首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 379 毫秒
1.
Coordinated sliding of microtubule doublets, driven by dynein motors, produces periodic beating of eukaryotic cilia and flagella. Recent structural studies of the axoneme, which forms the core of cilia and flagella, have used cryo-electron tomography to reveal new details of the interactions between some of the multitude of proteins that form the axoneme and regulate its movement. Connections between the several types of dyneins, in particular, suggest ways in which their action might be coordinated. Study of the molecular architecture of isolated doublets has provided a structural basis for understanding mechanical properties related to the bending of the axoneme, and has also offered insight into the potential role of doublets in the mechanism of dynein activity regulation.  相似文献   

2.
Coordination of flagella on filamentous cells of Escherichia coli.   总被引:12,自引:7,他引:5  
Video techniques were used to study the coordination of different flagella on single filamentous cells of Escherichia coli. Filamentous, nonseptate cells were produced by introducing a cell division mutation into a strain that was polyhook but otherwise wild type for chemotaxis. Markers for its flagellar motors (ordinary polyhook cells that had been fixed with glutaraldehyde) were attached with antihook antibodies. The markers were driven alternately clockwise and counterclockwise, at angular velocities comparable to those observed when wild-type cells are tethered to glass. The directions of rotation of different markers on the same cell were not correlated; reversals of the flagellar motors occurred asynchronously. The bias of the motors (the fraction of time spent spinning counterclockwise) changed with time. Variations in bias were correlated, provided that the motors were within a few micrometers of one another. Thus, although the directions of rotation of flagellar motors are not controlled by a common intracellular signal, their biases are. This signal appears to have a limited range.  相似文献   

3.
Vibrio alginolyticus has two types of flagella (polar and lateral) in one cell. We isolated mutants with only a polar flagellum (Pof+ Laf-) or only lateral flagella (Pof- Laf+). Using these mutants, we demonstrated that the energy sources of the lateral and polar flagellar motors in V. alginolyticus are H+ and Na+ motive forces, respectively, as in the related species V. parahaemolyticus.  相似文献   

4.
During the past year, significant advances have been made in the understanding of both prokaryotic and eukaryotic flagella. About 50 genes are dedicated to the assembly and operation of bacterial flagella. Recent discoveries have advanced our understanding of how these genes are regulated and how their products assemble into a functional, rotating organelle. The dynein arms of eukaryotic flagella are now also better understood. Several genes that are found in the mechanochemical macroassemblies have been cloned, and other loci have been identified, suggesting that there is even greater complexity than first expected.  相似文献   

5.
Certain bacteria, such as Escherichia coli (E. coli) and Salmonella typhimurium (S. typhimurium), use multiple flagella often concentrated at one end of their bodies to induce locomotion. Each flagellum is formed in a left-handed helix and has a motor at the base that rotates the flagellum in a corkscrew motion.We present a computational model of the flagellar motion and their hydrodynamic interaction. The model is based on the equations of Stokes flow to describe the fluid motion. The elasticity of the flagella is modeled with a network of elastic springs while the motor is represented by a torque at the base of each flagellum. The fluid velocity due to the forces is described by regularized Stokeslets and the velocity due to the torques by the associated regularized rotlets. Their expressions are derived. The model is used to analyze the swimming motion of a single flagellum and of a group of three flagella in close proximity to one another. When all flagellar motors rotate counterclockwise, the hydrodynamic interaction can lead to bundling. We present an analysis of the flow surrounding the flagella. When at least one of the motors changes its direction of rotation, the same initial conditions lead to a tumbling behavior characterized by the separation of the flagella, changes in their orientation, and no net swimming motion. The analysis of the flow provides some intuition for these processes.  相似文献   

6.
Bacillus subtilis flagella are not only required for locomotion but also act as sensors that monitor environmental changes. Although how the signal transmission takes place is poorly understood, it has been shown that flagella play an important role in surface sensing by transmitting a mechanical signal to control the DegS‐DegU two‐component system. Here we report a role for flagella in the regulation of the K‐state, which enables transformability and antibiotic tolerance (persistence). Mutations impairing flagellar synthesis are inferred to increase DegU‐P, which inhibits the expression of ComK, the master regulator for the K‐state, and reduces transformability. Tellingly, both deletion of the flagellin gene and straight filament (hagA233V) mutations increased DegU phosphorylation despite the fact that both mutants had wild type numbers of basal bodies and the flagellar motors were functional. We propose that higher viscous loads on flagellar motors result in lower DegU‐P levels through an unknown signaling mechanism. This flagellar‐load based mechanism ensures that cells in the motile subpopulation have a tenfold enhanced likelihood of entering the K‐state and taking up DNA from the environment. Further, our results suggest that the developmental states of motility and competence are related and most commonly occur in the same epigenetic cell type.  相似文献   

