首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Severe heat stress causes protein denaturation in various cellular compartments. If Saccharomyces cerevisiae cells grown at 24 degrees C are preconditioned at 37 degrees C, proteins denatured by subsequent exposure to 48-50 degrees C can be renatured when the cells are allowed to recover at 24 degrees C. Conformational repair of vital proteins is essential for survival, because gene expression is transiently blocked after the thermal insult. Refolding of cytoplasmic proteins requires the Hsp104 chaperone, and refolding of lumenal endoplasmic reticulum (ER) proteins requires the Hsp70 homologue Lhs1p. We show here that conformational repair of heat-damaged glycoproteins in the ER of living yeast cells required functional Hsp104. A heterologous enzyme and a number of natural yeast proteins, previously translocated and folded in the ER and thereafter denatured by severe heat stress, failed to be refolded to active and secretion-competent structures in the absence of Hsp104 or when an ATP-binding site of Hsp104 was mutated. During recovery at 24 degrees C, the misfolded proteins persisted in the ER, although the secretory apparatus was fully functional. Hsp104 appears to control conformational repair of heat-damaged proteins even beyond the ER membrane.  相似文献   

3.
The 70-kDa heat shock protein (Hsp70) family of molecular chaperones cooperates with cofactors to promote protein folding, assembly of protein complexes and translocation of proteins across membranes. Although many cofactors of cytosolic Hsp70s have been identified, knowledge about cofactors of BiP/Kar2p, an endoplasmic reticulum (ER)-resident Hsp70, is still poor. Here we propose the Saccharomyces cerevisiae protein Rot1p as a possible cofactor of BiP/Kar2p involved in protein folding. Rot1p was found to be an essential, ER-localized membrane protein facing the lumen. ROT1 genetically interacted with several ER chaperone genes including KAR2, and the rot1-2 mutation triggered the unfolded protein response. Rot1p associated with Kar2p, especially under conditions of ER stress, and maturation of a model protein, a reduced form of carboxypeptidaseY, was impaired in a kar2-1 rot1-2 double mutant. These findings suggest that Rot1p participates in protein folding with Kar2p. Morphological analysis of rot1-2 cells revealed cell wall defects and accumulation of autophagic bodies in the vacuole. This implies that the protein folding machinery in which Rot1p is involved chaperones proteins acting in various physiological processes including cell wall synthesis and lysis of autophagic bodies.  相似文献   

4.
Saccharomyces cerevisiae cells grown at 24 degrees C acquire thermotolerance and survive exposure to 50 degrees C, but only if they are first incubated at 30 degrees C, the temperature where heat shock genes are activated. We show here that the enzymatic activity of a secretory beta-lactamase fusion protein, pre-accumulated at 37 degrees C in the endoplasmic reticulum, was abolished by exposure of the cells to 50 degrees C. When the cells were returned to 24 degrees C, beta-lactamase activity was resumed. Reactivation occurred in the endoplasmic reticulum, but not in the Golgi apparatus. It was dependent on metabolic energy, but did not require de novo protein synthesis. According to co-immunoprecipitation experiments, immuno-globulin-binding protein (BiP/Kar2p) was associated with the fusion protein. We suggest that recovery from thermal insult involves, in addition to cytoplasmic and nuclear events, refolding of heat-damaged proteins in the endoplasmic reticulum by a heat-resistant machinery, which forms part of a fundamental survival mechanism.  相似文献   

5.
Saccharomyces cerevisiae cells grown at physiological temperature 24 degrees C require preconditioning at 37 degrees C to acquire tolerance towards brief exposure to 48-50 degrees C. During preconditioning, the cytosolic trehalose content increases remarkably and in the absence of trehalose synthesis yeast cannot acquire thermotolerance. It has been speculated that trehalose protects proteins and membranes under environmental stress conditions, but recently it was shown to assist the Hsp104 chaperone in refolding of heat-damaged proteins in the yeast cytosol. We have demonstrated that heat-denatured proteins residing in the endoplasmic reticulum (ER) also can be refolded once the cells are returned to physiological temperature. Unexpectedly, not only ER chaperones but also the cytosolic Hsp104 chaperone is required for conformational repair events in the ER lumen. Here we show that trehalose facilitates refolding of glycoproteins in the ER after severe heat stress. In the absence of Tps1p, a subunit of trehalose synthase, refolding of heat-damaged glycoproteins to bioactive and secretion-competent forms failed or was retarded. In contrast, membrane traffic operated many hours after severe heat stress even in the absence of the TPS1 gene, demonstrating that trehalose had no role in thermoprotection of membranes engaged in vesicular traffic. However, cytosolic proteins were aggregated and protein synthesis abolished, resulting finally in cell death.  相似文献   

