首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 704 毫秒
1.
2.
We have recently characterized a novel mammalian gene family, encoding membrane glycoproteins with four trans-membrane domains. This gene family includes the previously studiedPMP22,which is involved in the Charcot–Marie–Tooth neuropathy, and three novel genes:TMP, XMP,andYMP(HGMW-approved symbolsEMP1, EMP2andEMP3,respectively). TheTmp(tumor-associated membrane protein) gene was isolated from a c-mycinduced mouse brain tumor and is expressed in several highly proliferative cell types. We have now isolated cDNAs of the mouseXmpandYmpgenes and determined the chromosomal localization of mouseTmp, Xmp,andYmp. Tmpwas mapped to mouse chromosome 6,Xmpwas mapped to chromosome 16, andYmpwas mapped to chromosome 7.TmpandYmpmap to paralogous chromosomal regions, whereasXmpmaps to a chromosomal region that is putatively paralogous to a region on chromosome 11, to whichPmp22was previously mapped. These data suggest that this family of membrane glycoproteins evolved as a result of chromosomal duplications.  相似文献   

3.
4.
5.
Two novel human actin-like genes, ACTL7A and ACTL7B, were identified by cDNA selection and direct genomic sequencing from the familial dysautonomia candidate region on 9q31. ACTL7A encodes a 435-amino-acid protein (predicted molecular mass 48.6 kDa) and ACTL7B encodes a 415-amino-acid protein (predicted molecular mass 45.2 kDa) that show greater than 65% amino acid identity to each other. Genomic analysis revealed ACTL7A and ACTL7B to be intronless genes contained on a common 8-kb HindIII fragment in a “head-to-head” orientation. The murine homologues were cloned and mapped by linkage analysis to mouse chromosome 4 in a region of gene order conserved with human chromosome 9q31. No recombinants were observed between the two genes, indicating a close physical proximity in mouse. ACTL7A is expressed in a wide variety of adult tissues, while the ACTL7B message was detected only in the testis and, to a lesser extent, in the prostate. No coding sequence mutations, genomic rearrangements, or differences in expression were detected for either gene in familial dysautonomia patients.  相似文献   

6.
《Genomics》1995,29(3)
By using primers complementary to the rat βB1 crystallin gene sequence, we amplified exons 5 and 6 of the orthologous human gene (CRYBB1). The amplified human segments displayed greater than 88% sequence homology to the corresponding rat and bovine sequences.CRYBB1was assigned to the group 5 region in 22q11.2–q12.1 by hybridizing the exon 6 PCR product to somatic cell hybrids containing defined portions of human chromosome 22. The exon 5 and exon 6 PCR products ofCRYBB1were used to localize, by interspecific backcross mapping, the mouse gene (Crybb1) to the central portion of chromosome 5. Three other β crystallin genes (βB2(−1), βB3, and βA4) have previously been mapped to the same regions in human and mouse. We demonstrate that the βB1 and βA4 crystallin genes are very closely linked in the two species. These assignments complete the mapping and identification of the human and mouse homologues of the major β crystallins genes that are expressed in the bovine lens.  相似文献   

7.
8.
Summary Probes derived from cDNAs encoding isozymes of rat protein kinase C (PKC) were used to screen the genome of the budding yeast Saccharomyces cerevisiae. We reported previously the isolation of the yeast PKC1 gene, a homolog of the , , and subspecies of mammalian PKC. Here we report the isolation and genetic characterization of a pair of previously described genes (YPK1 and YPK2) which are predicted to encode protein kinases that share 90% amino acid identity with each other and 44–46% identity with various isozymes of PKC throughout their putative catalytic domains. Deletion of YPK2 resulted in no apparent phenotypic defect, but loss of YPK1 resulted in slow growth. Cells deleted for both YPK1 and YPK2 were defective in vegetative growth, indicating that the protein kinases predicted to be encoded by these genes are functionally overlapping and play an essential role in the proliferation of yeast cells. The YPK1 gene was mapped to the left arm of chromosome XI and YPK2 was mapped to the right arm of chromosome XIII.  相似文献   

9.
Loss of heterozygosity (LOH) on chromosome 9q is the most frequent genetic alteration in transitional cell carcinoma (TCC) of the bladder, indicating the presence of one or more relevant tumor suppressor genes. We previously mapped one of these putative tumor suppressor loci to 9q32–q33 and localized the candidate region within a single YAC 840 kb in size. This locus has been designatedDBC1(for deleted in bladder cancer gene 1). We have identified a novel gene,DBCCR1,in this candidate region by searching for expressed sequence tags (ESTs) that map to YACs spanning the region. Database searching using the entireDBCCR1cDNA sequence identified several human ESTs and a few homologous mouse ESTs. However, the predicted 761-amino-acid sequence had no significant homology to known protein sequences. Mutation analysis of the coding region and Southern blot analysis detected neither somatic mutations nor gross genetic alterations in primary TCCs. AlthoughDBCCR1was expressed in multiple normal human tissues including urothelium, mRNA expression was absent in 5 of 10 (50%) bladder cancer cell lines. Methylation analysis of the CpG island at the 5′ region of the gene and the induction ofde novoexpression by a demethylating agent indicated that this island might be a frequent target for hypermethylation and that hypermethylation-based silencing of the gene occurs in TCC. These findings makeDBCCR1a good candidate forDBC1.  相似文献   

