首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
Human C-reactive protein (CRP) can activate the classical pathway of complement and function as an opsonin only when it is complexed to an appropriate ligand. Most known CRP ligands bind to the phosphocholine (PCh)-binding site of the protein. In the present study, we used oligonucleotide-directed site-specific mutagenesis to investigate structural determinants of the PCh-binding site of CRP. Eight mutant recombinant (r) CRP, Y40F; E42Q; Y40F, E42Q; K57Q; R58G; K57Q, R58G; W67K; and K57Q, R58G, W67K were constructed and expressed in COS cells. Wild-type and all mutant rCRP except for the W67K mutants bound to solid-phase PCh-substituted bovine serum albumin (PCh-BSA) with similar apparent avidities. However, W67K rCRP had decreased avidity for PCh-BSA and the triple mutant, K57Q, R58G, W67K, failed to bind PCh-BSA. Inhibition experiments using PCh and dAMP as inhibitors indicated that both Lys-57 and Arg-58 contribute to PCh binding. They also indicated that Trp-67 provides interactions with the choline group. The Y40F and E42Q mutants were found to have increased avidity for fibronectin compared to wild-type rCRP. We conclude that the residues Lys-57, Arg-58, and Trp-67 contribute to the structure of the PCh-binding site of human CRP. Residues Tyr-40 and Glu-42 do not appear to participate in the formation of the PCh-binding site of CRP, however, they may be located in the vicinity of the fibronectin-binding site of CRP.  相似文献   

2.
The formation of low-density lipoprotein (LDL) cholesterol-loaded macrophage foam cells contributes to the development of atherosclerosis. C-reactive protein (CRP) binds to atherogenic forms of LDL, but the role of CRP in foam cell formation is unclear. In this study, we first explored the binding site on CRP for enzymatically modified LDL (E-LDL), a model of atherogenic LDL to which CRP binds. As reported previously, phosphocholine (PCh) inhibited CRP-E-LDL interaction, indicating the involvement of the PCh-binding site of CRP in binding to E-LDL. However, the amino acids Phe66 and Glu81 in CRP that participate in CRP-PCh interaction were not required for CRP-E-LDL interaction. Surprisingly, blocking of the PCh-binding site with phosphoethanolamine (PEt) dramatically increased the binding of CRP to E-LDL. The PEt-mediated enhancement in the binding of CRP to E-LDL was selective for E-LDL because PEt inhibited the binding of CRP to another PCh-binding site-ligand pneumococcal C-polysaccharide. Next, we investigated foam cell formation by CRP-bound E-LDL. We found that, unlike free E-LDL, CRP-bound E-LDL was inactive because it did not transform macrophages into foam cells. The function of CRP in eliminating the activity of E-LDL to form foam cells was not impaired by the presence of PEt. Combined data lead us to two conclusions. First, PEt is a useful compound because it potentiates the binding of CRP to E-LDL and, therefore, increases the efficiency of CRP to prevent transformation of macrophages into E-LDL-loaded foam cells. Second, the function of CRP to prevent formation of foam cells may influence the process of atherogenesis.  相似文献   

3.
Parasitic nematodes manufacture various carbohydrate-linked phosphorylcholine (PCh)-containing molecules, including ES-62, a protein with an N-linked glycan terminally substituted with PCh. The PCh component is biologically important because it is required for immunomodulatory effects. We showed that most ES-62 was bound to a single protein, C-reactive protein (CRP), in normal human serum, displaying a calcium-dependent, high-avidity interaction and ability to form large complexes. Unexpectedly, CRP binding to ES-62 failed to efficiently activate complement as far as the C3 convertase stage in comparison with PCh-BSA and PCh-containing Streptococcus pneumoniae cell wall polysaccharide. C1q capture assays demonstrated an ES-62-CRP-C1q interaction in serum. The three ligands all activated C1 and generated C4b to similar extents. However, a C2a active site was not generated following ES-62 binding to CRP, demonstrating that C2 cleavage was far less efficient for ES-62-containing complexes. We proposed that failure of C2 cleavage was due to the flexible nature of carbohydrate-bound PCh and that reduced proximity of the C1 complex was the reason that C2 was poorly cleaved. This was confirmed using synthetic analogues that were similar to ES-62 only in respect of having a flexible PCh. Furthermore, ES-62 was shown to deplete early complement components, such as the rate-limiting C4, following CRP interaction and thereby inhibit classical pathway activation. Thus, flexible PCh-glycan represents a novel mechanism for subversion of complement activation. These data illustrate the importance of the rate-limiting C4/C2 stage of complement activation and reveal a new addition to the repertoire of ES-62 immunomodulatory mechanisms with possible therapeutic applications.  相似文献   

