首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
The interaction of the phage T4 Dam DNA-[N6-adenine] methyltransferase with 24mer synthetic oligonucleotide duplexes having different purine base substitutions in the palindromic recognition sequence, GATC, was investigated by means of gel shift and methyl transfer assays. The substitutions were introduced in either the upper or lower strand: guanine by 7-deazaguanine (G-->D) or 2-aminopurine (G-->N) and target adenine by purine (A-->P) or 2-aminopurine (A-->N). The effects of each base modification on binding/methylation were approximately equivalent for both strands. G-->D and G-->N substitutions resulted in a sharp decrease in binary complex formation. This suggests that T4 Dam makes hydrogen bonds with either the N7- or O6-keto groups (or both) in forming the complex. In contrast, A-->P and A-->N substitutions were much more tolerant for complex formation. This confirms our earlier observations that the presence of intact 5'-G:C base pairs at both ends of the methylation site is critical, but that base substitutions within the central A:T base pairs show less inhibition of complex formation. Addition of T4 Dam to a complete substrate mixture resulted in a burst of [3H]methylated product. In all cases the substrate dependencies of bursts and methylation rates were proportional to each other. For the perfect 24mer k cat = 0.014/s and K m = 7.7 nM was obtained. In contrast to binary complex formation the two guanine substitutions exerted relatively minor effects on catalytic turnover (the k cat was reduced at most 2. 5-fold), while the two adenine substitutions showed stronger effects (5- to 15-fold reduction in k cat). The effects of base analog substitutions on K m(DNA) were more variable: A-->P (decreased); A-->N and G-->D (unchanged); G-->N (increased).  相似文献   

2.
The association of autosomal recessive phosphorylase kinase deficiency in liver of a 3 1/2-year-old female child with mutations in the gene encoding the common part of the beta subunit of phosphorylase kinase is reported. The proband had a severe deficiency of phosphorylase kinase in liver, while the phosphorylase kinase activity in erythrocytes was only slightly diminished. She had no symptoms of muscle involvement. The complete coding sequences of the liver gamma subunit and of the beta subunit of phosphorylase kinase of the proband were analyzed for the presence of mutations, by either reverse-transcribed PCR or SSCP analysis. Three deviations from the normal sequence were found in the region encoding the common part of the beta subunit of phosphorylase kinase-namely, a 1827G-->A (W609X) transition, a 2309A-->G (Y770C) transition, and a deletion of nucleotides 2896-2911-whereas no mutations were detected in the sequence encoding the liver gamma subunit of phosphorylase kinase. The 1827G-->A mutation and the deletion both result in the formation of early stop codons. Investigation of DNA showed that the deletion is caused by a splice-acceptor site mutation (IVS30(-1),g-->t). Family analysis revealed that the 1827G-->A and IVS30(-1),g-->t substitutions are located on different parental chromosomes and that compound heterozygosity for these mutations segregates with the disease. The 2309A-->G mutation was detected in 2%-3% of the normal population. Thus, it is concluded that the deficiency of phosphorylase kinase in this proband is caused by compound heterozygosity for the 1827G-->A and the IVS30(-1),g-->t mutations and that the 2309A-->G mutation is a polymorphism. This implies that a defect in the sequence encoding the common part of the beta subunit of phosphorylase kinase may present as liver phosphorylase kinase deficiency.  相似文献   

3.
Tubbs JL  Pegg AE  Tainer JA 《DNA Repair》2007,6(8):1100-1115
O(6)-Alkylguanine-DNA alkyltransferase (AGT) is a crucial target both for the prevention of cancer and for chemotherapy, since it repairs mutagenic lesions in DNA, and it limits the effectiveness of alkylating chemotherapies. AGT catalyzes the unique, single-step, direct damage reversal repair of O(6)-alkylguanines by selectively transferring the O(6)-alkyl adduct to an internal cysteine residue. Recent crystal structures of human AGT alone and in complex with substrate DNA reveal a two-domain alpha/beta fold and a bound zinc ion. AGT uses its helix-turn-helix motif to bind substrate DNA via the minor groove. The alkylated guanine is then flipped out from the base stack into the AGT active site for repair by covalent transfer of the alkyl adduct to Cys145. An asparagine hinge (Asn137) couples the helix-turn-helix DNA binding and active site motifs. An arginine finger (Arg128) stabilizes the extrahelical DNA conformation. With this newly improved structural understanding of AGT and its interactions with biologically relevant substrates, we can now begin to unravel the role it plays in preserving genetic integrity and discover how it promotes resistance to anticancer therapies.  相似文献   

