首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Microalgae are a very diverse group of organisms that consist in both prokaryotic and eukaryotic forms. Some species of microalgae can be induced to overproduce particular fatty acids through simple manipulations of the physical and chemical properties of the culture medium. In this paper, the effect of different extraction techniques on the recovery of fatty acids from the freeze-dried biomass from two lipid-producing microalgal strains: Botryococcus braunii LB 572 (green algae) and Synechocystis sp. PCC 6803 (cyanobacteria) was examined. Five procedures were used: after conversion of the lipid material into the corresponding fatty acid methyl esters (FAMEs) via suitable derivatization reactions (extraction-transesterification) and direct transesterification of biomass to produce FAMEs (without the initial extraction step) that used differential types of catalysts and processing conditions. This study has shown that procedure 3, a one step practical procedure for lipid extraction and in situ methyl ester derivation could be used successfully for the determination of the fatty acid compositions of microalgae and cyanobacteria.  相似文献   

2.
Cyanobacteria produce industrially important secondary metabolites such as lipopeptide, oligosaccharide, fatty acid (esp. sulfolipid),etc. Among them,Synechocystis PCC6803 is the first strain with a publicly available full genome sequence, as of 1996, and is one of the most extensively studied photosynthetic microorganisms. Using this genomic information, the central metabolism ofSynechocystis PCC6803 was reconstructed, including photosynthesis, oxidative phosphorylation, glycolysis, pyruvate metabolism, TCA cycle, carbon fixation, and transport system. Each biochemical reaction was carefully incorporated into the model, taking into consideration the metabolite formula, stoichiometry, charge balance, and thermodynamic properties using information from genomic and metabolic databases as well as biochemical literature. The metabolic flux of the model was calculated using flux balance analysis according to its cultivation with various carbon sources. The results of simulation were in accordance with experimental data, which suggests that the central metabolism model can properly estimate the behavior ofSynechocystis PCC6803. This model would aid in the understanding of the whole cell metabolism ofSynechocystis PCC6803, the first effort of its kind for photosynthetic bacteria.  相似文献   

3.
Gloeobacter violaceus sp. PCC 7421 is an unusual cyanobacterium with only one cellular membrane, which lacks the thylakoid membranes found in other oxygenic photosynthetic organisms. The cell membrane lipids in G. violaceus sp. PCC 7421 are monogalactosyl diacylglycerol, digalactosyl diacylglycerol, phosphatidyl glycerol and phosphatidic acid in the molar proportion of 51, 24, 18 and 4% respectively. This lipid composition resembles that of the cell membrane from other cyanobacteria, but completely lacks sulfoquinovosyl diacylglycerol. This lack of sulfoquinovosyl diacylglycerol is exceptional for a photosynthetic membrane. The membrane lipids are esterified to 14:0, 16:0, 16:1, 18:0, 18:1, 18:2 and α18:3 fatty acids. Received: 28 December 1995 / Accepted: 26 April 1996  相似文献   

4.
The study and revision of the unicellular cyanobacterial genus Synechocystis was based on the type species S. aquatilis Sauv. and strain PCC 6803, a reference strain for this species. Uniformity in rRNA gene sequence, morphology, and ultrastructure was observed in all available Synechocystis strains, with the exception of the strain PCC 6308, which has been considered by some to be a model strain for Synechocystis. This strain differs substantially from the typical Synechocystis cluster according to both molecular (<90% of similarity, differences in 16S–23S rRNA internal transcribed spacer [ITS] secondary structure) and phenotypic criteria (different ultrastructure of cells). This strain is herein classified into the new genus Geminocystis gen. nov., as a sister taxon to the genus Cyanobacterium. Geminocystis differs from Cyanobacterium by genetic position (<94.4% of similarity) and more importantly by its different type of cell division. Because strain PCC 6308 was designated as a reference strain of the Synechocystis cluster 1 in Bergey’s Manual, the members of this genetic cluster have to be revised and reclassified into Geminocystis gen. nov. Only the members of the Synechocystis cluster 2 allied with PCC 6803 correspond both genetically and phenotypically to the type species of the genus Synechocystis (S. aquatilis).  相似文献   

5.