4.
C-reactive protein (CRP), an acute phase protein in humans and rabbits, is part of the innate immune system. The role of CRP in host defense has been thought to be largely due to its ability to bind phosphocholine, activate complement, and interact with IgGRs (FcgammaRs). We have shown previously that transgenic rabbit CRP (rbCRP) protects mice from lethal challenges with platelet-activating factor (PAF). To investigate the mechanism of this protection, we created additional lines of transgenic mice that express either wild-type rbCRP, a variant of rbCRP with altered complement activation activity (Y175A), or a variant of rbCRP unable to bind phosphocholine (F66Y/E81K). In the current study, these lines were challenged with a single injection of PAF and their survival monitored. Mice expressing wild-type and Y175A rbCRP were protected against challenge by PAF whereas mice expressing F66Y/E81K rbCRP were not. Treatment with cobra venom factor did not affect survival, confirming the results with the Y175A rbCRP variant and indicating that complement activation was not required to mediate protection. Both wild-type rbCRP and Y175A rbCRP were capable of binding PAF in vitro whereas F66Y/E81K rbCRP was not. Although other interpretations are possible, our results suggest that the protective effect of rbCRP against PAF is due to sequestration of PAF.  相似文献   

5.
Human C-reactive protein (CRP) protects mice from lethality after infection with virulent Streptococcus pneumoniae type 3. For CRP-mediated protection, the complement system is required; however, the role of complement activation by CRP in the protection is not defined. Based on the in vitro properties of CRP, it has been assumed that protection of mice begins with the binding of CRP to pneumococcal C-polysaccharide on S. pneumoniae and subsequent activation of the mouse complement system. In this study, we explored the mechanism of CRP-mediated protection by utilizing two CRP mutants, F66A and F66A/E81A. Both mutants, unlike wild-type CRP, do not bind live virulent S. pneumoniae. We found that passively administered mutant CRP protected mice from infection as effectively as the wild-type CRP did. Infected mice injected with wild-type CRP or with mutant CRP lived longer and had lower mortality than mice that did not receive CRP. Extended survival was caused by the persistence of reduced bacteremia in mice treated with any CRP. We conclude that the CRP-mediated decrease in bacteremia and the resulting protection of mice are independent of an interaction between CRP and the pathogen and therefore are independent of the ability of CRP to activate mouse complement. It has been shown previously that the Fcgamma receptors also do not contribute to such CRP-mediated protection. Combined data lead to the speculation that CRP acts on the effector cells of the immune system to enhance cell-mediated cytotoxicity and suggest investigation into the possibility of using CRP-loaded APC-based strategy to treat microbial infections.  相似文献   

