首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 880 毫秒
1.
Vinay Sharma  Dieter Strack 《Planta》1985,163(4):563-568
The distribution of l-malate, sinapic acid esters and 1-sinapoylglucose: l-malate sinapoyltransferase (SMT) which catalyzes the synthesis of sinapoyl-l-malate were examined in preparations of protoplasts obtained from cotyledons of red radish (Raphanus sativus L. var. sativus). Vacuoles isolated from the protoplasts contained all of the SMT activity, all of the accumulated sinapic acid esters and about 50% of free l-malate present initially in the protoplasts. An esterase activity, acting on 1-sinapoyglucose, was found to be exclusively localized in the cytoplasm and a large proportion was found to be recoverable in a 100 000-g pellet obtained from protoplast lysates. The vacuoles were obtained after lysis of the protoplasts by osmotic shock and purification on a Ficoll gradient. The cytoplasmic contamination of vacuole preparations was found to be about 10%, as judged by enzymatic markers and microscopic inspection. No SMT activity was found in a 100 000-g pellet obtained from vacuole lysates. The results indicate that biosynthesis of sinapoyl-l-malate takes place within the central vacuoles of redradish cotyledons.Abbreviation SMT 1-sinapoylglucose: l-malate sinapol-transferase  相似文献   

2.
Seedlings of red radish (Raphanus sativus L. var. sativus) accumulated high amounts of free malic acid and sinapoylmalate, when grown on nitrate as the sole N-source. In the presence of ammonium (NO 3 : NH 4 + , 1:2) both metabolites failed to accumulate, and the levels of arginine, asparagine, glutamine, histidine, and serine were greatly increased. The extractable activity of 1-sinapoylglucose: l-malate sinapoyltransferase, an enzyme which plays a key role in channelling malic acid into the sinapic-acid metabolism of this plant, was positively correlated with the malic-acid level in cotyledons. The possibility is discussed that free malic acid might be the likely candidate for regulating the activity of 1-sinapoylglucose: l-malate sinapoyltransferase.Abbreviation SMT sinapoylglucose: L-malate sinapoyltransferase  相似文献   

3.
D. Strack  J. Reinecke  S. Takeuchi 《Planta》1986,167(2):212-217
The control of malate metabolism and stimulation of 1-sinapolyglucose: L-malate sinapoyltransferase (SMT) activity in radish (Raphanus sativus L. var. sativus) cotyledons has been studied. The light-induced and nitrate-dependent activity of SMT catalyzes the formation of O-sinapoly-L-malate via 1-O-sinapoyl--D-glucose. When dark-grown radish seedlings, cultivated in quartz sand with nutrient solution containing NO 3 - as the sole N source, were treated with light, SMT activity increased concomitantly with free malate in the cotyledons. This light effect was suppressed in seedlings grown in a culture medium which contained in addition to NO 3 - also NH 4 + . However, treatment with methionine sulfoximine neutralized this ammonium effect, resulting again in both rapid accumulation of malate and rapid increase in SMT activity. When seedlings grown on NO 3 - nitrogen were subsequently supplied with NH 4 + nitrogen, the accumulated level of L-malate rapidly dropped and the SMT increase ceased. The enzyme activity decreased later on, reaching the low activity level of plants which were grown permanently on NO 3 - /NH 4 + -nitrogen. An external supply (vacuum infiltration) of malate to excised cotyledons and intact seedings, grown on NO 3 - /NH 4 + -nitrogen medium, specifically promoted a dose-dependent increase in the activity of SMT. In summary these results provide evidence indicating that the SMT activity in cotyledons of Raphanus sativus might be related to the metabolism of malic acid.Abbreviation MSO L-methionine sulfoximine - SinGlc 1-O-sinapoyl--D-glucose - SinMal O-sinapoyl-L-malate - SMT 1-O-sinapoyl--D-glucose:L-malate sinapolytransferase  相似文献   