6.
In Pichia pastoris, secretory proteins are folded and assembled in the endoplasmic reticulum (ER). However, upon introduction of foreign proteins, heterologous proteins are often retained in the cytoplasm or in the ER as a result of suboptimal folding conditions, leading to protein aggregation. The Hsp70 and Hsp40 chaperone families in the cytoplasm or in ER importantly regulate the folding and secretion of heterologous proteins. However, it is not clear which single chaperone is most important or which combination optimally cooperates in this process. In the present study we evaluated the role of the chaperones Kar2p, Sec63, YDJ1p, Ssa1p, and PDI from Saccharomyces cerevisiae. We found that the introduction of Kar2p, Ssa1p, or PDI improves protein secretion 4-7 times. In addition, we found that the combination chaperones of YDJ1p/PDI, YDJ1p/Sec63, and Kar2p/PDI synergistically increase secretion levels 8.7, 7.6, and 6.5 times, respectively. Therefore, additional integration of chaperone genes can improve the secretory expression of the heterologous protein. Western blot experiments revealed that the chaperones partly relieved the secretion bottleneck resulting from foreign protein introduction in P. pastoris. Therefore, the findings from the present study demonstrate the presence of a network of chaperones in vivo, which may act synergistically to increase recombinant protein yields.  相似文献   

7.
Eukaryotic cells contain multiple Hsp70 proteins and DnaJ homologues. The partnership between a given Hsp70 and its interacting DnaJ could, in principle, be determined by their cellular colocalization or by specific protein-protein interactions. The yeast SCJ1 gene encodes one of several homologues of the bacterial chaperone DnaJ. We show that Scj1p is located in the lumen of the endoplasmic reticulum (ER), where it can function with Kar2p (the ER-lumenal BiP/Hsp70 of yeast). The region common to all DnaJ homologues (termed the J domain) from Scj1p can be swapped for a similar region in Sec63p, which is known to interact with Kar2p in the ER lumen, to form a functional transmembrane protein component of the secretory machinery. Thus, Kar2p can interact with two different DnaJ proteins. On the other hand, J domains from two other non-ER DnaJs, Sis1p and Mdj1p, do not function when swapped into Sec63p. However, only three amino acid changes in the Sis1p J domain render the Sec63 fusion protein fully functional in the ER lumen. These results indicate that the choice of an Hsp70 partner by a given DnaJ homologue is specified by the J domain.  相似文献   

8.
Accumulation of misfolded secretory proteins in the endoplasmic reticulum (ER) activates the unfolded protein response (UPR) stress pathway. To enhance secretory protein folding and promote adaptation to stress, the UPR upregulates ER chaperone levels, including BiP. Here we describe chromosomal tagging of KAR2, the yeast homologue of BiP, with superfolder green fluorescent protein (sfGFP) to create a multifunctional endogenous reporter of the ER folding environment. Changes in Kar2p-sfGFP fluorescence levels directly correlate with UPR activity and represent a robust reporter for high-throughput analysis. A novel second feature of this reporter is that photobleaching microscopy (fluorescence recovery after photobleaching) of Kar2p-sfGFP mobility reports on the levels of unfolded secretory proteins in individual cells, independent of UPR status. Kar2p-sfGFP mobility decreases upon treatment with tunicamycin or dithiothreitol, consistent with increased levels of unfolded proteins and the incorporation of Kar2p-sfGFP into slower-diffusing complexes. During adaptation, we observe a significant lag between down-regulation of the UPR and resolution of the unfolded protein burden. Finally, we find that Kar2p-sfGFP mobility significantly increases upon inositol withdrawal, which also activates the UPR, apparently independent of unfolded protein levels. Thus Kar2p mobility represents a powerful new tool capable of distinguishing between the different mechanisms leading to UPR activation in living cells.  相似文献   

9.
《Autophagy》2013,9(4):323-324
The 70-kDa heat shock protein (Hsp70) family comprises the most abundant and important group of molecular chaperones. Hsp70s cooperate with a number of cofactors, which define their functions. We recently reported that a yeast protein, Rot1, is a putative cofactor of BiP, an endoplasmic reticulum (ER)-localized Hsp70. Rot1 is an essential ER membrane protein and may be involved in protein folding. Mutation of the ROT1 gene caused defects in cell wall synthesis and lysis of autophagic bodies. We suggest that Rot1 is required for folding of proteins engaged in these cellular processes.