4.
We present evidence that a 480G-->A transition in the coding region of the beta-glucuronidase gene, which results in an aspartic-acid-to-asparagine substitution at amino acid position 152 (D152N), produces a pseudodeficiency allele (GUSBp) that leads to greatly reduced levels of beta-glucuronidase activity without apparent deleterious consequences. The 480G-->A mutation was found initially in the pseudodeficient mother of a child with mucopolysaccharidosis VII (MPSVII), but it was not on her disease-causing allele, which carried the L176F mutation. The 480G-->A change was also present in an unrelated individual with another MPSVII allele who had unusually low beta-glucuronidase activity, but whose clinical symptoms were probably unrelated to beta-glucuronidase deficiency. This individual also had an R357X mutation, probably on his second allele. We screened 100 unrelated normal individuals for the 480G-->A mutation with a PCR method and detected one carrier. Reduced beta-glucuronidase activity following transfection of COS cells with the D152N cDNA supported the causal relationship between the D152N allele and pseudodeficiency. The mutation reduced the fraction of expressed enzyme that was secreted. Pulse-chase experiments indicated that the reduced activity in COS cells was due to accelerated intracellular turnover of the D152N enzyme. They also suggested that a potential glycosylation site created by the mutation is utilized in approximately 50% of the enzyme expressed.  相似文献   

5.
Hemochromatosis, the inherited disorder of iron metabolism, leads, if untreated, to progressive iron overload and premature death. The hemochromatosis gene, HFE, recently has been identified, and characterization of this gene has shown that it contains two mutations that result in amino acid substitutions-cDNA nucleotides 845 G-->A (C282Y) and 187 C-->G (H63D). Although hemochromatosis is common in Caucasians, affecting >=1/300 individuals of northern European origin, it has not been recognized in other populations. The present study used PCR and restriction-enzyme digestion to analyze the frequency of the 845 G-->A and 187 C-->G mutations in HLA-typed samples from non-Caucasian populations, comprising Australian Aboriginal, Chinese, and Pacific Islanders. Results showed that the 845 G-->A mutation was present in these populations (allele frequency 0.32%), and, furthermore, it was always seen in conjunction with HLA haplotypes common in Caucasians, suggesting that 845 G-->A may have been introduced into these populations by Caucasian admixture. 187 C-->G was present at an allele frequency of 2.68% in the two populations analyzed (Australian Aboriginal and Chinese). In the Australian Aboriginal samples, 187 C-->G was found to be associated with HLA haplotypes common in Caucasians, suggesting that it was introduced by recent admixture. In the Chinese samples analyzed, 187 C-->G was present in association with a wide variety of HLA haplotypes, showing this mutation to be widespread and likely to predate the more genetically restricted 845 G-->A mutation.  相似文献   

6.
The first or/and the second guanines of the human Ha-ras codon 12 (normally GGC) were substituted by O6 meG residues and the modified sequence was subsequently introduced into an SV40-based shuttle vector able to replicate in both simian cells and bacteria. After replication in simian COS7 cells (proficient in O6-alkyl-guanine transferase), plasmid DNA was extracted and mutations were screened in E. coli DH5 alpha cells. The vast majority of the mutations induced by O6 meG were G----A transitions. The mutation frequency observed at the second guanine of codon 12 (12G2 position: 3.75% +/- 0.4) was higher than the one observed at the first guanine (12G1 position: 1.09% +/- 0.6). This difference was confirmed by the results obtained when two adjacent O6 meG residues were positioned within codon 12. The higher mutation frequency observed for the 12G2 position could be attributed to differential repair or/and variation in polymerase fidelity. These results are in agreement with animal experiments where alkylating agents gave rise to mutation on G2 position of codon 12.  相似文献   