4.
Protein preparations from seeds and seedlings (cotyledons) of rape (Brassica napus subsp. napus [L.] DC.) catalyzed the transfer of sinapic acid from 1-Osinapoyl--glucose to malate in the formation of O-s-inapoylmalate. The enzyme involved, 1-O-sinapoyl--glucose: l-malate O-sinapoyltransferase (SMT; EC 2.3.1), catalyzes the key step in the overall conversion of the seed constituent sinapine (O-sinapoylcholine) to the accumulating O-sinapoylmalate by way of the intermediate 1-O-sinapoyl--glucose. The present paper describes this phenomenon focussing on SMT activity.Abbreviations Sin-Glc 1-O-sinapoyl--glucose - Sin-Mal O-sinapoylmalate - SMT 1-O-sinapoyl--glucose: l-malate sinapoyltransferase (EC 2.3.1) This work was supported by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie and the Ontario Ministry of Agriculture and Food.  相似文献   

5.
Dieter Strack 《Planta》1982,155(1):31-36
Protein preparations from cotyledons of red radish (Raphanus sativus L. var. sativus) catalyzed the the formation of depsides between cinnamic acids and L-malate, using 1-O-acyl glucose conjugates as the donors. This activity showed an absolute acceptor specificity towards L-malate and a pronounced donor specificity with 1-sinapoylglucose (1-O-sinapoyl--D-glucose). Maximal rate of sinapoyl-L-malate formation was found to be at pH 6.3, and there was no requirement for metal ions or sulfhydryl group reagents. The K m values were found to be 0.46 mM for 1-sinapoylglucose and 54 mM for L-malate. Protein extracts obtained from seedlings at different stages of seedling development did not significantly differ with respect to the properties of the enzymatic activity. Appearance and development of extractable activities correlated well with the in vivo transacylation kinetics of 1-sinapoylglucose to sinapoyl-L-malate during seedling growth. Maximal activity was extracted from 10–14-d-old seedlings and found to be at 67 pkat pair-1 of cotyledons. This new enzymatic activity in phenylpropanoid metabolism refers to an enzyme which can be classified as 1-sinapoylglucose: L-malate sinapoyltransferase (SMT) (EC 2.3.1.-).Abbreviations DTE dithioerythriol - HPLC high performance liquid chromatography - IAA indoleacetic acid - ME 2-mercaptoethanol - Mes 2-(N-morpholino)ethanesulfonic acid - Mops 3-(N-morpholino)propanesulfonic acid - SMT 1-O-Sinapoyl--D-glucose: L-malate sinapoyltransferase  相似文献   

6.
Brassicaceous plants are characterized by a pronounced metabolic flux toward sinapate, produced by the shikimate/phenylpropanoid pathway, which is converted into a broad spectrum of O-ester conjugates. The abundant sinapate esters in Brassica napus and Arabidopsis thaliana reflect a well-known metabolic network, including UDP-glucose:sinapate glucosyltransferase (SGT), sinapoylglucose:choline sinapoyltransferase (SCT), sinapoylglucose:l-malate sinapoyltransferase (SMT) and sinapoylcholine (sinapine) esterase (SCE). 1-O-Sinapoylglucose, produced by SGT during seed development, is converted to sinapine by SCT and hydrolyzed by SCE in germinating seeds. The released sinapate feeds via sinapoylglucose into the biosynthesis of sinapoylmalate in the seedlings catalyzed by SMT. Sinapoylmalate is involved in protecting the leaves against the deleterious effects of UV-B radiation. Sinapine might function as storage vehicle for ready supply of choline for phosphatidylcholine biosynthesis in young seedlings. The antinutritive character of sinapine and related sinapate esters hamper the use of the valuable seed protein of the oilseed crop B. napus for animal feed and human nutrition. Due to limited variation in seed sinapine content within the assortment of B. napus cultivars, low sinapine lines cannot be generated by conventional breeding giving rise to genetic engineering of sinapate ester metabolism as a promising means. In this article we review the progress made throughout the last decade in identification of genes involved in sinapate ester metabolism and characterization of the encoded enzymes. Based on gene structures and enzyme recruitment, evolution of sinapate ester metabolism is discussed. Strategies of targeted metabolic engineering, designed to generate low-sinapate ester lines of B. napus, are evaluated.  相似文献   