Addendum to:

Saccharomyces cerevisiae Rot1p is an ER-Localized Membrane Protein that May Function with BiP/Kar2p in Protein Folding

Masato Takeuchi, Yukio Kimata, Aiko Hirata, Masahiro Oka and Kenji Kohno

J Biochem 2006; 139:597-605  相似文献   

10.
11.
The endoplasmic reticulum (ER) of the budding yeast Saccharomyces cerevisiae contains a well-characterized, essential member of the Hsp70 family of molecular chaperones, Kar2p. Kar2p has been shown to be involved in the translocation of proteins into the ER as well as the proper folding of proteins in that compartment. We report the characterization of a novel Hsp70 of the ER, Ssi1p. Ssi1p, which shares 24% of the amino acids of Kar2p, is not essential for growth under normal conditions. However, deletion of SSI1 results in cold sensitivity as well as enhanced resistance to manganese. The localization of Ssi1p to the ER, suggested by the presence of a conserved S. cerevisiae ER retention signal at its C terminus, was confirmed by subcellular fractionation, protease protection assays, and immunofluorescence. The SSI1 promoter contains an element with similarity to the unfolded protein response element of KAR2. Like KAR2, SSI1 is induced both in the presence of tunicamycin and in a kar2-159 mutant strain, conditions which lead to an accumulation of unfolded proteins in the ER. Unlike KAR2, however, SSI1 is not induced by heat shock. Deletion of SSI1 shows a complex pattern of genetic interactions with various conditional alleles of KAR2, ranging from synthetic lethality to synthetic rescue. Interestingly, SSI1 deletion strains show a partial block in translocation of multiple proteins into the ER, suggesting that Ssi1p plays a direct role in the translocation process.  相似文献   

12.
The endoplasmic reticulum (ER) harbors a protein quality control system, which monitors protein folding in the ER. Elimination of malfolded proteins is an important function of this protein quality control. Earlier studies with various soluble and transmembrane ER-associated degradation (ERAD) substrates revealed differences in the ER degradation machinery used. To unravel the nature of these differences we generated two type I membrane ERAD substrates carrying malfolded carboxypeptidase yscY (CPY*) as the ER-luminal ERAD recognition motif. Whereas the first, CT* (CPY*-TM), has no cytoplasmic domain, the second, CTG*, has the green fluorescent protein present in the cytosol. Together with CPY*, these three substrates represent topologically diverse malfolded proteins, degraded via ERAD. Our data show that degradation of all three proteins is dependent on the ubiquitin-proteasome system involving the ubiquitin-protein ligase complex Der3/Hrd1p-Hrd3p, the ubiquitin conjugating enzymes Ubc1p and Ubc7p, as well as the AAA-ATPase complex Cdc48-Ufd1-Npl4 and the 26S proteasome. In contrast to soluble CPY*, degradation of the membrane proteins CT* and CTG* does not require the ER proteins Kar2p (BiP) and Der1p. Instead, CTG* degradation requires cytosolic Hsp70, Hsp40, and Hsp104p chaperones.  相似文献   

13.
YFR041C/ERJ5 was identified in Saccharomyces cerevisiae as a gene regulated by the unfolded protein response pathway (UPR). The open reading frame of the gene has a J domain characteristic of the DnaJ chaperone family of proteins that regulate the activity of Hsp70 chaperones. We determined the expression and topology of Erj5p, a type I membrane protein with a J domain in the lumen of the endoplasmic reticulum (ER) that colocalizes with Kar2p, the major Hsp70 in the yeast ER. We identified synthetic interactions of Deltaerj5 with mutations in genes involved in protein folding in the ER (kar2-159, Deltascj1Deltajem1) and in the induction of the unfolded protein response (Deltaire1). Loss of Erj5p in yeast cells with impaired ER protein folding capacity increased sensitivity to agents that cause ER stress. We identified the ERJ5 mRNA and confirmed that agents that promote accumulation of misfolded proteins in the ER regulate its abundance. We found that loss of the non-essential ERJ5 gene leads to a constitutively induced UPR, indicating that ERJ5 is required for maintenance of an optimal folding environment in the yeast ER.  相似文献   

14.
We have addressed the mechanism by which proteins are posttranslationally transported across the membrane of the yeast endoplasmic reticulum (ER). We demonstrate that BiP (Kar2p), a member of the Hsp70 family resident in the ER lumen, acts as a molecular ratchet during translocation of the secretory protein prepro-alpha factor through the channel formed by the Sec complex. Multiple BiP molecules associate with each translocation substrate following interaction with the J domain of the Sec63p component of the Sec complex. Bound BiP minimizes passive backward movements of the substrate through the channel, and BiP's subsequent dissociation results in a free polypeptide in the ER lumen. Antibodies against the substrate can replace BiP, indicating that a Brownian ratchet is sufficient to achieve translocation.  相似文献   