7.
Xeroderma pigmentosum (XP) patients in Tunisia who belong to the genetic complementation group A (XPA) have milder skin symptoms than do Japanese XPA patients. Such difference in the clinical features might be caused by the difference in the site of mutation in the XP A-complementing (XPAC) gene. The purpose of this study is to identify the genetic alterations in the XPAC gene in the Tunisian XPA patients and to investigate the relationship between the clinical symptoms and the genetic alterations. Three sites of mutation in the XPAC gene have been identified in the Japanese XPA patients, and about 85% of them have a G-->C point mutation at the splicing acceptor site of intron 3. We found that six (86%) of seven Tunisian XPA patients had a nonsense mutation in codon 228 in exon 6, because of a CGA-->TGA point mutation, which can be detected by the HphI RFLP. This type of mutation is the same as those found in two Japanese XPA patients with mild clinical symptoms. Milder skin symptoms in the XPA patients in Tunisia than in those in Japan, despite mostly sunny weather and the unsatisfactory sun protection in Tunisia, should be due to the difference in the mutation site.  相似文献   

8.
9.
Cisplatin (cis-[Pt(NH3)2Cl2]) is a widely used antitumor agent whose mutagenic activity raises the possibility of the induction of secondary cancer as a result of treatment. Mutation of the proto-oncogene H-ras is found in more than 30% of all human tumors, where it has been postulated to contribute to the initiation and progression of human cancers. Activating mutations in the H-ras gene are predominantly single-base substitutions, most frequently at codons 12, 13 and 61. In the present work we have studied the mutational spectra induced by a single cis-[Pt(NH3)2d(GpG)] adduct, the most frequent DNA crosslink formed by cisplatin. We have constructed a 25-mer-Pt oligonucleotide singly modified at codon 13 (GGT) within the human H-ras DNA sequence and we have inserted it into a single-stranded SV40-based shuttle vector able to replicate in simian COS7 cells. After replication in the mammalian host, vectors were extracted, amplified in bacteria and DNA from 124 randomly chosen colonies was sequenced. The observed mutation frequency was 21%. Base substitutions were the most frequent modification. 92% of the mutagenic events occurred at one or both of the platinated guanines of codon 13. The single G-->T transversion accounted for 65% of the total mutations scored. All single base substitutions were located at the G in the 3' position showing, for the first time, that the guanine at the 3' side of a cis-[Pt(NH3)2d(GpG)] adduct may be a preferential site for cisplatin induced mutations. The substitution G-->T at this position of the codon 13 of the H-ras proto-oncogene is known to induce the oncogenic properties of the p21ras protein.  相似文献   

10.
The mutagenic properties of UV-induced photoproducts, both the cis-syn thymine-thymine dimer (TT) and the thymine-thymine pyrimidine pyrimidone (6-4) photoproduct [T(6-4)T] were studied in mammalian cells using shuttle vectors. A shuttle vector able to replicate in both mammalian cells and bacteria was produced in its single-stranded DNA form. A unique photoproduct was inserted at a single restriction site and after recircularization of the single-stranded DNA vector, this latter was transfected into simian COS7 cells. After DNA replication the vector was extracted from cells and used to transform bacteria. Amplified DNA was finally analyzed without any selective screening, DNA from randomly picked bacterial colonies being directly sequenced. Our results show clearly that both lesions are mutagenic, but at different levels. Mutation frequencies of 2 and 60% respectively were observed with the TT dimer and the T(6-4)T. With the TT dimer the mutations were targeted on the 3'-T. With the T(6-4)T a large variety of mutations were observed. A majority of G-->T transversions were semi-targeted to the base before the 5'-T of the photoproduct. These kinds of mutations were not observed when the same plasmid was transfected directly into SOS-induced JM105 bacteria or when the T(6-4)T oligonucleotide inserted in a different plasmid was replicated in SOS-induced SMH10 Escherichia coil bacteria. These semi-targeted mutations are therefore the specific result of bypass of the T(6-4)T lesion in COS7 cells by one of the eukaryotic DNA polymerases.  相似文献   