7.
The yeast Schizosaccharomyces malidevorans utilizes l-malate when grown on glucose as the carbon source. A mutant of this yeast has been isolated which is dependent on the presence of both l-malate and glucose for growth. The mutant utilizes l-malate as rapidly as the wildtype and the utilization of glucose is greatly reduced. Other TCA cycle intermediates do not relieve the malate dependence.To John Ingraham whose pioneering work with malolactic bucteria made me curious enough about the field of nine microbiology to enter it and whose intense instruction in scientific method has made my continued pursuit of physiological and genetic questions a joy  相似文献   

8.
The capability of microorganisms to utilize different carbohydrates as energy source reflects the availability of these substrates in their habitat. Investigation of the proteins involved in carbohydrate usage, in parallel with analysis of their expression, is then likely to provide information on the interaction between microorganisms and their ecosystem. We analysed the growth behaviour of the marine Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 in the presence and in the absence of different carbon source. A marked increase in the optical density was detected when l-malate was added to the growth medium. Bacterial proteins differently expressed in the presence of l-malate were identified by proteomic profiling experiments. On the basis of their relative increase, six proteins were selected for further analyses. Among these, the expression of a putative outer membrane porin was demonstrated to be heavily induced by l-malate. The presence of a functionally active two-component regulatory system very likely controlled by l-malate was found in the upstream region of the porin gene. A non functional genomic porin mutant was then constructed showing a direct involvement of the protein in the uptake of l-malate. To the best of our knowledge, the occurrence of such a regulatory system has never been reported in Pseudoalteromonads so far and might constitute a key step in the development of an effective inducible cold expression system.  相似文献   

9.
The effect of structural analogues of l-malate was studied on NADP-malic enzyme purified from Zea mays L. leaves. Among the compounds tested, the organic acids behaved as more potent inhibitors at pH 7.0 than at pH 8.0, suggesting that the dimeric form was more susceptible to the inhibition than the tetrameric form of the enzyme.Oxalate, ketomalonate, hydroxymalonate, malonate, oxaloacetate, tartrate, -hydroxybutyrate, -ketobutyrate, -ketoglutarate and -hydroxyglutarate exhibited linear competitive inhibition with respect to the substrate l-malate at pH 8.0. On the other hand, glyoxylate and glycolate turned out to be non-competitive inhibitors, while glycolaldehyde, succinate, fumarate, maleate and - and -hydroxybutyrate had no effect on the enzyme activity, at the concentrations assayed. These results suggest that the extent of inhibition was dependent on the size of the analogues and that the presence of an 1-carboxyl group along with a 2-hydroxyl or 2-keto group was important for binding of the substrate analogue to the enzyme.  相似文献   

10.
Summary A new process (Living Cell Reaction Process) forl-isoleucine production using viable, non-growing cells ofBrevibacterium flavum AB-07 was optimised using ethanol as the energy source and -ketobutyric acid (-KB) as precursor.l-valine also could be produced from glucose at high yield by this process. This process differs from the usual fermentation method in that non-growing cells are used, and the production ofl-isoleucine andl-valine were carried out under conditions of repressed cell division and growth. Minimal medium missing the essential growth factor, biotin was employed as the reaction mixture for the production ofl-isoleucine andl-valine. The productivity ofl-isoleucine andl-valine were 200 mmol·l–1 · day–1 (molecular yield to -KB: 95%) and 300 mmol · l–1 · day–1 (molecular yield to glucose: 80%) respectively. The content ofl-isoleucine andl-valine in total amino acids produced in the each mixture were 97% and 96% respectively.  相似文献   

11.
Two systems for l-glutamate transport were found in Salmonella typhimurium LT-2 GltU+ (glutamate utilization) mutants. The first one is similar to the glt system previously described in Escherichia coli; by transductional analysis the structural gene, gltS, coding for the transport protein was located at minute 80 of the chromosome as part of the operon gltC-gltS, and its regulator, the gltR gene, near minute 90; the gltS gene product transports both l-glutamate and l-aspartate, is sodium independent, and is -hydroxyaspartate sensitive. The second transport system, whose structural gene was called gltF and is located at minute 0, was l-glutamate specific, sodium independent, and -methylglutamate sensitive. Two aspartase activities occurred in S. typhimurium LT-2: the first one was present only in the GltU+ mutants, had a pH 6.4 optimum, was essential for both l-glutamate and l-aspartate metabolism, and mapped at minute 94, close to the ampC gene. The second one had a pH 7.2 optimum, could be induced by several amino acids, and thus may have a general role in nitrogen metabolism.  相似文献   

