首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Harmful Cochlodinium polykrikoides blooms have frequently appeared and caused fatal harm to aquaculture in Korean coastal waters since 1995. We investigated the applicability of GOCI, the world's first Geostationary Ocean Color Imager, in monitoring the distribution and temporal movement of a harmful algal bloom (HAB) that was discovered in the East Sea near the Korean peninsula in August 2013. We identified the existence of C. polykrikoides at a maximum cell abundance of over 6000 cells/mL and a chlorophyll a concentration of over 400 mg/m3. In areas of C. polykrikoides blooms, GOCI remote sensing reflectance (Rrs) spectra demonstrated the typical radiometric features of a HAB, and from the diurnal variations using GOCI-derived chlorophyll concentration images, we were able to identify the vertical migration of the red tide species. We also found that the formation and propagation of the HAB had relations with cold water mass in the coastal region. GOCI can be effectively applied to the monitoring of short-term and long-term movements of red tides.  相似文献   

2.
《Harmful algae》2011,10(6):548-556
An unarmored dinoflagellate Cochlodinium polykrikoides has formed red tides responsible for fish mass mortalities especially in coastal areas of western Japan and southern Korea almost every summer to autumn. In laboratory culture, the optimum temperature for growth of the species is ca. 27 °C. Since the species cannot survive in water of temperatures of less than 10 °C, it was considered to over-winter in some certain regions as a motile form or resting cyst, and expand its distribution after the temperature increases to a level tolerable for growth. To determine the over-wintering regions and migration pattern of C. polykrikoides, occurrences of the motile cells were surveyed in the coastal and offshore areas of western Kyushu, Japan and south coast of the Korean Peninsula from April 2006 to August 2008. Cells of C. polykrikoides were found at 14 sites during the investigated period. Motile cells occurred throughout the year in Usuka Bay, Hirado of West Japan. From offshore regions of the Goto Islands and off Shin-Nagasaki Fishing Port, motile cells of C. polykrikoides were first detected from late May, and continuously occurred until February in Nama Bay of the Kami-Goto Islands. This first appearance was before red tides of C. polykrikoides reported at coastal areas in western Kyushu. In Korea, this species was first observed in May and disappeared after October in 2007. These occurrence patterns imply that Usuka Bay in Hirado is one of the over-wintering regions in western Kyushu, and also this species is possibly transported into the northern part of the East China Sea by the Tsushima Warm Current every year.  相似文献   

3.
Although the diversity of dinoflagellates has been intensively studied in several locations in the Mediterranean Sea since the 1950s, it is only during the last two decades that the morphotype of the toxic unarmoured dinoflagellate Cochlodinium polykrikoides Margalef has been detected, coinciding with its apparent worldwide expansion in marine coastal waters. In this study, vegetative cells of C. polykrikoides morphotype from the Catalan coast (NW Mediterranean Sea) were detected and isolated, and the DNA from collected cells was sequenced. While in the Mediterranean Sea, detections are scarce and C. polykrikoides is consistently present at low concentrations, we reported exceptional blooms of this species, in which the maximum abundance reached 2 × 104 cells L−1. Partial LSU rDNA region sequences showed that most C. polykrikoides populations from the Catalan coast formed a new differentiated ribotype, but others were included within the ‘Philippines’ ribotype, demonstrating their coexistence in the Mediterranean Sea. Thus, the current biogeographic nomenclature of the ribotypes is likely to be invalid with respect to the available information from populations comprising the ‘Philippines’ ribotype. The phylogeny suggests the existence of cryptic species that should be evaluated for species-level status. Accordingly, the ribotype determination must be carefully evaluated for all detections and bloom events, since accurate characterization of the morphology, ecophysiology and distribution of the ribotypes are not well resolved.  相似文献   