Background

Direct conversion of solar energy and carbon dioxide to drop in fuel molecules in a single biological system can be achieved from fatty acid-based biofuels such as fatty alcohols and alkanes. These molecules have similar properties to fossil fuels but can be produced by photosynthetic cyanobacteria.

Results

Synechocystis sp. PCC6803 mutant strains containing either overexpression or deletion of the slr1609 gene, which encodes an acyl-ACP synthetase (AAS), have been constructed. The complete segregation and deletion in all mutant strains was confirmed by PCR analysis. Blocking fatty acid activation by deleting slr1609 gene in wild-type Synechocystis sp. PCC6803 led to a doubling of the amount of free fatty acids and a decrease of alkane production by up to 90 percent. Overexpression of slr1609 gene in the wild-type Synechocystis sp. PCC6803 had no effect on the production of either free fatty acids or alkanes. Overexpression or deletion of slr1609 gene in the Synechocystis sp. PCC6803 mutant strain with the capability of making fatty alcohols by genetically introducing fatty acyl-CoA reductase respectively enhanced or reduced fatty alcohol production by 60 percent.

Conclusions

Fatty acid activation functionalized by the slr1609 gene is metabolically crucial for biosynthesis of fatty acid derivatives in Synechocystis sp. PCC6803. It is necessary but not sufficient for efficient production of alkanes. Fatty alcohol production can be significantly improved by the overexpression of slr1609 gene.  相似文献   

6.
Synechocystis sp. PCC 6803, a cyanobacterium widely used for basic research, is often cultivated in a synthetic medium, BG-11, in the presence of 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid (HEPES) or 2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid buffer. Owing to the high cost of HEPES buffer (96.9% of the total cost of BG-11 medium), the biotechnological application of BG-11 is limited. In this study, we cultured Synechocystis sp. PCC 6803 cells in BG-11 medium without HEPES buffer and examined the effects on the primary metabolism. Synechocystis sp. PCC 6803 cells could grow in BG-11 medium without HEPES buffer after adjusting for nitrogen sources and light intensity; the production rate reached 0.54 g cell dry weight·L−1·day−1, exceeding that of commercial cyanobacteria and Synechocystis sp. PCC 6803 cells cultivated under other conditions. The exclusion of HEPES buffer markedly altered the metabolites in the central carbon metabolism; particularly, the levels of compatible solutes, such as sucrose, glucosylglycerol, and glutamate were increased. Although the accumulation of sucrose and glucosylglycerol under high salt conditions is antagonistic to each other, these metabolites accumulated simultaneously in cells grown in the cost-effective medium. Because these metabolites are used in industrial feedstocks, our results reveal the importance of medium composition for the production of metabolites using cyanobacteria.  相似文献   

7.
Cyanobacterial genes for enzymes that desaturate fatty acids at the 12 position, designated desA, were isolated from Synechocystis PCC6714, Synechococcus PCC7002 and Anabaena variabilis by crosshybridization with a DNA probe derived from the desA gene of Synechocystis PCC6803. The genes of Synechocystis PCC6714, Synechococcus PCC7002 and A. variabilis encode proteins of 349, 347 and 350 amino acid residues, respectively. The transformation of Synechococcus PCC7942 with the desA genes from Synechocystis PCC6714, Synechococcus PCC7002 and A. variabilis was associated with the ability to introduce a second double bond at the 12 position of fatty acids. The amino acid sequence of the products of the desA genes revealed the presence of four conserved domains. Since one of the conserved domains was also found in the amino acid sequences of 3 desaturases of Brassica napus and mung bean, this domain may play an essential role in the introduction of a double bond into fatty acids bound to membrane lipids.Abbreviations X:Y(Z) fatty acid containing X carbon atoms with Y double bonds in the cis configuration at position Z counted from the carboxyl terminus  相似文献   