12.
Four out of five Desulfovibrio strains tested were able to oxidize l-malate to acetate in the presence of sulfate. Fumarate and succinate were also oxidized to acetate by these strains, but growth with the latter substrate was marginal. During growth on malate high NADP-dependent malic enzyme and NADPH DH activities were found in all strains. These activities were lower in lactate-or pyruvate-grown cells. An NADPH DH from D. gigas was partially purified. It was oxygen-labile, very sensitive to heavy metal ions and highly specific for NADPH. Growth yield studies indicated that energy conservation occurred during the transport of reducing equivalents from NADPH to the sulfate reduction pathway.Abbreviations DH dehydrogenase - DCPIP 2,6-dichlorophenolindophenol - MTT 3-(4,5-dimethylthiazol-2-yl)-2,4-diphenyltetrazolium bromide - HEPES 4-(2-hydroxyethyl-1-piperazine ethane sulfonic acid - PIPES piperazine-1,1-bis(2-ethane sulfonic acid) - MES 2-(N-morpholino)-ethane sulfonic acid - DTT dithiothreitol  相似文献   

13.
The kinetic mechanism of NADP-dependent malic enzyme purified from maize leaves was studied in the physiological direction. Product inhibition and substrate analogues studies with 3 aminopyridine dinucleotide phosphate and tartrate indicate that the enzyme reaction follows a sequential ordered Bi-Ter kinetic mechanism. NADP is the leading substrate followed by l-malate and the products are released in the order of CO2, pyruvate and NADPH. The enzyme also catalyzes a slow, magnesium-dependent decarboxylation of oxaloacetate and reduction of pyruvate and oxaloacetate in the presence of NADPH to produce l-lactate and l-malate, respectively.  相似文献   

14.
It is proposed that the activity of an epidermal cotransport system for Na+ and dicarboxylic amino acids accounts for the small amounts of L-glutamate and L-aspartate in the otherwise amino-acid-rich blood plasma of insects. This Na+-dependent transport system is responsible for more than 95% of the uptake of these amino acids into the larval epidermis of the beetle Tenebrio molitor. Kinetic analysis of uptake showed that the Na+-dependent co-transporter has medium affinity for L-glutamate and L-aspartate. The K m for L-glutamate uptake was 146 mol·l-1, and the maximum velocity of uptake (V max) was 12.1 pmol·mm-2 of epidermal sheet per minute. The corresponding values for L-aspartate were 191 mol·l-1 and 8.4 pmol·mm-2·min-1. The Na+/L-glutamate co-transporter has a stoichiometry of at least two Na+ ions for each L-glutamate-ion transported (n=217). The co-transporter has an affinity for Na+ equivalent to a K m of 21 mmol · l-1 Na+. Na+ is the only external ion apparently required to drive L-glutamate uptake. Li+ substitutes weakly for Na+. Removal of external K+ or addition of ouabain decreases uptake slowly over 1 h, suggesting that these treatments dissipate the Na+/K+ gradient by inhibiting epidermal Na+/K+ ATPase. Several structural analogues of L-glutamate inhibit the medium-affinity uptake of L-glutamate. The order of potency with which these competitive inhibitors block glutamate uptake is L-cysteatethreo-3-hydroxy-Dl-aspartate > D-aspartateL-aspartate> L-cysteine sulphinate > L-homocysteateD-glutamate. L-trans-Pyrrolidine-2,4-dicarboxylate, a potent inhibitor of L-glutamate uptake in mammalian synaptosomes, is a relatively weak blocker of epidermal uptake. The epidermis takes up substantially more L-glutamate by this Na+-dependent system than tissues such as skeletal muscle and ventral nerve cord. The epidermis may be a main site regulating blood L-glutamate levels in insects with high blood [Na+]. Because L-glutamate and L-aspartate stimulate skeletal muscle in insects, a likely role for epidermal L-glutamate/L-aspartate transporter is to keep the level of these excitatory amino acids in the blood below the postsynaptic activation thresholds.Abbreviation ac acetate - Ch choline - CNS central nervous system - cpm counts per minute - CDTA trans-1,2-diaminocyclohexane-N,N,N,N-tetraacetic acids - HPLC high performance liquid chromatography - K m Michaelis constant - n app apparent number - NMG N-methyl-D-glucamine - Pipes Piperazine-N,N-bis-[2-ethanesulfonic acid] - SD standard deviation - TEA tetraethyl-ammonium - V velocity of uptake - V max maximum velocity of uptake  相似文献   