7.
Borrelia burgdorferi is a highly motile spirochete due to its periplasmic flagella. Unlike flagella of other bacteria, spirochetes' periplasmic flagella possess a complex structure called the collar, about which little is known in terms of function and composition. Using various approaches, we have identified a novel protein, BB0326, as a key component of the collar. We show that a peripheral portion of the collar is diminished in the Δbb0326 mutant and restored in the complemented bb0326+ cells, leading us to rename BB0326 as periplasmic flagellar collar protein A or FlcA. The ΔflcA mutant cells produced fewer, abnormally tilted and shorter flagella, as well as diminished stators, suggesting that FlcA is crucial for flagellar and stator assemblies. We provide further evidence that FlcA interacts with the stator and that this collar–stator interaction is essential for the high torque needed to power the spirochete's periplasmic flagellar motors. These observations suggest that the collar provides various important functions to the spirochete's periplasmic flagellar assembly and rotation.  相似文献   

8.
Cole DG 《Current biology : CB》2005,15(19):R798-R801
Intraflagellar transport is a conserved delivery system that services eukaryotic cilia and flagella. Recent work in the nematode Caenorhabditis elegans has identified proteins required for the functional coordination of intraflagellar transport motors and their cargoes.  相似文献   

9.
Cilia/flagella are conserved organelles that generate fluid flow in eukaryotes. The bending motion of flagella requires concerted activity of dynein motors. Although it has been reported that the central pair apparatus (CP) and radial spokes (RSs) are important for flagellar motility, the molecular mechanism underlying CP- and RS-mediated dynein regulation has not been identified. In this paper, we identified nonspecific intermolecular collision between CP and RS as one of the regulatory mechanisms for flagellar motility. By combining cryoelectron tomography and motility analyses of Chlamydomonas reinhardtii flagella, we show that binding of streptavidin to RS heads paralyzed flagella. Moreover, the motility defect in a CP projection mutant could be rescued by the addition of exogenous protein tags on RS heads. Genetic experiments demonstrated that outer dynein arms are the major downstream effectors of CP- and RS-mediated regulation of flagellar motility. These results suggest that mechanosignaling between CP and RS regulates dynein activity in eukaryotic flagella.  相似文献   

10.
The bending of cilia and flagella is driven by forces generated by dynein motor proteins. These forces slide adjacent microtubule doublets within the axoneme, the motile cytoskeletal structure. To create regular, oscillatory beating patterns, the activities of the axonemal dyneins must be coordinated both spatially and temporally. It is thought that coordination is mediated by stresses or strains, which build up within the moving axoneme, and somehow regulate dynein activity. During experimentation with axonemes subjected to mild proteolysis, we observed pairs of doublets associating with each other and forming bends with almost constant curvature. By modeling the statics of a pair of filaments, we show that the activity of the motors concentrates at the distal tips of the doublets. Furthermore, we show that this distribution of motor activity accords with models in which curvature, or curvature-induced normal forces, regulates the activity of the motors. These observations, together with our theoretical analysis, provide evidence that dynein activity can be regulated by curvature or normal forces, which may, therefore, play a role in coordinating the beating of cilia and flagella.  相似文献   

11.
The bending of cilia and flagella is driven by forces generated by dynein motor proteins. These forces slide adjacent microtubule doublets within the axoneme, the motile cytoskeletal structure. To create regular, oscillatory beating patterns, the activities of the axonemal dyneins must be coordinated both spatially and temporally. It is thought that coordination is mediated by stresses or strains, which build up within the moving axoneme, and somehow regulate dynein activity. During experimentation with axonemes subjected to mild proteolysis, we observed pairs of doublets associating with each other and forming bends with almost constant curvature. By modeling the statics of a pair of filaments, we show that the activity of the motors concentrates at the distal tips of the doublets. Furthermore, we show that this distribution of motor activity accords with models in which curvature, or curvature-induced normal forces, regulates the activity of the motors. These observations, together with our theoretical analysis, provide evidence that dynein activity can be regulated by curvature or normal forces, which may, therefore, play a role in coordinating the beating of cilia and flagella.  相似文献   

12.
Stirring up development with the heterotrimeric kinesin KIF3   总被引:2,自引:0,他引:2  
KIF3 is a heterotrimeric member of the kinesin superfamily of microtubule associated motors. This functionally diverse family of motors is involved in anterograde transport of membrane bound organelles in neurons and melanosomes, mediates transport between the endoplasmic reticulum and the Golgi, and transports protein complexes within cilia and flagella required for their morphogenesis. Interestingly, a mutation of KIF3, which impairs ciliogenesis in nodal cells, prevents the unidirectional leftward flow (nodal flow) of putative morphogens during embryogenesis, thereby altering the development of left–right asymmetry in mammals.  相似文献   