15.
Yeast cells lacking a functional p24 complex accumulate a subset of secretory proteins in the endoplasmic reticulum (ER) and increase the extracellular secretion of HDEL-containing ER residents such as Kar2p/BiP. We report that a loss of p24 function causes activation of the unfolded protein response (UPR) and leads to increased KAR2 expression. The HDEL receptor (Erd2p) is functional and traffics in p24 deletion strains as in wild-type strains, however the capacity of the retrieval pathway is exceeded. Other conditions that activate the UPR and elevate KAR2 expression also lead to extracellular secretion of Kar2p. Using an in vitro assay that reconstitutes budding from the ER, we detect elevated levels of Kar2p in ER-derived vesicles from p24 deletion strains and from wild-type strains with an activated UPR. Silencing the UPR by IRE1 deletion diminished Kar2p secretion under these conditions. We suggest that activation of the UPR plays a major role in extracellular secretion of Kar2p.  相似文献   

16.
ER-associated degradation (ERAD) removes defective and mis-folded proteins from the eukaryotic secretory pathway, but mutations in the ER lumenal Hsp70, BiP/Kar2p, compromise ERAD efficiency in yeast. Because attenuation of ERAD activates the UPR, we screened for kar2 mutants in which the unfolded protein response (UPR) was induced in order to better define how BiP facilitates ERAD. Among the kar2 mutants isolated we identified the ERAD-specific kar2-1 allele (Brodsky et al. J. Biol. Chem. 274, 3453-3460). The kar2-1 mutation resides in the peptide-binding domain of BiP and decreases BiP's affinity for a peptide substrate. Peptide-stimulated ATPase activity was also reduced, suggesting that the interdomain coupling in Kar2-1p is partially compromised. In contrast, Hsp40 cochaperone-activation of Kar2-1p's ATPase activity was unaffected. Consistent with UPR induction in kar2-1 yeast, an ERAD substrate aggregated in microsomes prepared from this strain but not from wild-type yeast. Overexpression of wild-type BiP increased substrate solubility in microsomes obtained from the mutant, but the ERAD defect was exacerbated, suggesting that simply retaining ERAD substrates in a soluble, retro-translocation-competent conformation is insufficient to support polypeptide transit to the cytoplasm.  相似文献   

17.
Hsp70 chaperones can potentially interact with one of several J domain-containing Hsp40 co-chaperones to regulate distinct cellular processes. However, features within Hsp70s that determine Hsp40 specificity are undefined. To investigate this question, we introduced mutations into the ER-lumenal Hsp70, BiP/Kar2p, and found that an R217A substitution in the J domain-interacting surface of BiP compromised the physical and functional interaction with Sec63p, an Hsp40 required for ER translocation. In contrast, interaction with Jem1p, an Hsp40 required for ER-associated degradation, was unaffected. Moreover, yeast expressing R217A BiP exhibited defects in translocation but not in ER-associated degradation. Finally, the genetic interactions of the R217A BiP mutant were found to correlate with those of known translocation mutants. Together, our results indicate that residues within the Hsp70 J domain-interacting surface help confer Hsp40 specificity, in turn influencing distinct chaperone-mediated cellular activities.  相似文献   

18.
Traditionally, the canine pancreatic endoplasmic reticulum (ER) has been the workhorse for cell-free studies on protein transport into the mammalian ER. These studies have revealed multiple roles for the major ER-luminal heat shock protein (Hsp) 70, IgG heavy chain-binding protein (BiP), at least one of which also involves the second ER-luminal Hsp70, glucose-regulated protein (Grp) 170. In addition, at least one of these BiP activities depends on Hsp40. Up to now, five Hsp40s and two nucleotide exchange factors, Sil1 and Grp170, have been identified in the ER of different mammalian cell types. Here we quantified the various proteins of this chaperone network in canine pancreatic rough microsomes. We also characterized the various purified proteins with respect to their affinities for BiP and their effect on the ATPase activity of BiP. The results identify Grp170 as the major nucleotide exchange factor for BiP, and the resident ER-membrane proteins ER-resident J-domain protein 1 plus ER-resident J-domain protein 2/Sec63 as prime candidates for cochaperones of BiP in protein transport in the pancreatic ER. Thus, these data represent a comprehensive analysis of the BiP chaperone network that was recently linked to two human inherited diseases, polycystic liver disease and Marinesco-Sj?gren syndrome.  相似文献   

19.
20.
BiP is the predominant DnaK/Hsp70-type chaperone protein in the ER. It is required for folding and assembling newly synthesized ER client proteins, yet having too much BiP inhibits folding. In this issue, Chambers et al. (2012. J. Cell Biol. doi:10.1083/jcb.201202005) report that ADP ribosylation of BiP provides a reversible switch that fine tunes BiP activity according to need.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号