4.
The harmful dinoflagellate Cochlodinium polykrikoides is known to cause fish death by gill-clogging when its abundance exceeds approximately 1000 cells ml−1. Thus, red tides of this dinoflagellate have caused considerable loss in the aquaculture industry worldwide. Typhoons carrying strong winds and heavy rains may alter the process of red tide events. To investigate the effects of typhoons on C. polykrikoides red tides, daily variations in the abundance of C. polykrikoides, and wind speeds in three study areas in the South Sea of Korea were analyzed during the periods of C. polykrikoides red tides and the passage of 14 typhoons during 2012–2014. The typhoons differentially affected Cochlodinium red tides during the study period, and the daily maximum wind speed generated by the typhoon was critical. Four typhoons with daily maximum wind speeds of >14 m s−1 eliminated Cochlodinium red tides, while three typhoons with daily maximum wind speed of 5–14 m s−1 only lowered the abundance. However, other typhoons with daily maximum wind speeds of <5 m s−1 had no marked effect on the Cochlodinium abundance. Therefore, typhoons may sometimes eliminate C. polykrikoides red tide events, or reduce cell abundances to a level that is not harmful to caged fish cultivated in aquaculture industries. Thus, typhoons should be considered when compiling red tide dynamics and fish-kill models.  相似文献   

5.
In this study the plankton diversity in 13 environmental samples from Varna Bay (in the western Black Sea) was analyzed using massively parallel sequencing (MPS). This preliminary study was undertaken to assess the potential of this technology for future implementation in monitoring programs in the Black Sea. Amplicon sequences of the 18S rRNA gene (V4-5 regions) were obtained using the Illumina MiSeq 250PE platform. A total of 1137 operational taxonomic units (OTUs) were obtained among which 242 OTUs with >0.990 BLAST top hit similarity (21.3% of all detected OTUs) closely related to sequences belonging to −protists. A large portion (175 OTUs = 72.3%) was identified at the species levels, including species typical for the Bulgarian Black Sea plankton community, as well as many that haven’t been reported earlier in the Bulgarian Black Sea coast (124 OTUs = 51.2%). Dinoflagellates were represented by the highest species number (77 OTUs comprising 31.8% of protist species), with dominant genera Gyrodinium and Heterocapsa. The present survey revealed the presence of 12 species listed as harmful, some of which have been previously overlooked, such as Cochlodinium polykrikoides, Karenia bicuneiformis, and Karlodinium veneficum. Species identification was possible for 10.3–36.0% of the detected OTUs in the six major supergroups. The frequency in Rhizaria was significantly lower than that in other major groups (p < 0.05–0.01), implying difficulties in the classification from morphology-based observations. The metagenetic data had an insufficient resolution of the 18S rRNA gene for species identification in many genera. These issues may hamper the implementation of MPS-based surveys for plankton monitoring, especially for detecting harmful algal blooms (HAB). The sequencing technology is steadily improving and it is expected that sequence length and quality issues will be resolved in the near future. The ongoing efforts to register taxonomic information and quality controls in the international nucleotide sequence databases (INSDs) will be essential for improving taxonomic identification power.  相似文献   

6.
Massive blooms of the dinoflagellate Cochlodinium polykrikoides occur annually in the Chesapeake Bay and its tributaries. The initiation of blooms and their physical transport has been documented and the location of bloom initiation was identified during the 2007 and 2008 blooms. In the present study we combined daily sampling of nutrient concentrations and phytoplankton abundance at a fixed station to determine physical and chemical controls on bloom formation and enhanced underway water quality monitoring (DATAFLOW) during periods when blooms are known to occur. While C. polykrikoides did not reach bloom concentrations until late June during 2009, vegetative cells were present at low concentrations in the Elizabeth River (4 cells ml−1) as early as May 27. Subsequent samples collected from the Lafayette River documented the increase in C. polykrikoides abundance in the upper branches of the Lafayette River from mid-June to early July, when discolored waters were first observed. The 2009 C. polykrikoides bloom began in the Lafayette River when water temperatures were consistently above 25 °C and during a period of calm winds, neap tides, high positive tidal residuals, low nutrient concentrations, and a low dissolved inorganic nitrogen (DIN) to dissolved inorganic phosphorous (DIP) ratio. The pulsing of nutrients associated with intense but highly localized storm activity during the summer months when water temperatures are above 25 °C may play a role in the initiation of C. polykrikoides blooms. The upper Lafayette River appears to be an important area for initiation of algal blooms that then spread to other connected waterways.  相似文献   

