establish a patient-specific relationship between residual motion and the width of the gating window. In conclusion, the implemented method yields an estimation of the repeatability of the internal anatomy configuration during gated treatments, which can be used for further studies concerning the dosimetric impact of the estimated residual organ motion.  相似文献   

16.
Excessive knee joint laxity is often used as an indicator of joint disease or injury. Clinical assessment devices are currently limited to anterior–posterior drawer measurements, while tools used to measure movement in the remaining degrees of freedom are either invasive or prone to soft tissue artefact. The objective of this work was, therefore, to develop a methodology whereby in vivo knee joint kinematics could be measured in three dimensions under torsional loading while still maintaining a non-invasive procedure. A device designed to administer a subject-normalized torque in the transverse plane of the knee was securely fastened to the outer frame of an open magnetic resonance imaging (MRI) magnet. Low resolution 3D T1-weighted images (6.25 mm slice thickness) were generated by the 0.2 Tesla MRI scanner in less than 3 min while the joint was under load. The 3D image volume was then shape-matched to a high resolution image volume (1.56 mm slice thickness) scanned in a no-load position. Three-dimensional rotations and translations of the tibia with respect to the femur were calculated by comparing the transformation matrices before and after torque was applied. Results from six subjects showed that this technique was repeatable over five trials with the knee in extended and flexed positions. Differences in range of rotation were shown between subjects and between knee positions, suggesting that this methodology has sufficient utility for further application in clinical studies.  相似文献   

17.
Anti-pronation orthoses, like medially posted insoles (MPI), have traditionally been used to treat various of lower limb problems. Yet, we know surprisingly little about their effects on overall foot motion and lower limb mechanics across walking and running, which represent highly different loading conditions. To address this issue, multi-segment foot and lower limb mechanics was examined among 11 overpronating men with normal (NORM) and MPI insoles during walking (self-selected speed 1.70 ± 0.19 m/s vs 1.72 ± 0.20 m/s, respectively) and running (4.04 ± 0.17 m/s vs 4.10 ± 0.13 m/s, respectively). The kinematic results showed that MPI reduced the peak forefoot eversion movement in respect to both hindfoot and tibia across walking and running when compared to NORM (p < 0.05–0.01). No differences were found in hindfoot eversion between conditions. The kinetic results showed no insole effects in walking, but during running MPI shifted center of pressure medially under the foot (p < 0.01) leading to an increase in frontal plane moments at the hip (p < 0.05) and knee (p < 0.05) joints and a reduction at the ankle joint (p < 0.05). These findings indicate that MPI primarily controlled the forefoot motion across walking and running. While kinetic response to MPI was more pronounced in running than walking, kinematic effects were essentially similar across both modes. This suggests that despite higher loads placed upon lower limb during running, there is no need to have a stiffer insoles to achieve similar reduction in the forefoot motion than in walking.  相似文献   

18.
The foot progression angle is an important measurement related to knee loading, pain, and function for individuals with knee osteoarthritis, however current measurement methods require camera-based motion capture or floor-embedded force plates confining foot progression angle assessment to facilities with specialized equipment. This paper presents the validation of a customized smart shoe for estimating foot progression angle during walking. The smart shoe is composed of an electronic module with inertial and magnetometer sensing inserted into the sole of a standard walking shoe. The smart shoe charges wirelessly, and up to 160 h of continuous data (sampled at 100 Hz) can be stored locally on the shoe. For validation testing, fourteen healthy subjects were recruited and performed treadmill walking trials with small, medium, and large toe-in (internal foot rotation), small, medium, and large toe-out (external foot rotation) and normal foot progression angle at self-selected walking speeds. Foot progression angle calculations from the smart shoe were compared with measurements from a standard motion capture system. In general, foot progression angle values from the smart shoe closely followed motion capture values for all walking conditions with an overall average error of 0.1 ± 1.9 deg and an overall average absolute error of 1.7 ± 1.0 deg. There were no significant differences in foot progression angle accuracy across the seven different walking gait patterns. The presented smart shoe could potentially be used for knee osteoarthritis or other clinical applications requiring foot progression angle assessment in community settings or in clinics without specialized motion capture equipment.  相似文献   

19.
The rising cost of musculoskeletal pathology, disease, and injury creates a pressing need for accurate and reliable methods to quantify 3D musculoskeletal motion, fostering a renewed interest in this area over the past few years. To date, cine-phase contrast (PC) MRI remains the only technique capable of non-invasively tracking in vivo 3D musculoskeletal motion during volitional activity, but current scan times are long on the 1.5T MR platform (~2.5 min or 75 movement cycles). With the clinical availability of higher field strength magnets (3.0T) that have increased signal-to-noise ratios, it is likely that scan times can be reduced while improving accuracy. Therefore, the purpose of this study is to validate cine-PC MRI on a 3.0T platform, in terms of accuracy, precision, and subject-repeatability, and to determine if scan time could be minimized. On the 3.0T platform it is possible to limit scan time to 2 min, with sub-millimeter accuracy (<0.33 mm/0.97°), excellent technique precision (<0.18°), and strong subject-repeatability (<0.73 mm/1.10°). This represents reduction in imaging time by 25% (42 s), a 50% improvement in accuracy, and a 72% improvement in technique precision over the original 1.5T platform. Scan time can be reduced to 1 min (30 movement cycles), but the improvements in accuracy are not as large.  相似文献   

20.
Metal-on-metal hip resurfacing patients demonstrate hip biomechanics closer to normal in comparison to total hip arthroplasty during gait. However, it is not clear how symmetric is the gait of hip resurfacing patients. Biomechanical data of 12 unilateral metal-on-metal hip resurfacing participants were collected during gait at a mean time of 45 months (SD 24) after surgery. Ankle, knee, hip, pelvis and trunk kinematics and kinetics of both sides were measured with a motion and force-capture system. Principal component analysis and mean hypothesis’ tests were used to compare the operated and healthy sides. The operated side had prolonged ankle eversion angle during late stance and delayed increased ankle inversion angle during early swing (p = 0.008; effect size = 0.70), increased ankle inversion moment during late stance (p = 0.001; effect size = 0.78), increased knee adduction angle during swing (p = 0.044; effect size = 0.57), decreased knee abduction moment during stance (p = 0.05; effect size = 0.40), decreased hip range of motion in the sagittal plane (p = 0.046; effect size = 0.56), decreased range of hip abduction moment during stance (p = 0.02; effect size = 0.63), increased hip range of motion in the transverse plane (p = 0.02; effect size = 0.62), decreased hip internal rotation moment during the transition from loading response to midstance (p = 0.001; effect size = 0.81) and increased trunk ipsilateral lean (p = 0.03; effect size = 0.60). Therefore, hip resurfacing patients have some degree of asymmetry in long term, which may be related to hip weakness and decreased range of motion, to foot misalignments and to strategies implemented to reduce loading on the operated hip. Interventions such as muscle strengthening and stretching, insoles and gait feedback training may help improving symmetry following hip resurfacing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号