15.
The spontaneous loss byArthrobacter oxidans cells of the nicotine-degrading ability (Nic+) was 0.06%. It could be increased by treatment with plasmid-curing agents up to 8%. It was possible by conjugation to restore the Nic+ phenotype in such cured derivatives and to transfer the Nic+ character to Nic- Arthrobacter species. Plasmid DNA, 160 kb in size as judged by contour length measurements, could be isolated from cleared lysates ofA. oxidans cells by acridine yellow chromatography. Agarose gel electrophoresis of DNA isolated fromArthrobacter exconjugates revealed the occurrence of plasmid DNA within these strains; its mobility was similar to that of the plasmid DNA present inA. oxidans. Although the expression and inducibility of the transferred genes was poor in most of theArthrobacter species exconjugants, apparently authentic 6-hydroxy-l-nicotine oxidase could be identified in these cells after enrichment by an enzyme-specific chromatography.Abbreviations 6-HDNO 6-hydroxy-d-nicotine oxidase - 6-HLNO 6-hydroxy-l-nicotine oxidase - kb kilobase - Nic+ ability to usel- ord-nicotine as sole carbon and nitrogen source - Nic- absence of Nic+ character Enzymes (EC 1.5.3.5.) 6-Hydroxy-l-nicotine oxidase, 6-hydroxy-l-nicotine: oxygen oxidoreductase - (EC 1.5.3.6.) 6-hydroxy-d-nicotine oxidase, 6-hydroxy-d-nicotine: oxygen oxidoreductase - (EC 3.1.4.22) ribonuclease A, ribonucleate 3-pyrimidino-oligo-nucleotidohydrolase  相似文献   

16.
Anl-amino-acid oxidase (EC 1.4.3.1) that catalyzes the oxidative deamination of twelvel-amino acids has been purified 21-fold and with 14% yield to electrophoretic homogeneity fromChlamydomonas reinhardtii cells by ammonium-sulfate fractionation, gel filtration through Sephacryl and Superose, anion-exchange chromatography and preparative electrophoresis in polyacrylamide gels. The native enzyme is a protein of 470 kDa and consists of eight identical or similarsized subunits of 60 kDa each. Optimum pH and temperature were 8.2 and 55° C, respectively, with a Q10 (45–55° C) of 1.7 and an activation energy of 45 kJ · mol–1. Its absorption spectrum showed, in the visible region, maxima at 360 and 444 nm, characteristic of a flavoprotein with a calculated flavin content of 7.7 mol FAD per mol of native enzyme. ApparentK m values of the twelvel-amino acids which can act as substrates ofl-amino-acid oxidase ranged between 31 M for phenylalanine and 176 M for methionine. The effect of several specific group reagents, chelating agents and bivalent cations on enzyme activity has also been studied.This work was supported by Grant 780-CO2-01 from CICYT, Spain. The skillful secretarial assistance of C. Santos and I. Molina is gratefully acknowledged.  相似文献   