7.
The dinoflagellate community present during blooms of the fish killing dinoflagellate Cochlodinium polykrikoides was characterized by DNA melting curve analysis and direct sequencing of the SSU rDNA amplified from environmental sample extracts. PCR amplification of genomic DNA from Gaedo water samples using dinoflagellate-specific SSU rDNA primers yielded 280 clones, which were screened by closed tube PCR-melting curve analysis targeting a region of the SSU rDNA, enabling high throughput analysis. Twenty-eight clones producing distinct melting curve patterns were sequenced, and their phylogenetic information revealed that C. polykrikoides co-occurred with morphologically similar species including Gymnodinium impudicum and Gymnodinium catenatum. Temporal variations of C. polykrikoides and G. impudicum abundances in South Sea were also examined by species-specific real-time TaqMan-based PCR probes developed in this study. C. polykrikoides- and G. impudicum-specific real-time PCR probes were designed targeting the internal transcribed spacer 2 ribosomal DNA region. The probe specificity was confirmed by testing against related dinoflagellates and verified by sequencing PCR products from environmental samples. The real-time PCR assays showed that C. polykrikoides cell densities peaked in August at 16,928 cells mL?1, while G. impudicum was present at low abundances (below 25 cells mL?1). Our amplified rDNA melting curve protocol provides a facile method for the characterization of the dinoflagellate community, and the real-time PCR assay could be an alternative method for rapid and sensitive enumeration of harmful dinoflagellates in the marine environment.  相似文献   

8.
Red tides by the ichthyotoxic dinoflagellate Cochlodinium polykrikoides have caused large scaled mortality of fish and great loss in aquaculture industry in many countries. Detecting and quantifying the abundance of this species are the most critical step in minimizing the loss. The conventional quantitative real-time PCR (qPCR) method has been used for quantifying the abundance of this species. However, when analyzing > 500 samples collected during huge C. polykrikoides red tides in South Sea of Korea in 2014, this conventional method and the previously developed specific primer and probe set for C. polykrikoides did not give reasonable abundances when compared with cell counting data. Thus improved qPCR methods and a new specific primer and probe set reflecting recent discovery of 2 new ribotypes have to be developed. A new species-specific primer and probe set for detecting all 3 ribotypes of C. polykrikoides was developed and provided in this study. Furthermore, because the standard curve between cell abundance and threshold cycle value (Ct) is critical, the efficiencies of 4 different preparation methods used to determine standard curves were comparatively evaluated. The standard curves were determined by using the following 4 different preparations: (1) extraction of DNA from a dense culture of C. polykrikoides followed by serial dilution of the extracted DNA (CDD method), (2) extraction of DNA from each of the serially diluted cultures with different concentrations of C. polykrikoides cultures (CCD method), (3) extraction of DNA from a dense field sample of C. polykrikoides collected from natural seawater and then dilution of the extracted DNA in serial (FDD method), and (4) extraction of DNA from each of the serially diluted field samples having different concentrations of C. polykrikoides (FCD method). These 4 methods yielded different results. The abundances of C. polykrikoides in the samples collected from the coastal waters of South Sea, Korea, in 2014–2015, obtained using the standard curves determined by the CCD and the FCD methods, were the most similar (0.93–1.03 times) and the second closest (1.16–1.33 times) to the actual cell abundances obtained by enumeration of cells. Thus, our results suggest that the CCD method is a more effective tool to quantify the abundance of C. polykrikoides than the conventional method, CDD, and the FDD and FCD methods.  相似文献   

9.
Red tides dominated by Cochlodinium polykrikoides often lead to great economic losses and some methods of controlling these red tides have been developed. However, due to possible adverse effects and the short persistence of their control actions, safer and more effective sustainable methods should be developed. The non-toxic dinoflagellate Alexandrium pohangense is known to grow well mixotrophically feeding on C. polykrikoides, and populations are also maintained by photosynthesis. Thus, compared with other methods, the use of mass-cultured A. pohangense is safer and the effects can be maintained in the long term. To develop an effective method, the concentrations of A. pohangense cells and culture filtrate resulting in the death of C. polykrikoides cells were determined by adding the cells or filtrates to cultured and natural populations of C. polykrikoides. Cultures containing 800 A. pohangense cells ml−1 eliminated almost all cultured C. polykrikoides cells at a concentration of 1000 cells ml−1 within 24 h. Furthermore, the addition of A. pohangense cultures at a concentration of 800 cells ml−1 to C. polykrikoides populations from a red-tide patch resulted in the death of most C. polykrikoides cells (99.8%) within 24 h. This addition of A. pohangense cells also lowered the abundances of total phototrophic dinoflagellates excluding C. polykrikoides, but did not lower the abundance of total diatoms. Filtrate from 800 cells ml−1 A. pohangense cultures reduced the population of cultured C. polykrikoides by 80% within 48 h. This suggests that A. pohangense cells eliminate C. polykrikoides by feeding and releasing extracellular compounds. Over time, A. pohangense concentrations gradually increased when incubated with C. polykrikoides. Thus, an increase in the concentration of A. pohangense by feeding may lead to A. pohangense cells eliminating more C. polykrikoides cells in larger volumes. Based on the results of this study, a 1 m3 stock culture of A. pohangense at 4000 cells ml−1 is calculated to remove all C. polykrikoides cells in ca. 200 m3 within 6 days. Furthermore, maintenance of A. pohangense populations through photosynthesis prepared A. pohangense to eliminate C. polykrikoides cells in future red-tide patches. Moreover, incubation of A. pohangense at 2000 cells ml−1 with juvenile olive flounder Paralichthys olivaceus for 3 days did not result in the death of fish. Therefore, the method developed in this study is a safe and effective way of controlling C. polykrikoides populations and can be easily applied to aqua-tanks on land.  相似文献   