6.
Hsc66 (HscA) and Hsc20 (HscB) from Escherichia coli comprise a specialized chaperone system that selectively binds the iron-sulfur cluster template protein IscU. Hsc66 interacts with peptides corresponding to a discrete region of IscU including residues 99-103 (LPPVK), and a peptide containing residues 98-106 stimulates Hsc66 ATPase activity in a manner similar to IscU. To determine the relative contributions of individual residues in the LPPVK motif to Hsc66 binding and regulation, we have carried out an alanine mutagenesis scan of this motif in the Glu98-Cys106 peptide and the IscU protein. Alanine substitutions in the Glu98-Cys106 peptide resulted in decreased ATPase stimulation (2-10-fold) because of reduced binding affinity, with peptide(P101A) eliciting <10% of the parent peptide stimulation. Alanine substitutions in the IscU protein also revealed lower activities resulting from decreased apparent binding affinity, with the greatest changes in Km observed for the Pro101 (77-fold), Val102 (4-fold), and Lys103 (15-fold) mutants. Calorimetric studies of the binding of IscU mutants to the Hsc66.ADP complex showed that the P101A and K103A mutants also exhibit decreased binding affinity for the ADP-bound state. When ATPase stimulatory activity was assayed in the presence of the co-chaperone Hsc20, each of the mutants displayed enhanced binding affinity, but the P101A and V102A mutants exhibited decreased ability to maximally simulate Hsc66 ATPase. A charge mutant containing the motif sequence of NifU, IscU(V102E), did not bind the ATP or ADP states of Hsc66 but did bind Hsc20 and weakly stimulated Hsc66 ATPase in the presence of the co-chaperone. These results indicate that residues in the LPPVK motif are important for IscU interactions with Hsc66 but not for the ability of Hsc20 to target IscU to Hsc66. The results are discussed in the context of a structural model based on the crystallographic structure of the DnaK peptide-binding domain.  相似文献   

7.
Mitochondrial ATP synthase (F(1)F(o)-ATPase) is regulated by an intrinsic ATPase inhibitor protein. In the present study, we investigated the structure-function relationship of the yeast ATPase inhibitor by amino acid replacement. A total of 22 mutants were isolated and characterized. Five mutants (F17S, R20G, R22G, E25A, and F28S) were entirely inactive, indicating that the residues, Phe17, Arg20, Arg22, Glu25, and Phe28, are essential for the ATPase inhibitory activity of the protein. The activity of 7 mutants (A23G, R30G, R32G, Q36G, L37G, L40S, and L44G) decreased, indicating that the residues, Ala23, Arg30, Arg32, Gln36, Leu37, Leu40, and Leu44, are also involved in the activity. Three mutants, V29G, K34Q, and K41Q, retained normal activity at pH 6.5, but were less active at pH 7.2, indicating that the residues, Val29, Lys34, and Lys41, are required for the protein's action at higher pH. The effects of 6 mutants (D26A, E35V, H39N, H39R, K46Q, and K49Q) were slight or undetectable, and the residues Asp26, Glu35, His39, Lys46, and Lys49 thus appear to be dispensable. The mutant E21A retained normal ATPase inhibitory activity but lacked pH-sensitivity. Competition experiments suggested that the 5 inactivated mutants (F17S, R20G, R22G, E25A, and F28S) could still bind to the inhibitory site on F(1)F(o)-ATPase. These results show that the region from the position 17 to 28 of the yeast inhibitor is the most important for its activity and is required for the inhibition of F(1), rather than binding to the enzyme.  相似文献   

8.
Potent mammalian cell activation by Gram-negative bacterial endotoxin requires sequential protein-endotoxin and protein-protein interactions involving lipopolysaccharide-binding protein, CD14, MD-2, and Toll-like receptor 4 (TLR4). TLR4 activation requires simultaneous binding of MD-2 to endotoxin (E) and the ectodomain of TLR4. We now describe mutants of recombinant human MD-2 that bind TLR4 and react with E.CD14 but do not support cellular responsiveness to endotoxin. The mutants F121A/K122A MD-2 and Y131A/K132A MD-2 react with E.CD14 only when co-expressed with TLR4. Single mutants K122A and K132A each react with E.CD14 +/- TLR4 and promote TLR4-dependent cell activation by endotoxin suggesting that Phe(121) and Tyr(131) are needed for TLR4-independent transfer of endotoxin from CD14 to MD-2 and also needed for TLR4 activation by bound E.MD-2. The mutant F126A MD-2 reacts as well as wild-type MD-2 with E.CD14 +/- TLR4. E.MD-2(F126A) binds TLR4 with high affinity (K(d) approximately 200 pm) but does not activate TLR4 and instead acts as a potent TLR4 antagonist, inhibiting activation of HEK/TLR4 cells by wild-type E.MD-2. These findings reveal roles of Phe(121) and Tyr(131) in TLR4-independent interactions of human MD-2 with E.CD14 and, together with Phe(126), in activation of TLR4 by bound E.MD-2. These findings strongly suggest that the structural properties of E.MD-2, not E alone, determine agonist or antagonist effects on TLR4.  相似文献   