13.
Intraflagellar transport (IFT) is a motility in which particles composed of at least 17 polypeptides move underneath the flagellar membrane. Anterograde (outward) and retrograde (inward) movements of these IFT particles are mediated by FLA10 kinesin-II and cytoplasmic dynein DHC1b, respectively. Mutations affecting IFT particle polypeptides or motors result in the inability to assemble flagella. IFT particles and the motors moving them are located principally around the basal bodies as well as in the flagella. Here, we clone the cDNA encoding one of the IFT particle proteins, IFT52, and show by immunofluorescence that while some IFT52 is in the flagella, the majority is found in two horseshoe-shaped rings around the basal bodies. Immunoelectron microscopy indicates that IFT52 is associated with the periphery of the transitional fibers, which extend from the distal portion of the basal body to the cell membrane and demarcate the entrance to the flagellar compartment. This localization suggests that the transitional fibers form a docking complex for the IFT particles destined for the flagellum. Finally, the flagellaless mutant bld1 completely lacks IFT52 due to a deletion in the gene encoding IFT52.  相似文献   

14.
The Geometric Clutch hypothesis is based on the premise that transverse forces (t-forces) acting on the outer doublets of the eukaryotic axoneme coordinate the action of the dynein motors to produce flagellar and ciliary beating. T-forces result from tension and compression on the outer doublets when a bend is present on the flagellum or cilium. The t-force acts to pry the doublets apart in an active bend, and push the doublets together when the flagellum is passively bent and thus could engage and disengage the dynein motors. Computed simulations of this working mechanism have reproduced the beating pattern of simple cilia and flagella, and of mammalian sperm. Cilia-like beating, with a clearly defined effective and recovery stroke, can be generated using one uniformly applied switching algorithm. When the mechanical properties and dimensions appropriate to a specific flagellum are incorporated into the model the same algorithm can simulate a sea urchin or bull sperm-like beat. The computed model reproduces many of the observed behaviors of real flagella and cilia. The model can duplicate the results of outer arm extraction experiments in cilia and predicted two types of arrest behavior that were verified experimentally in bull sperm. It also successfully predicted the experimentally determined nexin elasticity. Calculations based on live and reactivated sea urchin and bull sperm yielded a value of 0.5 nN/microm for the t-force at the switch-point. This is a force sufficient to overcome the shearing force generated by all the dyneins on one micron of outer doublet. A t-force of this magnitude should produce substantial distortion of the axoneme at the switch-point, especially in spoke or spoke-head deficient motile flagella. This concrete and verifiable prediction is within the grasp of recent advances in imaging technology, specifically cryoelectron microscopy and atomic force microscopy.  相似文献   

15.
Flagellar dynein generates forces that produce relative shearing between doublet microtubules in the axoneme; this drives propagated bending of flagella and cilia. To better understand dynein's role in coordinated flagellar and ciliary motion, we have developed an in situ assay in which polymerized single microtubules glide along doublet microtubules extruded from disintegrated bovine sperm flagella at a pH of 7.8. The exposed, active dynein remain attached to their respective doublet microtubules, allowing gliding of individual microtubules to be observed in an environment that allows direct control of chemical conditions. In the presence of ATP, translocation of microtubules by dynein exhibits Michaelis-Menten type kinetics, with V(max) = 4.7 +/- 0.2 microm/s and K(m) = 124 +/- 11 microM. The character of microtubule translocation is variable, including smooth gliding, stuttered motility, oscillations, buckling, complete dissociation from the doublet microtubule, and occasionally movements reversed from the physiologic direction. The gliding velocity is independent of the number of dynein motors present along the doublet microtubule, and shows no indication of increased activity due to ADP regulation. These results reveal fundamental properties underlying cooperative dynein activity in flagella, differences between mammalian and non-mammalian flagellar dynein, and establish the use of natural tracks of dynein arranged in situ on the doublet microtubules of bovine sperm as a system to explore the mechanics of the dynein-microtubule interactions in mammalian flagella.  相似文献   

16.
Bradyrhizobium japonicum is one of the soil bacteria that form nodules on soybean roots. The cell has two sets of flagellar systems, one thick flagellum and a few thin flagella, uniquely growing at subpolar positions. The thick flagellum appears to be semicoiled in morphology, and the thin flagella were in a tight-curly form as observed by dark-field microscopy. Flagellin genes were identified from the amino acid sequence of each flagellin. Flagellar genes for the thick flagellum are scattered into several clusters on the genome, while those genes for the thin flagellum are compactly organized in one cluster. Both types of flagella are powered by proton-driven motors. The swimming propulsion is supplied mainly by the thick flagellum. B. japonicum flagellar systems resemble the polar-lateral flagellar systems of Vibrio species but differ in several aspects.  相似文献   