10.
Full-length coding sequences of two novel human cadherin cDNAs were obtained by sequence analysis of several EST clones and 5′ and 3′ rapid amplification of cDNA ends (RACE) products. Exons for a third cDNA sequence were identified in a public-domain human genomic sequence, and the coding sequence was completed by 3′ RACE. One of the sequences (CDH7L1, HGMW-approved gene symbol CDH7) is so similar to chicken cadherin-7 gene that we consider it to be the human orthologue. In contrast, the published partial sequence of human cadherin-7 is identical to our second cadherin sequence (CDH7L2), for which we propose CDH19 as the new name. The third sequence (CDH7L3, HGMW-approved gene symbol CDH20) is almost identical to the mouse “cadherin-7” cDNA. According to phylogenetic analysis, this mouse cadherin-7 and its here presented human homologue are most likely the orthologues of Xenopus F-cadherin. These novel human genes, CDH7, CDH19, and CDH20, are localized on chromosome 18q22–q23, distal of both the gene CDH2 (18q11) encoding N-cadherin and the locus of the six desmosomal cadherin genes (18q12). Based on genetic linkage maps, this genomic region is close to the region to which Paget's disease was linked. Interestingly, the expression patterns of these three closely related cadherins are strikingly different.  相似文献   

11.
12.
The human wildtype p53-induced phosphatase 1 (Wip1; GenBank symbol Ppm1d) gene encodes a type 2C protein phosphatase (PP2C) that is induced by ionizing radiation in a p53-dependent manner. We have cloned and sequenced the mouse Wip1 gene and its encoded mRNA. The mouse Wip1 gene is composed of six exons and spans over 36 kb of DNA. The mouse cDNA sequence predicts a 598-amino-acid protein with a molecular mass of roughly 66 kDa. Comparison of human and mouse Wip1 sequences revealed 83% overall identity at the amino acid level. The 5′-flanking region of exon 1 had promoter elements characteristic of a housekeeping gene. The Wip1 coding sequences share conserved functional regions with other PP2Cs from a diverse array of species. Expression of Wip1 mRNA was detected ubiquitously in adult and embryonic tissues, though expression in the testis was much higher than in other tissues. Wip1 has been mapped near the p53 gene on mouse chromosome 11.  相似文献   

13.
14.
15.
16.
Williams-Beuren syndrome (WBS) is a developmental disorder associated with haploinsufficiency of multiple genes at 7q11.23. Here, we report the characterization of WBSCR16, WBSCR17, WBSCR18, WBSCR20A, WBSCR20B, WBSCR20C, WBSCR21, WBSCR22, and WBSCR23, nine novel genes contained in the WBS commonly deleted region or its flanking sequences. They encode an RCC1-like G-exchanging factor, an N-acetylgalactosaminyltransferase, a DNAJ-like chaperone, NOL1/NOP2/sun domain-containing proteins, a methyltransferase, or proteins with no known homologies. Haploinsufficiency of these newly identified WBSCR genes may contribute to certain of the WBS phenotypical features.  相似文献   

17.
18.
The chicken natural resistance-associated macrophage protein 1 (NRAMP1) gene has been mapped by linkage analysis by use of a reference panel to develop the chicken molecular genetic linkage map and by fluorescence in situ hybridization. The chicken homolog of the murine Nramp1 gene was mapped to a linkage group located on Chromosome (Chr) 7q13, which includes three genes (CD28, NDUSF1, and EF1B) that have previously been mapped either to mouse Chr 1 or to human Chr 2q. Physical mapping by pulsed-field gel electrophoresis revealed that NRAMP1 is tightly linked to the villin gene and that the genomic organization (gene order and presence of CpG islands) of the chromosomal region carrying NRAMP1 is well conserved between the chicken and mammalian genomes. The regions on mouse Chr 1, human Chr 2q, and chicken Chr 7q that encompass NRAMP1 represent large conserved chromosomal segments between the mammalian and avian genomes. The chromosome mapping of the chicken NRAMP1 gene is a first step in determining its possible role in differential susceptibility to salmonellosis in this species.  相似文献   

19.
The strain distribution pattern of susceptibility to thymocyte apoptosis induced by ionizing radiation in 20 CcS/Dem recombinant congenic (RC) strains derived from the strains BALB/cHeA (susceptible) and STS/A (resistant) indicates that this trait is controlled by several genes. Recently, we mapped a novel apoptosis susceptibility gene Rapop1 (radiation-induced apoptosis 1) to chromosome 16 (N. Mori et al., 1995, Genomics 25: 604-614). In the present study, the analysis of F2 crosses between the resistant RC strain CcS-8 and the susceptible strain BALB/cHeA or the highly susceptible RC strain CcS-10 demonstrated two additional apoptosis susceptibility genes, Rapop2 and Rapop3, located in the proximal region of chromosome 9 and the telomeric region of chromosome 3, respectively. The possible candidate genes for these loci are discussed.  相似文献   

20.
TheGPX2gene codes for GSHPx-GI, a glutathione peroxidase whose mRNA is readily detectable in the gastrointestinal tract. AlthoughGPX2is a single gene in humans, there are two genes in the mouse genome with homology toGPX2.By analyzing a panel of mouse interspecies DNA from the Jackson Laboratory's backcross resource, we have chromosomally mapped these two genes. One was mapped to the central region of mouse chromosome 12 betweenD12Mit4andD12Mit5,nearfosandTgfb3.This region is homologous to human 14q24.1, where humanGPX2has been mapped, and most likely represents the functional mouseGpx2gene. The otherGpx2-like gene was mapped to mouse chromosome 7 betweenPcsk3andHbb.We have isolated the latter gene from a P1 phage library. Its pseudogene nature is revealed by the sequence analysis: (a) it is intronless; (b) it has a single nucleotide deletion in the coding region; and (c) it has a poly(A) tail at its 3′-untranslated region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号