9.
10.
Cyclodextrin glycosyltransferase (CGTase) belonging to the alpha-amylase family mainly catalyzes transglycosylation and produces cyclodextrins from starch and related alpha-1,4-glucans. The catalytic site of CGTase specifically conserves four aromatic residues, Phe183, Tyr195, Phe259, and Phe283, which are not found in alpha-amylase. To elucidate the structural role of Phe283, we determined the crystal structures of native and acarbose-complexed mutant CGTases in which Phe283 was replaced with leucine (F283L) or tyrosine (F283Y). The temperature factors of the region 259-269 in native F283L increased >10 A(2) compared with the wild type. The complex formation with acarbose not only increased the temperature factors (>10 A(2)) but also changed the structure of the region 257-267. This region is stabilized by interactions of Phe283 with Phe259 and Leu260 and plays an important role in the cyclodextrin binding. The conformation of the side-chains of Glu257, Phe259, His327, and Asp328 in the catalytic site was altered by the mutation of Phe283 with leucine, and this indicates that Phe283 partly arranges the structure of the catalytic site through contacts with Glu257 and Phe259. The replacement of Phe283 with tyrosine decreased the enzymatic activity in the basic pH range. The hydroxyl group of Tyr283 forms hydrogen bonds with the carboxyl group of Glu257, and the pK(a) of Glu257 in F283Y may be lower than that in the wild type.  相似文献   

11.
CK2 is an essential, ubiquitous, and highly pleiotropic protein kinase whose catalytic subunits (alpha and alpha') and holoenzyme (composed by two catalytic and two regulatory beta-subunits) are both constitutively active, a property that is suspected to contribute to its pathogenic potential. Extensive interactions between the N-terminal segment and the activation loop are suspected to underlie the high constitutive activity of the isolated catalytic subunit. Here we show that a number of point mutations (Tyr(26) --> Phe, Glu(180) --> Ala, Tyr(182) --> Phe) and deletions (Delta 2-6, Delta 2-12, Delta 2-18, Delta 2-24, Delta 2-30) expected to affect these interactions are more or less detrimental to catalytic activity of the alpha-subunit of human CK2, the deleted mutants Delta 2-24 and Delta 2-30 being nearly inactive under normal assay conditions. Kinetic analyses showed that impaired catalytic activity of mutants Delta 2-12, Delta 2-18, Delta 2-24, and Y182F is mainly accounted for by dramatic increases in the K(m) values for ATP, whereas a drop in K(cat) with K(m) values almost unchanged was found with mutants Y26F and E180A. Holoenzyme reconstitution restored the activity of mutants Delta 2-12, Delta 2-18, Y26F, E180A, and Y182F to wild type level and also conferred catalytic activity to the intrinsically inactive mutants, Delta 2-24 and Delta 2-30. These data demonstrate that specific interactions between the N-terminal segment and the activation loop are essential to provide a fully active conformation to the catalytic subunits of CK2; they also show that these interactions become dispensable upon formation of the holoenzyme, whose constitutive activity is conferred by the beta-subunit through a different mechanism.  相似文献   

12.
The hepatitis C virus (HCV) glycoproteins E1 and E2 form a heterodimer that mediates CD81 receptor binding and viral entry. In this study, we used site-directed mutagenesis to examine the functional role of a conserved G436WLAGLFY motif of E2. The mutants could be placed into two groups based on the ability of mature virion-incorporated E1E2 to bind the large extracellular loop (LEL) of CD81 versus the ability to mediate cellular entry of pseudotyped retroviral particles. Group 1 comprised E2 mutants where LEL binding ability largely correlated with viral entry ability, with conservative and nonconservative substitutions (W437 L/A, L438A, L441V/F, and F442A) inhibiting both functions. These data suggest that Trp-437, Leu-438, Leu-441, and Phe-442 directly interact with the LEL. Group 2 comprised E2 glycoproteins with more conservative substitutions that lacked LEL binding but retained between 20% and 60% of wild-type viral entry competence. The viral entry competence displayed by group 2 mutants was explained by residual binding by the E2 receptor binding domain to cellular full-length CD81. A subset of mutants maintained LEL binding ability in the context of intracellular E1E2 forms, but this function was largely lost in virion-incorporated glycoproteins. These data suggest that the CD81 binding site undergoes a conformational transition during glycoprotein maturation through the secretory pathway. The G436P mutant was an outlier, retaining near-wild-type levels of CD81 binding but lacking significant viral entry ability. These findings indicate that the G436WLAGLFY motif of E2 functions in CD81 binding and in pre- or post-CD81-dependent stages of viral entry.  相似文献   