11.
B Demple 《Nucleic acids research》1986,14(14):5575-5589
The activated Ada protein triggers expression of DNA repair genes in Escherichia coli in response to alkylation damage. Ada also possesses two distinct suicide alkyltransferase activities, for O6-alkylguanines and for alkyl phosphotriesters in DNA. The mutant Ada3 and Ada5 transferases repair O6-methylguanine in DNA 20 and 3000 times more slowly, respectively, than the wild-type Ada protein, but both exhibit normal DNA phosphotriester repair. These same proteins also exhibit delayed and sluggish induction of the ada and alkA genes. Since the C-terminal O6-methylguanine methyltransferase domain of Ada is not implicated in the direct binding of specific DNA sequences, this part of the Ada protein is likely to play an alternative mechanistic role in gene activation, either by promoting Ada dimerization, or via direct contacts with RNA polymerase.  相似文献   

12.
In studying the relationship between genetic abnormalities of red blood cells and malaria endemicity in the Vanuatu archipelago in the southwestern Pacific, we have found that of 1,442 males tested, 98 (6.8%) were G6PD deficient. The prevalence of GdPD deficiency varied widely (0%-39%), both from one island to another and in different parts of the same island, and generally correlated positively with the degree of malaria transmission. The properties of G6PD from GdPD-deficient subjects were analyzed in a subset of 53 samples. In all cases the residual red-blood-cell activity was < 10%. There were three phenotypic patterns. PCR amplification and sequencing of the entire coding region of the G6PD gene showed that the first of these patterns corresponded to G6PD Union (nucleotide 1360C-->T; amino acid 454Arg-->Cys), previously encountered elsewhere. Analysis of samples exhibiting the second pattern revealed two new mutants: G6PD Vanua Lava (nucleotide 383T-->C; amino acid 128Leu-->Pro) and G6PD Namoru (nucleotide 208T-->C; amino acid 70Tyr-->His); in three samples, the underlying mutation has not yet been identified. Analysis of the sample exhibiting the third pattern revealed another new mutant: G6PD Naone (nucleotide 497G-->A; amino acid 166Arg-->His). Of the four mutations, G6PD Union and G6PD Vanua Lava have a polymorphic frequency in more than one island; and G6PD Vanua Lava has also been detected in a sample from Papua New Guinea. G6PD deficiency is of clinical importance in Vanuatu because it is a cause of neonatal jaundice and is responsible for numerous episodes of drug-induced acute hemolytic anemia.  相似文献   

13.
Glyoxal is a major product of DNA oxidation in which Fenton-type oxygen free radical-forming systems are involved. To determine the mutation spectrum of glyoxal in mammalian cells and to compare the spectrum with those observed in other experimental systems, we analyzed mutations in a bacterial suppressor tRNA gene (supF) in the shuttle vector plasmid pMY189. We treated pMY189 with glyoxal and immediately transfected it into simian COS-7 cells. The cytotoxicity and mutation frequency increased according to the dose of glyoxal. The majority of glyoxal-induced mutations (48%) were single-base substitutions. Eighty three percent of the single-base substitutions occurred at G:C base pairs. Among them, G:C-->T:A transversions were predominant, followed by G:C-->C:G transversions and G:C-->A:T transitions. A:T-->T:A transversions were also observed. Mutational hotspots within the supF gene were detected. These results suggest that glyoxal may play an important role in mutagenesis induced by oxygen free radicals.  相似文献   

14.
Mutations were induced in the ampicillinase gene of a bacteriophage f1/pBR322 chimera both by incorporation of O6-methyl-dGTP opposite T during DNA replication in vitro and by site-directed mutagenesis using O6-methylguanine-containing oligonucleotides. After passage of the DNA through Escherichia coli, analysis of 151 O6-methyl-dGTP-induced mutations indicated a significantly greater number of unmutated mutation sites than expected, whereas the mutated sites generally fit a Poisson distribution. The unmutated sites are assumed to be caused by the inability of some sequences to tolerate the presence of a tetrahedral methyl group within the confines of a Watson-Crick helix (Toorchen, D., and Topal, M.D. (1983) Carcinogenesis 4, 1591-1597). A consensus of the DNA sequences surrounding unmutated mutation sites was derived. The consensus sequence had significant similarity to the region of the rat Harvey ras oncogene containing the N-methyl-N-nitrosourea activated site for transformation (Zarbl, H., Sukumar, S., Arthur, A. V., Dionisio, M.-Z., and Barbacid, M. (1985) Nature 315, 382-385). We propose that direct alkylation at O6 of a guanine present within the consensus sequence may produce a DNA conformation less subject to repair. Mutation by O6-methylguanine-containing oligonucleotides demonstrated that repair of the O6-methylguanine lesions varied at least 3-4-fold with position of the lesion.  相似文献   