10.
Harmful algal blooms caused by Cochlodinium polykrikoides are annual occurrences in coastal systems around the world. In New York (NY), USA, estuaries, bloom densities range from 103 to 105 mL?1 with higher densities (≥104 cells mL?1) being acutely toxic to multiple fish and shellfish species. Here, we report on the toxicity of C. polykrikoides strains recently isolated from New York and Massachusetts (USA) estuaries to juvenile fish (Cyprinodon variegates) and bay scallops (Argopecten irradians), as well as on potential mechanisms of toxicity. Cultures of C. polykrikoides exhibited dramatically more potent ichthyotoxicity than raw bloom water with 100% fish mortality occurring within ~1 h at densities as low as 3.3 × 102 cells mL?1. More potent toxicity in culture was also observed in bioassays using juvenile bay scallops, which experienced 100% mortality during 3 days exposure to cultures at cell densities an order of magnitude lower than raw bloom water (~3 × 103 cells mL?1). The toxic activity per C. polykrikoides cell was dependent on the growth stages of cultures with early exponential growth cultures being more potent than cultures in late-exponential or stationary phases. The ichthyotoxicity of cultures was also dependent on both cell density and fish size, as a hyperbolic relationship between the death time of fish and the ratio of algal cell density to length of fish was found (~103 cells mL?1 cm?1 yielded 100% fish mortality in 24 h). Simultaneous exposure of fish to C. polykrikoides and a second algal species (Rhodomonas salina or Prorocentrum minimum) increased survival time of fish, and decreased the fish mortality suggesting additional cellular biomass mitigated the ichthyotoxicity. Frozen and thawed-, sonicated-, or heat-killed-, C. polykrikoides cultures did not cause fish mortality. In contrast, cell-free culture medium connected to an active culture through a 5 μm nylon membrane caused complete mortality in fish, although the time required to kill fish was significantly longer than direct exposure to the whole culture. These results indicate that ichthyotoxicity of C. polykrikoides isolates is dependent on viability of cells and that direct physical contact between fish and cells is not required to cause mortality. The ability of the enzymes peroxidase and catalase to significantly reduce the toxicity of live cultures and the inability of hydrogen peroxide to mimic the ichthyotoxicity of C. polykrikoides isolates suggests that the toxicity could be caused by non-hydrogen peroxide, highly reactive, labile toxins such as ROS-like chemicals.  相似文献   