8.
Fatty acid composition, especially the distribution of eicosapolyenoic acids in several species of Gracilaria, was analyzed in relation to their taxonomy. The species have been grouped into two types based on distribution of these polyenoic acids: Type 1, which contains palmitic, oleic and arachidonic acids as the major components, and Type II, which contains eicosapentaenoic acid in addition to Type I fatty acids. Octadecapolyenoic acids were detected only in trace amounts in each Type. A similar remarkable difference also was observed in the fatty acid composition of lipid classes. The major component of eicosapolyenoic acids in Type I was arachidonic acid in all lipid classes. In Type II, eicosapentaenoic acid was the major component in monogalactosyl diacylglycerol, digalactosyl diacylglycerol, sulfoquinovosyl diacylglycerol and phosphatidylglycerol. Arachidonic and eicosapentaenoic acids were contained in large amounts in Type II phosphatidylcholine. Grouping of Gracilaria species into Type I and Type II is not entirely consistent with morphological and taxonomic features, but the difference in fatty acid composition is likely due to genetic rather than to environmental factors.  相似文献   

9.
Summary. Among prokaryotes, cyanobacteria are unique in having highly differentiated internal membrane systems. Like other Gram-negative bacteria, cyanobacteria such as Synechocystis sp. strain PCC 6803 have a cell envelope consisting of a plasma membrane, peptidoglycan layer, and outer membrane. In addition, these organisms have an internal system of thylakoid membranes where the electron transfer reactions of photosynthesis and respiration occur. A long-standing controversy concerning the cellular ultrastructures of these organisms has been whether the thylakoid membranes exist inside the cell as separate compartments, or if they have physical continuity with the plasma membrane. Advances in cellular preservation protocols as well as in image acquisition and manipulation techniques have facilitated a new examination of this topic. We have used a combination of electron microscopy techniques, including freeze-etched as well as freeze-substituted preparations, in conjunction with computer-aided image processing to generate highly detailed images of the membrane systems in Synechocystis cells. We show that the thylakoid membranes are in fact physically discontinuous from the plasma membrane in this cyanobacterium. Thylakoid membranes in Synechocystis sp. strain PCC 6803 thus represent bona fide intracellular organelles, the first example of such compartments in prokaryotic cells. Supplementary material to this paper is available in electronic form at Correspondence and reprints: Department of Biology, CB1137, Washington University, St. Louis, MO 63130, U.S.A.  相似文献   

10.
Summary The promiscuous IncQ plasmid pKT210 (Cmr, Smr) is efficiently transferred by transpecific conjugation from Escherichia coli to the facultatively heterotrophic cyanobacterium Synechocystis PCC6803 when mobilized by a helper plasmid coding for IncP transfer functions. The IncQ plasmid is stably maintained in the cyanobacterium as an autonomously replicating multicopy plasmid with no detectable structural alterations and can be recovered by transformation back to E. coli when using a mcrA mcrB host. Thus, the replicative host-range of IncQ plasmids extends beyond purple bacteria to the distinct procaryotic taxon of cyanobacteria, allowing the use of these small plasmids as convenient cloning vectors in Synechocystis PCC6803 and presumably also in cyanobacteria that are not amenable to genetic transformation. In contrast, an IncQ plasmid bearing the TRP1 gene of Saccharomyces cerevisiae failed to replicate when transferred to that yeast by transformation.  相似文献   

11.
An isolated 25 kDa protein of Synechocystis sp. PCC 6803 was N-terminally sequenced and assigned to a protein encoded by the ORF slr0924. This ORF shows a certain degree of sequence similarity to a subunit from the protein Translocon at the Inner envelope of pea Chloroplasts (Tic22). The deduced amino acid sequence of Slr0924 has a N-terminal extension, that contains two possible translational start points and two possible cleavage sites for leader peptidases. Immunostaining with an antibody raised to the over-produced protein revealed two cross-reacting forms, which probably correspond to a larger intermediate and the mature protein. Immunogold labelling of thin sections showed that the protein is located mainly in the thylakoid region. This result was verified by thylakoid membrane fractionation indicating that Slr0924 is a lumenal protein. The slr0924 gene product is essential for the viability of Synechocystis sp. PCC 6803 as shown by interposon mutagenesis. The merodiploid strain showed reduced photosynthetic activity compared to the wild-type. Furthermore, growth of the merodiploid strain was found to be completely inhibited after cultivation with glucose. Accordingly, the amount of the slr0924 gene product was regulated by glucose and light intensities in wild-type cells. The potential function of the protein in Synechocystis sp. PCC 6803 will be discussed.  相似文献   