13.
14.
Two periplasmic binding proteins of E. coli, the leucine specific-binding protein (LS) and leucine-isoleucine-valine binding protein (LIV), have high similarity in their structure and function, but show different substrate specificity. A key difference between these proteins is residue 18 in the binding pocket, a tryptophan residue in the LS and a tyrosine residue in the LIV. To examine the role of this residue in binding specificity, we used fluorescence and (19)F NMR to monitor ligand binding to three mutants: LSW18Y, LSW18F and LIVY18W. We observed leucine binding to all proteins. LS binds L-phenylalanine but the mutation from Trp to Tyr or Phe disallows this ligand and expands the binding repertoire to L-isoleucine and L-valine. The LIVY18W mutant still retains the ability to bind L-isoleucine and also binds L-phenylalanine.  相似文献   

15.
Mitochondrial ATP synthase (F(1)F(0)-ATPase) is regulated by an intrinsic ATPase inhibitor protein, IF(1). We previously found that six residues of the yeast IF(1) (Phe17, Arg20, Glu21, Arg22, Glu25, and Phe28) form an ATPase inhibitory site [Ichikawa, N. and Ogura, C. (2003) J. Bioenerg. Biomembr. 35, 399-407]. In the crystal structure of the F(1)/IF(1) complex [Cabezón, E. et al. (2003) Nat. Struct. Biol. 10, 744-750], the core residues of the inhibitory site interact with Arg408, Arg412 and Glu454 of the beta-subunit of F(1). In the present study, we examined the roles of the three beta residues by means of site-directed mutagenesis. A total of six yeast mutants were constructed: R408I, R408T, R412I, R412T, E454Q, and E454V. The betaArg412 and betaGlu454 mutants (R412I, R412T, E454Q, and E454V) could grow on a nonfermentable lactate medium, but the betaArg408 mutants (R408I and R408T) could not. The ATPase activity of isolated mitochondria was decreased in R412I, R412T, E454Q, and E454V mutant cells, and undetectable in R408I and R408T cells. The subunits of F(1) (alpha, beta, and gamma) were detected in mitochondria from each mutant on immunoblotting, and the F(1)F(0) complex was isolated from them. These results indicate that betaArg408 is essential not for assembly of the F(1)F(0) complex but for the catalytic activity of the enzyme. In the crystal structure of F(1), betaArg408 binds to alphaGlu399 in the alpha(DP)/beta(DP) pair and seems to be important for formation of the closed alpha(DP)/beta(DP) conformation. IF(1) seems to disrupt this alpha(DP)Glu399/beta(DP)Arg408 interaction by binding to beta(DP)Arg408, and to interfere with the change from the open alpha(DP)/beta(DP) conformation to the closed conformation that is required for catalysis by F(1)F(0)-ATPase.  相似文献   