11.
Cochlodinium polykrikoides is a globally distributed, ichthyotoxic, bloom-forming dinoflagellate. Blooms of C. polykrikoides manifest themselves as large (many km2) and distinct patches with cell densities exceeding 103 ml−1 while water adjacent to these patches can have low cell densities (<100 cells ml−1). While the effect of these blooms on fish and shellfish is well-known, their impacts on microbial communities and biogeochemical cycles are poorly understood. Here, we investigated plankton communities and the cycling of carbon, nitrogen, and B-vitamins within blooms of C. polykrikoides and compared them to areas in close proximity (<100 m) with low C. polykrikoides densities. Within blooms, C. polykrikoides represented more than 90% of microplankton (>20 μm) cells, and there were significantly more heterotrophic bacteria and picoeukaryotic phytoplankton but fewer Synechococcus. Terminal restriction fragment length polymorphism analysis of 16S and 18S rRNA genes revealed significant differences in community composition between bloom and non-bloom samples. Inside the bloom patches, concentrations of vitamin B12 were significantly lower while concentrations of dissolved oxygen were significantly higher. Carbon fixation and nitrogen uptake rates were up to ten times higher within C. polykrikoides bloom patches. Ammonium was a more important source of nitrogen, relative to nitrate and urea, for microplankton within bloom patches compared to non-bloom communities. While uptake rates of vitamin B1 were similar in bloom and non-bloom samples, vitamin B12 was taken up at rates five-fold higher (>100 pmol−1 L−1 d−1) in bloom samples, resulting in turn-over times of hours during blooms. This high vitamin demand likely led to the vitamin B12 limitation of C. polykrikoides observed during nutrient amendment experiments conducted with bloom water. Collectively, this study revealed that C. polykrikoides blooms fundamentally change microbial communities and accelerate the cycling of carbon, some nutrients, and vitamin B12.  相似文献   

12.
Recent studies of dinoflagellates have reported that blooms can be closely related to the characteristics of the associated bacteria, but studies of the correlation between the toxic dinoflagellate, Cochlodinium polykrikoides and their associated bacterial community composition has not been explored. To understand this correlation, changes in bacterial community structure through the evolution of a C. polykrikoides bloom in Korean coastal waters via clone library analysis were investigated. Although there were no apparent changes in physio-chemical factors during the onset of the C. polykrikoides bloom, the abundance of bacteria bourgeoned in parallel with C. polykrikoides densities. Alpha-, gamma-proteobacteria and Flavobacteria were found to be dominant phyletic groups during C. polykrikoides blooms. The proportion of gamma-proteobacteria was lower (11.8%) during peak of the bloom period compared to the post-bloom period (26.2%). In contrast, alpha-proteobacteria increased in dominance during blooms. Among the alpha-proteobacteria, members of Rhodobacterales abruptly increased from 38% of the alpha-proteobacteria before the bloom to 74% and 56% during the early bloom and peak bloom stages, respectively. Moreover, multiple sites concurrently hosting C. polykrikoides blooms also contained high portions of Rhodobacterales and principal component analysis (PCA) demonstrated that Rhodobacterales had a positive, significant correlation with C. polykrikoides abundances (p  0.01, Pearson correlation coefficients). Collectively, this study reveals the specific clades of bacteria that increase (Rhodobacterales) and decrease (gamma-proteobacteria) in abundance C. polykrikoides during blooms.  相似文献   

13.
In the western Arabian Sea (WAS), the highest seasonal sea surface temperature (SST) difference presently occurs between May and August. In order to gain an understanding on how monsoonal upwelling modulates the SST difference between these two months, we have computed SST for the months of May and August based on census counts of planktonic foraminifers by using the artificial neural network (ANN) technique. The SST difference between May and August exhibits three distinct phases: i) a moderate SST difference in the late Holocene (0–3.5 ka) is attributable to intense upwelling during August, ii) a minimum SST difference from 4 to 12 ka is due to weak upwelling during the month of August, and iii) the highest SST difference during the last glacial interval (19 to 22 ka) with high Globigerina bulloides % could have been caused by the occurrence of a prolonged upwelling season (from May through July) and maximum difference in the incoming solar radiation between May and August. Overall, variations in the SST difference between May and August show that the timing of intense upwelling in the Western Arabian Sea over the last 22 kyr has been variable over the months of June, July and August.  相似文献   

14.
《农业工程》2014,34(3):154-159
The distribution and size fractions of chlorophyll a (Chl a) concentration in the eastern equatorial Pacific Ocean in boreal autumn were investigated during October and November, 2011. Environmental factors, including hydrology and nutrients, that might affect the distribution and size composition were analyzed. A total of 18 stations including 11 CTD stations and 7 navigation stations were selected which stretch from the northwest coast of South America to the area of the central Pacific Ocean south of the Hawaiian Islands (2.77°S–13.02°N, 84.11–154.02°W). The studied area can be divided into two transects: the 6°N transect (124–148°W) and the154°W transect (10–13°N). Results showed that the surface Chl a concentration was higher in the east near the northwest coast of South America (>0.200 mg/m3) and lower in the west (0.100–0.200 mg/m3), and it presented a highly significant negative correlation with sea surface temperature (p < 0.001). There were some differences between the sectional distribution of Chl a concentration between the 6°N and 154°W transects. The high values of Chl a concentration occurred near the surface along the 6°N transect (0–75 m), while they were relatively deeper along the 154°W transect (50–100 m). Iron might be the factor that limited the growth of phytoplankton in the eastern equatorial Pacific Ocean. Picophytoplankton (Pico) was the dominant taxa in the surveyed area, particularly in the waters along the two transects (>70% of total Chl a). The Pico to total Chl a ratio was higher in the upper layer (>70%) than in the deeper layer.  相似文献   