12.
Cyanophycin or cyanophycin granule peptide is a protein that results from non-ribosomal protein synthesis in microorganisms such as cyanobacteria. The amino acids in cyanophycin can be used as a feedstock in the production of a wide range of chemicals such as acrylonitrile, polyacrylic acid, 1,4-butanediamine, and urea. In this study, an auxotrophic mutant (Rhizopus oryzae M16) of the filamentous fungus R. oryzae 99-880 was selected to express cyanophycin synthetase encoding genes. These genes originated from Synechocystis sp. strain PCC6803, Anabaena sp. strain PCC7120, and a codon optimized version of latter gene. The genes were under control of the pyruvate decarboxylase promoter and terminator elements of R. oryzae. Transformants were generated by the biolistic transformation method. In only two transformants both expressing the cyanophycin synthetase encoding gene from Synechocystis sp. strain PCC6803 was a specific enzyme activity detected of 1.5 mU/mg protein. In one of these transformants was both water-soluble and insoluble cyanophycin detected. The water-soluble fraction formed the major fraction and accounted for 0.5% of the dry weight. The water-insoluble CGP was produced in trace amounts. The amino acid composition of the water-soluble form was determined and constitutes of equimolar amounts of arginine and aspartic acid.  相似文献   

13.
14.
The gene encoding subunit IV of the cytochrome b6/f complex (petD) has been isolated from a genomic library of the unicellular cyanobacterium Synechocystis sp. PCC 6803. The coding region consists of 480 nucleotides and can code for a polypeptide with a molecular weight of 17.5 kDa. The deduced amino acid sequence shows high identity with the corresponding sequences of both the photoautotrophic prokaryote Nostos sp. PCC 7906 as well as of lower and higher photoautotrophic eukaryotes (e.g. Chlorella protothecoides, Nicotiana tabacum). Transformation of Synechocystis sp. PCC 6803 with a plasmid containing the cloned petD gene in which the coding sequence is interrupted by the aminoglycoside 3-phosphotransferase gene (aph) from Tn903 resulted in the formation of km resistant transformants. The molecular analysis of independent transformants revealed that all clones were merodiploid containing both uninterrupted wild-type as well as interrupted mutant petD copies. Approaches to segregate these two genomes were unsuccessful implying an essential function of the petD gene product in Synechocystis sp. PCC 6803.Abbreviations aph aminoglycoside 3-phosphotransferase - cpDNA chloroplast DNA - km kanamycin - PSI photosystem I - PSII photosystem II  相似文献   

15.
The phosphatidylglycerol deficient ΔpgsA mutant of Synechocystis PCC6803 provided a unique experimental system for investigating in vivo retailoring of exogenously added dioleoylphosphatidylglycerol in phosphatidylglycerol-depleted cells. Gas chromatographic analysis of fatty acid composition suggested that diacyl-phosphatidylglycerols were synthesized from the artificial synthetic precursor. The formation of new, retailored lipid species was confirmed by negative-ion electrospray ionization–Fourier-transform ion cyclotron resonance and ion trap tandem mass spectrometry. Various isomeric diacyl-phosphatidylglycerols were identified indicating transesterification of the exogenously added dioleoylphosphatidyl-glycerol at the sn-1 or sn-2 positions. Polyunsaturated fatty acids were incorporated selectively into the sn-1 position. Our experiments with Synechocystis PCC6803/ΔpgsA mutant cells demonstrated lipid remodeling in a prokaryotic photosynthetic bacterium. Our data suggest that the remodeling of diacylphosphatidylglycerol likely involves reactions catalyzed by phospholipase A1 and A2 or acyl-hydrolase, lysophosphatidylglycerol acyltransferase and acyl-lipid desaturases.  相似文献   

16.
Cyanobacteria, like other photosynthetic organisms, respond to the potentially damaging effects of high-intensity light by regulating the expression of a variety of stress-responsive genes through regulatory mechanisms that remain poorly understood. The high light regulatory 1 (HLR1) sequence can be found upstream of many genes regulated by high-light (HL) stress in cyanobacteria. In this study, we identify the factor that binds the HLR1 upstream of the HL-inducible hliB gene in the cyanobacterium Synechocystis PCC 6803 as the RpaB (Slr0947) response regulator.  相似文献   