16.
We have previously shown that Phe(120), Glu(216), and Asp(301) in the active site of cytochrome P450 2D6 (CYP2D6) play a key role in substrate recognition by this important drug-metabolizing enzyme (Paine, M. J., McLaughlin, L. A., Flanagan, J. U., Kemp, C. A., Sutcliffe, M. J., Roberts, G. C., and Wolf, C. R. (2003) J. Biol. Chem. 278, 4021-4027 and Flanagan, J. U., Maréchal, J.-D., Ward, R., Kemp, C. A., McLaughlin, L. A., Sutcliffe, M. J., Roberts, G. C., Paine, M. J., and Wolf, C. R. (2004) Biochem. J. 380, 353-360). We have now examined the effect of mutations of these residues on interactions of the enzyme with the prototypical CYP2D6 inhibitor, quinidine. Abolition of the negative charge at either or both residues 216 and 301 decreased quinidine inhibition of bufuralol 1'-hydroxylation and dextromethorphan O-demethylation by at least 100-fold. The apparent dissociation constants (K(d)) for quinidine binding to the wild-type enzyme and the E216D and D301E mutants were 0.25-0.50 microm. The amide substitution of Glu(216) or Asp(301) resulted in 30-64-fold increases in the K(d) for quinidine. The double mutant E216Q/D301Q showed the largest decrease in quinidine affinity, with a K(d) of 65 microm. Alanine substitution of Phe(120), Phe(481),or Phe(483) had only a minor effect on the inhibition of bufuralol 1'-hydroxylation and dextromethorphan O-demethylation and on binding. In contrast to the wild-type enzyme, a number of the mutants studied were found to be able to metabolize quinidine. E216F produced O-demethylated quinidine, and F120A and E216Q/D301Q produced both O-demethylated quinidine and 3-hydroxyquinidine metabolites. Homology modeling and molecular docking were used to predict the modes of quinidine binding to the wild-type and mutant enzymes; these were able to rationalize the experimental observations.  相似文献   

17.
C-reactive protein (CRP) binds with high affinity to fibronectin (Fn), a major component of the extracellular matrix (ECM), but at physiological pH the binding is inhibited by calcium ions (Ca2+). Because CRP circulates in the blood in Ca2+ -bound form, the occurrence of CRP-Fn interactions in vivo has been doubtful. To define the basis of inhibition of CRP-Fn interaction by Ca2+ at pH 7.0, we hypothesized that Fn-binding site on CRP consisted of amino acids co-ordinating Ca2+. Site-directed mutagenesis of amino acids co-ordinating Ca2+ drastically decreased the binding of CRP to Fn, indicating that the Ca2+ -binding site indeed formed the Fn-binding site. To determine the requirements for possible interaction between Ca2+ -bound CRP and Fn, we investigated inhibition of CRP-Fn interaction by Ca2+ as a function of pH. Ca2+ did not inhibit binding of CRP to Fn at pH 6.5 and lower. The contrasting Fn binding properties of CRP at physiological and mildly acidic pH indicated that the interaction of Ca2+ -bound CRP with Fn was controlled by pH. We conclude that the inhibition of binding of CRP to Fn by Ca2+ at pH 7.0 is a mechanism to prevent CRP-Fn interactions under normal conditions. CRP, in its Ca2+ -bound state, is capable of binding Fn but only at the inflammatory sites and tumors with low pH. CRP, Fn, and the ECM all have been implicated in cancer. Taken together our data raise the possibility that CRP-Fn interactions may change the architecture of ECM to modify the development of tumors.  相似文献   