17.
Onion guard cells, in contrast to those of Vicia and Pisum, do not require an alkaline treatment in order to fluoresce. Fluorescing compounds of Allium cepa L. were characterized using in-vivo microspectrophotometry; furthermore, invitro chemical analysis for epidermal tissue, intact guard and epidermal cells, and isolated guard-cell protoplasts was performed. The emission intensity (max 520 nm) decreased when intact onion guard cells were excited with 436 nm light, but increased (max 470 nm) when excited at 365 nm. This photodecomposition at 436 nm is typical of flavins or flavoproteins whereas an increase in fluorescence intensity with excitation at 365 nm may be explained by the presence of other substances. The presence of flavins could not be unambiguously confirmed from these results. Indeed, the absorption spectra of the vacuolar area of guard cells did not show the peak at 445 nm which is characteristic for flavins. Furthermore, there was no decrease of absorption at the excitation wavelengths of 440 and 330 nm. Since spectral data indicate the presence at high amounts of flavonoids in guard and epidermal cells, this may reduce the sensitivity for the detection of flavins in guard cells. Using thin-layer chromatography and high-performance liquid chromatography together with hydrolytic procedures, flavonol glycosides with kaempferol and quercetin as aglycones substituted with sulphate and glucuronate were identified. Further studies on guard-cell metabolism should consider the presence of flavonoids in stomata of onion and other plants.Abbreviations GCP guard-cell protoplast - HPLC high-performance liquid chromatography - TLC thin-layer chromatography  相似文献   

18.
19.
The induction of extracellular arabinases by pentose sugars and polyols generated by the metabolic pathway of l-arabinose and d-xylose catabolism in Aspergillus niger was investigated. Induction occurred with l-arabinose and l-arabitol but not with d-xylose or xylitol. l-arabitol in particular was found to be a good inducer for -l-arabinofuranosidase and endo-arabinase activities. Western blotting analysis showed both -l-arabinofuranosidase A and B to be present. No induction was observed using d-arabitol. Unlike the wild type A. niger N402 strain, the A. niger xylulose kinase negative mutant N572 also showed induction of -l-arabinofuranosidases A and B and endo-arabinase activity on d-xylose and xylitol. This is due to metabolic conversion of these compounds leading to the accumulation of both xylitol and l-arabitol in this mutant, the latter of which then acts as inducer. The induction of the two -l-arabinofuranosidases and endo-arabinase is under the control of two regulatory systems namely pathway specific induction and carbon catabolite repression. Under derepressing conditions in the wild type only -l-arabinofuranosidase B could be detected by Western blotting analysis. This indicates that -l-arabinofuranosidase B is of importance in the initiation of specific induction of the various arabinose activities in A. niger grown on arabinose containing structural polysaccharides.Abbreviations PNA p-nitrophenyl--l-arabinofuranoside  相似文献   

20.
Contact of mononuclear human leukocytes with cellulose dialysis membranes may result in complement-independent cell activation, i.e. enhanced synthesis of cytokines, prostaglandins and an increase in 2-microglobulin synthesis. Cellular contact activation is specifically inhibited by the monosaccharidel-fucose suggesting that dialysis membrane associatedl-fucose residues are involved in leukocyte activation. In this study we have detected and quantitatedl-fucose on commercially-available cellulose dialysis membranes using two approaches. A sensitive enzymatic fluorescence assay detectedl-fucose after acid hydrolysis of flat sheet membranes. Values ranged from 79.3±3.6 to 90.2±5.0 pmol cm–2 for Hemophan® or Cuprophan® respectively. Enzymatic cleavage of terminal -l-fucopyranoses with -l-fucosidase yielded 7.7±3.3 pmoll-fucose per cm2 for Cuprophan. Enzymatic hydrolysis of the synthetic polymer membranes AN-69 and PC-PE did not yield detectable amounts ofl-fucose. In a second approach, binding of the fucose specific lectins ofLotus tetragonolobus andUlex europaeus (UEAI) demonstrated the presence of biologically accessiblel-fucose on the surface of cellulose membranes. Specific binding was observed with Cuprophan®, and up to 2.6±0.3 pmoll-fucose per cm2 was calculated to be present from Langmuir-type adsorption isotherms. The data presented are in line with the hypothesis that surface-associatedl-fucose residues on cellulose dialysis membranes participate in leukocyte contact activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号