17.
The availability of a complete genome database for the cyanobacterium Synechocystissp. PCC6803 (glucose-tolerant strain) has raised expectations that this organism would become a reference strain for work aimed at understanding the CO2-concentrating mechanism (CCM) in cyanobacteria. However, the amount of physiological data available has been relatively limited. In this report we provide data on the relative contributions of net HCO3 uptake and CO2 uptake under steady state photosynthetic conditions. Cells were compared after growth at high CO2 (2% v/v in air) or limiting CO2 conditions (20 ppm CO2). Synechocystishas a very high dependence on net HCO3 uptake at low to medium concentrations of inorganic carbon (Ci). At high Ci concentrations net CO2 uptake became more important but did not contribute more than 40% to the rate of photosynthetic O2 evolution. The data also confirm that high Ci cells of Synechocystissp. PCC6803 possess a strong capacity for net HCO3 uptake under steady state photosynthetic conditions. Time course experiments show that induction of maximal Ci uptake capacity on a shift from high CO2 to low CO2 conditions was near completion by four hours. By contrast, relaxation of the induced state on return of cells to high CO2, takes in excess of 230 h. Experiments were conducted to determine if Synechocystissp. PCC6803 is able to exhibit a `fast induction' response under severe Ci limitation and whether glucose was capable of causing a rapid inactivation in Ci uptake capacity. Clear evidence for either response was not found. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
The psaC gene, which encodes the 8.9 kDa iron-sulfur containing subunit of Photosystem I, has been sequenced from Synechocystis sp. PCC 6803 and shows greater similarity to reported plant sequences than other cyanobacterial psaC sequences. The deduced amino acid sequence of the protein encoded by the Synechocystis psaC gene is identical to the tobacco PSA-C sequence. In plants psaC is located in the small single-copy region of the chloroplast genome between two genes (designated ndhE and ndhD) with similarity to genes encoding subunits of the mitochondrial NADH Dehydrogenase Complex I. The 5 ndhE-psaC-ndhD3 gene arrangement of higher plants is only partially conserved in Synechocystis. An open reading frame (ORF) upstream of the Synechocystis psaC gene has 85% identity to the tobacco ndhE gene. Downstream of psaC there is a 273 bp ORF with 48% identity to the 5 portion of the tobacco ndhD gene (1527 bp). psaC, ndhE and the region of similarity to ndhD are present in a single copy in the Synechocystis genome. Part of the wheat ndhD gene was sequenced and used as a probe for the presence of the 3 portion of the ndhD gene. The wheat ndhD probe did not hybridize to Synechocystis or Anabaena sp. PCC 7120 genomic DNA, but did hybridize to Oenothera chloroplast DNA. These results indicate the complete ndhD gene is absent in two cyanobacteria, and raises the question of what role, if any, the ndhD gene product plays in the facultative heterotroph Synechocystis sp. PCC 6803.  相似文献   

19.
Cyanobacteria desaturate fatty acids in the membrane lipids in response to decrease in temperature. We examined the changes in lipid and fatty acid composition in the thermophilic cyanobacterium Synechococcus vulcanus, which is characterized by an optimum growth temperature of 55°C. During temperature acclimation to 45°C or 35°C, the cells synthesized oleic acid at the expense of stearic acid in the membrane lipids. Unlike mesophilic cyanobacteria, S. vulcanus did not show any significant adaptive desaturation in the galactolipids monogalactosyl diacylglycerol and digalactosyl diacylglycerol, that comprise 50% and 30% of total membrane lipids, respectively. The major changes in fatty acid unsaturation were observed in the sulfolipid sulfoquinovosyl diacylglycerol.  相似文献   

20.
The unicellular cyanobacterium Synechocystis sp. PCC6714 can grow not only under photoautotrophic conditions, but also under chemoheterotrophic conditions if glucose is added to the medium. This makes it useful for the study of many aspects of bioenergetic mechanisms. In contrast to its closely related strain Synechocystis sp. PCC6803, which cannot grow chemoheterotrophically, Synechocystis PCC6714 is not naturally transformable. To enable gene transfer in this strain, we established a method for the introduction of self-replicating IncQ plasmids and for gene replacement using electroporation. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号