18.
PLC(Bc) is a 28.5 kDa monomeric enzyme that catalyzes the hydrolysis of the phosphodiester bond of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine to provide a diacylglycerol and the corresponding phosphorylated headgroup. Because single replacements of Glu4, Tyr56, and Phe66 in the headgroup binding pocket led to changes in substrate specificity [Martin et al. (2000) Biochemistry 39, 3410-3415], a combinatorial library of approximately 6000 maltose binding protein-PLC(Bc) fusion protein mutants containing random permutations of these three residues was generated to identify PLC(Bc) mutants with altered specificity profiles and high catalytic activities. Members of this library were screened for hydrolytic activity toward the water soluble substrates C6PC, C6PE, and C6PS using a novel protocol that was conducted in a 96-well format and featured the in situ cleavage of the fusion protein to release the mutant PLC(Bc)s. Ten mutant enzymes that exhibited significant preferences toward C6PE or C6PS were selected and analyzed by steady-state kinetics to determine their specificity constants, k(cat)/K(M). The C6PS selective clones E4G, E4Q/Y56T/F66Y, and E4K/Y56V exhibited higher specificity constants toward C6PS than wt, whereas Y56T, F66Y, and Y56T/F66Y were C6PE selective and had comparable or higher specificity constants than wt for C6PE. The corresponding wt residues were singly reinserted back into the E4Q/Y56T/F66Y and E4K/Y56V mutants via site-directed mutagenesis, and the E4Q/F66Y mutant thus obtained exhibited a 10-fold higher specificity constant toward C6PS than wt, a value significantly higher than other PLC(Bc) mutants. On the basis of available data, an aromatic residue at position 66 appears important for significant catalytic activity toward all three substrates, especially C6PC and C6PE. The charge of residue 4 also appears to be a determinant of enzyme specificity as a negatively charged residue at this position endows the enzyme with C6PC and C6PE preference, whereas a polar neutral or positively charged residue results in C6PS selectivity. Replacing Tyr56 with Val, Ala, Thr, or Ser greatly reduces activity toward C6PC. Thus, the substrate specificity of PLC(Bc) can be modulated by varying three of the amino acid residues that constitute the headgroup binding pocket, and it is now apparent that this enzyme is not evolutionarily optimized to hydrolyze phospholipids with ethanolamine or serine headgroups.  相似文献   

19.
Cyt2Aa2 is a mosquito larvicidal and cytolytic toxin produced by Bacillus thuringiensis subsp. darmstadiensis. The toxin becomes inactive when isoleucine at position 150 was replaced by alanine. To investigate the functional role of this position, Ile150 was substituted with Leu, Phe, Glu and Lys. All mutant proteins were produced at high level, solubilized in carbonate buffer and yielded protease activated product similar to those of the wild type. Intrinsic fluorescence spectra analysis suggested that these mutants retain similar folding to the wild type. However, mosquito larvicidal and hemolytic activities dramatically decreased for the I150K and were completely abolished for I150A and I150F mutants. Membrane binding and oligomerization assays demonstrated that only I150E and I150L could bind and form oligomers on lipid membrane similar to that of the wild type. Our results suggest that amino acid at position 150 plays an important role during membrane binding and oligomerization of Cyt2Aa2 toxin. [BMB Reports 2013; 46(3): 175-180]  相似文献   

20.
Baker HM  He QY  Briggs SK  Mason AB  Baker EN 《Biochemistry》2003,42(23):7084-7089
Human transferrin is a serum protein whose function is to bind Fe(3+) with very high affinity and transport it to cells, for delivery by receptor-mediated endocytosis. Structurally, the transferrin molecule is folded into two globular lobes, representing its N-terminal and C-terminal halves, with each lobe possessing a high-affinity iron binding site, in a cleft between two domains. Central to function is a highly conserved set of iron ligands, including an aspartate residue (Asp63 in the N-lobe) that also hydrogen bonds between the two domains and an arginine residue (Arg124 in the N-lobe) that binds an iron-bound carbonate ion. To further probe the roles of these residues, we have determined the crystal structures of the D63E and R124A mutants of the N-terminal half-molecule of human transferrin. The structure of the D63E mutant, determined at 1.9 A resolution (R = 0.245, R(free) = 0.261), showed that the carboxyl group still binds to iron despite the larger size of the Glu side chain, with some slight rearrangement of the first turn of alpha-helix residues 63-72, to which it is attached. The structure of the R124A mutant, determined at 2.4 A resolution (R = 0.219, R(free) = 0.288), shows that the loss of the arginine side chain results in a 0.3 A displacement of the carbonate ion, and an accompanying movement of the iron atom. In both mutants, the iron coordination is changed slightly, the principal change being in each case a lengthening of the Fe-N(His249) bond. Both mutants also release iron more readily than the wild type, kinetically and in terms of acid lability of iron binding. We attribute this to more facile protonation of the synergistically bound carbonate ion, in the case of R124A, and to strain resulting from the accommodation of the larger Glu side chain, in the case of D63E. In both cases, the weakened Fe-N(His) bond may also contribute, consistent with protonation of the His ligand being an early intermediate step in iron release, following the protonation of the carbonate ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号