15.
BACKGROUND: Thirty-six mutations that cause Gaucher disease, the most common glycolipid storage disorder, are known. Although both alleles of most patients with the disease contain one of these mutations, in a few patients one or both disease-producing alleles have remained unidentified. Identification of mutations in these patients is useful for genetic counseling. MATERIALS AND METHODS: The DNA from 23 Gaucher disease patients in whom at least one glucocerebrosidase allele did not contain any of the 36 previously described mutations has been examined by single strand conformation polymorphism (SSCP) analysis, followed by sequencing of regions in which abnormalities were detected. RESULTS: Eight previously undescribed mutations were detected. In exon 3, a deletion of a cytosine at cDNA nt 203 was found. In exon 6, three missense mutations were identified: a C-->A transversion at cDNA nt 644 (Ala176-->Asp), a C-->A transversion at cDNA nt 661 that resulted in a (Pro182-->Thr), and a G-->A transition at cDNA nt 721 (Gly202-->Arg). Two missense mutations were found in exon 7: a G-->A transition at cDNA nt 887 (Arg257-->Gln) and a C-->T at cDNA nt 970 (Arg285-->Cys). Two missense mutations were found in exon 9: a T-->G at cDNA nt 1249 (Trp378-->Gly) and a G-->A at cDNA nt 1255 (Asp380-->Asn). In addition to these disease-producing mutations, a silent C-->G transversion at cDNA nt 1431, occurring in a gene that already contained the 1226G mutation, was found in one family. CONCLUSIONS: The mutations described here and previously known can be classified as mild, severe, or lethal, on the basis of their effect on enzyme production and on clinical phenotype, and as polymorphic or sporadic, on the basis of the haplotype in which they are found. Rare mutations such as the new ones described here are sporadic in nature.  相似文献   

16.
Microsatellite analysis of chromosomes carrying particular cystic fibrosis mutations has shown different haplotypes in four cases: R334W, R347P, R1162X, and 3849 + 10kbC-->T. To investigate the possibility of recurrence of these mutations, analysis of intra- and extragenic markers flanking these mutations has been performed. Recurrence is the most plausible explanation, as it becomes necessary to postulate either double recombinations or single recombinations in conjunction with slippage at one or more microsatellite loci, to explain the combination of mutations and microsatellites if the mutations arose only once. Also in support of recurrence, mutations R334W, R347P, R1162X, and 3849 + 10kbC-->T involve CpG dinucleotides, which are known to have an increased mutation rate. Although only 15.7% of point mutations in the coding sequence of CFTR have occurred at CpG dinucleotides, approximately half of these CpG sites have mutated at least once. Specific nucleotide positions of the coding region of CFTR, distinct from CpG sequences, also seem to have a higher mutation rate, and so it is possible that the mutations observed are recurrent. G-->A transitions are the most common change found in those positions involved in more than one mutational event in CFTR.  相似文献   

17.
The conformation of the DNA helix is supposed to be a critical element in site-specific recognition by ligands both large and small. Groove width is one important measure of the conformation which varies with the local nucleotide composition, perhaps because of the presence of a purine 2-amino group on G.C base pairs. We have probed DNA with G-->inosine (I) and/or A-->diaminopurine (DAP) substitutions to see whether the location of the purine 2-amino group can indeed affect the minor groove width. At acid pH, the reactivity towards uranyl nitrate is modulated in substituted DNA quite differently from natural DNA, consistent with a marked narrowing of the minor groove at sites of G-->I substitution and widening at sites of A-->DAP replacement. The latter exerts the dominant effect. The expected changes in conformation are equally evident in the patterns of susceptibility to DNase I cleavage, but not to hydroxyl radical attack. Nuclease cleavage is maximal in normal and substituted DNA at regions of inferred moderate groove width which are generally little affected by the nucleotide substitutions. Consistent with models of sequence-dependent cutting by DNase I we find that the presence of a purine 2-amino group on the base pair three places upstream of the cutting site has a profound influence on the rate of reaction.  相似文献   