15.
The presence of Ulva microscopic propagules may play an important role in the rapid development of high-biomass blooms of green algae in the Yellow Sea. Six cruises were conducted, to determine the abundance and distribution of Ulva microscopic propagules associated with a green tide that developed in the southern coastal waters of the Yellow Sea from April to August, 2012. Results indicated that Ulva microscopic propagules were widespread in these waters, with the highest density being up to 4800 ind. L−1, prior to the appearance of the green tide in April. High densities were also widely distributed along the coast during May and June, after the appearance of the floating green tide. The quantity of Ulva microscopic propagules significantly decreased when the floating green tide declined in July, reaching densities of up to 162 ind. L−1, following the disappearance of the floating green tide in August. Quantitative studies on the distribution patterns of Ulva microscopic propagules along the southern coast of the Yellow Sea indicated a significant correlation between density and salinity, turbidity and nutrient concentrations. Temporal and geographical distribution patterns of Ulva microscopic propagules were also significantly affected by the presence of a large biomass of attached, or floating, Ulva species algae.  相似文献   

16.
This prospective cohort study aimed at identifying association between uric acid (UA) and peripheral arterial stiffness. A prospective cohort longitudinal study was performed according to an average of 4.8 years’ follow-up. The demographic data, anthropometric parameters, peripheral arterial stiffness (carotid-radial pulse-wave velocity, cr-PWV) and biomarker variables including UA were examined at both baseline and follow-up. Pearson’s correlations were used to identify the associations between UA and peripheral arterial stiffness. Further logistic regressions were employed to determine the associations between UA and arterial stiffness. At the end of follow-up, 1447 subjects were included in the analyses. At baseline, cr-PWV (r = 0.200, p < 0.001) was closely associated with UA. Furthermore, the follow-up cr-PWV (r = 0.145, p < 0.001) was also strongly correlated to baseline UA in Pearson’s correlation analysis. Multiple regressions also indicated the association between follow-up cr-PWV (β = 0.493, p = 0.013) and baseline UA level. Logistic regressions revealed that higher baseline UA level was an independent predictor of arterial stiffness severity assessed by cr-PWV at follow-up cross-section. Peripheral arterial stiffness is closely associated with higher baseline UA level. Furthermore, a higher baseline UA level is an independent risk factor and predictor for peripheral arterial stiffness.  相似文献   

17.
Populations of Noctiluca scintillans (hereafter Noctiluca) were compared from two regions: the northeastern-central Black Sea and the northern Adriatic Sea. In both seas samples were collected in near-shore waters 2–3 times per month during 2004–2012. For analysis of feeding activities and seasonal dynamics additional cruise data on the open waters of the Black Sea were used. Comparison between the two populations shows similarity in size structure with two classes 401–500 μm and 501–600 μm being the most numerous. Seasonal changes in cell abundance in both seas demonstrated a regular annual maximum with the peak period of high abundances in May–June with additional sporadic peaks in other seasons. In spring the average number of food vacuoles in the cell (1.78) and the proportion of feeding cells in populations (79%) in the Adriatic Sea were similar to those in the Black Sea (1.58 and 76%). In September–October, these parameters were lower both in the Adriatic Sea (0.69 and 49%) and in the Black Sea (1.46 and 65%) demonstrating that Noctiluca was better provided with food in spring. Among biotic parameters (wet phytoplankton biomass, chlorophyll biomass and zooplankton species) only the concentration of the eggs of Calanus euxinus was significantly positively correlated with abundance of Noctiluca. The possible effect of a high concentration of copepod eggs on the growth of Noctiluca in the peak period is discussed. An obvious negative relationship was observed between Noctiluca cell numbers in the peak period and wind velocity in both seas. The most significant negative correlation was observed between the number of windy hours per month (velocity more than 5–6 m s−1) and cell concentrations in the Black Sea (r = −0.92) and in the northern Adriatic Sea (r = −0.67). On this basis, a new hypothesis has been proposed and discussed: in connection with features of the food behavior of Noctiluca, its outbursts during the peak period are controlled by the wind. An evident positive relationship was observed between the number of Noctiluca in the peak period and its quantity in the preceding months in both seas. Thus, we suggest that abundance data during early spring and weather forecasts (winds) may be used for medium-term prediction of Noctiluca outbursts and red tides.  相似文献   