17.
Motile cilia and flagella are highly conserved organelles that play important roles in human health and development. We recently discovered a calmodulin- and spoke-associ-ated complex (CSC) that is required for wild-type motility and for the stable assembly of a subset of radial spokes. Using cryo-electron tomography, we present the first structure-based localization model of the CSC. Chlamydomonas flagella have two full-length radial spokes, RS1 and RS2, and a shorter RS3 homologue, the RS3 stand-in (RS3S). Using newly developed techniques for analyzing samples with structural heterogeneity, we demonstrate that the CSC connects three major axonemal complexes involved in dynein regulation: RS2, the nexin-dynein regulatory complex (N-DRC), and RS3S. These results provide insights into how signals from the radial spokes may be transmitted to the N-DRC and ultimately to the dynein motors. Our results also indicate that although structurally very similar, RS1 and RS2 likely serve different functions in regulating flagellar motility.  相似文献   

18.
Many studies have used velocity measurements, waveform analyses, and theoretical flagella models to investigate the establishment, maintenance, and function of flagella of the biflagellate green algae Chlamydomonas reinhardtii. We report the first direct measurement of Chlamydomonas flagellar swimming force. Using an optical trap ("optical tweezers") we detect a 75% decrease in swimming force between wild type (CC124) cells and mutants lacking outer flagellar dynein arms (oda1). This difference is consistent with previous estimates and validates the force measurement approach. To examine mechanisms underlying flagella organization and function, we deflagellated cells and examined force generation during flagellar regeneration. As expected, fully regenerated flagella are functionally equivalent to flagella of untreated wild type cells. However, analysis of swimming force vs. flagella length and the increase in force over regeneration time reveals intriguing patterns where increases in force do not always correspond with increases in length. These investigations of flagellar force, therefore, contribute to the understanding of Chlamydomonas motility, describe phenomena surrounding flagella regeneration, and demonstrate the advantages of the optical trapping technique in studies of cell motility.  相似文献   

19.
Intraflagellar transport (IFT) is the bidirectional movement of multisubunit protein particles along axonemal microtubules and is required for assembly and maintenance of eukaryotic flagella and cilia. One posited role of IFT is to transport flagellar precursors to the flagellar tip for assembly. Here, we examine radial spokes, axonemal subunits consisting of 22 polypeptides, as potential cargo for IFT. Radial spokes were found to be partially assembled in the cell body, before being transported to the flagellar tip by anterograde IFT. Fully assembled radial spokes, detached from axonemal microtubules during flagellar breakdown or turnover, are removed from flagella by retrograde IFT. Interactions between IFT particles, motors, radial spokes, and other axonemal proteins were verified by coimmunoprecipitation of these proteins from the soluble fraction of Chlamydomonas flagella. These studies indicate that one of the main roles of IFT in flagellar assembly and maintenance is to transport axonemal proteins in and out of the flagellum.  相似文献   

20.
Cilia and flagella play important roles in human health by contributing to cellular motility as well as sensing and responding to environmental cues. Defects in ciliary assembly and/or function can lead to a range of human diseases, collectively known as the ciliopathies, including polycystic kidney, liver and pancreatic diseases, sterility, obesity, situs inversus, hydrocephalus and retinal degeneration. A basic understanding of how cilia form and function is essential for deciphering ciliopathies and generating therapeutic treatments. The cilium is a unique compartment that contains a distinct complement of protein and lipid. However, the molecular mechanisms by which soluble and membrane protein components are targeted to and trafficked into the cilium are not well understood. Cilia are generated and maintained by IFT (intraflagellar transport) in which IFT cargoes are transported along axonemal microtubules by kinesin and dynein motors. A variety of genetic, biochemical and cell biological approaches has established the heterotrimeric kinesin-2 motor as the 'core' IFT motor, whereas other members of the kinesin-2, kinesin-3 and kinesin-4 families function as 'accessory' motors for the transport of specific cargoes in diverse cell types. Motors of the kinesin-9 and kinesin-13 families play a non-IFT role in regulating ciliary beating or axonemal length, respectively. Entry of kinesin motors and their cargoes into the ciliary compartment requires components of the nuclear import machinery, specifically importin-β2 (transportin-1) and Ran-GTP (Ran bound to GTP), suggesting that similar mechanisms may regulate entry into the nuclear and ciliary compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号