18.
The toxicity and mutagenicity (including the mutation spectrum induced) of dacarbazine, a methylating cytostatic drug, was examined in CHO cells expressing different levels of the repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT). Expression of low or high levels of a transfected human MGMT gene under the control of the metallothionein promoter protected the cells against dacarbazine-induced toxicity and mutagenesis. In the absence of MGMT expression, the mutation spectrum in the HPRT locus was dominated by GC-->AT transitions (mostly found at 5'Pu-G sequences), while there were also a few AT-->GC transitions. Expression MGMT was associated with a substantial decrease of GC-->AT mutations, suggesting that these mutations arose primarily via O(6)-methylguanine. These data illustrate the important role of the latter lesion in the drug's mutagenic and cytotoxic activity.  相似文献   

19.
J. B. Virgin  J. Metzger    G. R. Smith 《Genetics》1995,141(1):33-48
The ade6-M26 mutation of the fission yeast Schizosaccharomyces pombe creates a meiotic recombination hotspot that elevates ade6 intragenic recombination ~10-15-fold. A heptanucleotide sequence including the M26 point mutation is required but not sufficient for hotspot activity. We studied the effects of plasmid and chromosomal context on M26 hotspot activity. The M26 hotspot was inactive on a multicopy plasmid containing M26 embedded within 3.0 or 5.9 kb of ade6 DNA. Random S. pombe genomic fragments totaling ~7 Mb did not activate the M26 hotspot on a plasmid. M26 hotspot activity was maintained when 3.0-, 4.4-, and 5.9-kb ade6-M26 DNA fragments, with various amounts of non-S. pombe plasmid DNA, were integrated at the ura4 chromosomal locus, but only in certain configurations relative to the ura4 gene and the cointegrated plasmid DNA. Several integrations created new M26-independent recombination hotspots. In all cases the non-ade6 DNA was located >1 kb from the M26 site, and in some cases >2 kb. Because the chromosomal context effect was transmitted over large distances, and did not appear to be mediated by a single discrete DNA sequence element, we infer that the local chromatin structure has a pronounced effect on M26 hotspot activity.  相似文献   

20.
Alkaptonuria (AKU), a rare hereditary disorder of phenylalanine and tyrosine catabolism, was the first disease to be interpreted as an inborn error of metabolism. AKU patients are deficient for homogentisate 1,2 dioxygenase (HGO); this deficiency causes homogentisic aciduria, ochronosis, and arthritis. We cloned the human HGO gene and characterized two loss-of-function mutations, P230S and V300G, in the HGO gene in AKU patients. Here we report haplotype and mutational analysis of the HGO gene in 29 novel AKU chromosomes. We identified 12 novel mutations: 8 (E42A, W97G, D153G, S189I, I216T, R225H, F227S, and M368V) missense mutations that result in amino acid substitutions at positions conserved in HGO in different species, 1 (F10fs) frameshift mutation, 2 intronic mutations (IVS9-56G-->A, IVS9-17G-->A), and 1 splice-site mutation (IVS5+1G-->T). We also report characterization of five polymorphic sites in HGO and describe the haplotypic associations of alleles at these sites in normal and AKU chromosomes. One of these sites, HGO-3, is a variable dinucleotide repeat; IVS2+35T/A, IVS5+25T/C, and IVS6+46C/A are intronic sites at which single nucleotide substitutions (dimorphisms) have been detected; and c407T/A is a relatively frequent nucleotide substitution in the coding sequence, exon 4, resulting in an amino acid change (H80Q). These data provide insight into the origin and evolution of the various AKU alleles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号