18.
While the toxic dinoflagellate Cochlodinium polykrikoides is known to form blooms that are maintained for extended periods, the genetic differentiation of these blooms are currently unknown. To assess this, we developed a real-time PCR assay to quantify C. polykrikoides at the intra-specific level, and applied this assay to field samples collected in Korean coastal waters from summer through fall. Assays were successfully developed to target the large-subunit ribosomal RNA region of the three major ribotypes of C. polykrikoides: Philippines, East Asian, and American/Malaysian. Significant linear relationships (r2  0.995) were established between Ct and the log of the copy number for each ribotype qPCR assay. Using these assays, C. polykrikoides blooms in Korean coastal waters were found to be comprised of Philippines and East Asian ribotypes but not the American/Malaysian ribotype. The Philippines ribotype was found to be highly abundant during summer bloom initiation and peak, whereas the East Asian ribotype became the dominant ribotype in the fall. As such, this newly developed qPCR assay can be used to quantify the cryptic ecological succession of sub-populations of C. polykrikoides during blooms that light microscopy and previously developed qPCR assays cannot resolve.  相似文献   

19.
《Harmful algae》2009,8(1):111-118
The nitrogen uptake capabilities of the toxigenic diatom Pseudo-nitzschia australis (Frenguelli), freshly isolated from Monterey Bay California, were examined in unialgal laboratory cultures at saturating photosynthetic photon flux densities (100 μmol photons m−2 s−1) and 15 °C. The kinetics of nitrogen (nitrate, ammonium, urea and glutamine) uptake as a function of substrate concentration were estimated from short (20.5 min) incubations using the 15N-tracer technique. Based on the estimated maximum specific uptake rates and measures of N affinity (the initial slope of the uptake versus nutrient concentration curve), nitrate is the preferred nitrogen substrate, followed by glutamine and ammonium, which are equivalent. Rates of urea uptake by P. australis did not saturate at concentrations as high as 36 μg-at N L−1, and urea uptake as a function of concentration could not be described by Michaelis–Menten kinetics over the concentration gradient tested. Although there is a clear preference for nitrate at equivalent concentrations (compared to ammonium, urea, and glutamine), these laboratory results demonstrate the capability of this pennate diatom to utilize both inorganic and organic forms of nitrogen, supporting field observations that P. australis blooms during both upwelling and non-upwelling conditions off the west coast of North America. Substantial differences in the nitrogenous nutrition of P. australis can be expected in these environments, and anthropogenic inputs of N substrates such as ammonium and urea can support its growth, and may contribute significantly to both harmful diatom blooms and the maintenance of seed populations at non-bloom abundances, particularly during periods of reduced or absent upwelling.  相似文献   

20.
《Harmful algae》2010,9(6):857-863
Biosurfactants have been suggested as a method to control harmful algal blooms (HABs), but warrant further and more in-depth investigation. Here we have investigated the algicidal effect of a biosurfactant produced by the bacterium Pseudomonas aeruginosa on five diverse marine and freshwater HAB species that have not been tested previously. These include Alexandrium minutum (Dinophycaee), Karenia brevis (Dinophyceae), Pseudonitzschia sp. (Bacillariophyceae), in marine ecosystems, and Gonyostomum semen (Raphidophyceae) and Microcystis aeruginosa (Cyanophyecae) in freshwater. We examined not only lethal but also sub-lethal effects of the biosurfactant. In addition, the effect of the biosurfactant on Daphnia was tested. Our conclusions were that very low biosurfactant concentrations (5 μg mL−1) decreased both the photosynthesis efficiency and the cell viability and that higher concentrations (50 μg mL−1) had lethal effects in four of the five HAB species tested. The low concentrations employed in this study and the diversity of HAB genera tested suggest that biosurfactants may be used to either control initial algal blooms without causing negative side effect to the ecosystem, or to provoke lethal effects when necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号