首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims Nothapodytes nimmoniana (Family Icacinaceae) is a deciduous tree species distributed in Asia facing severe population decline. Wood chips from the tree are a source of camptothecin, a globally sought-after alkaloid with cancer-treating properties, and are harvested unsustainably in natural forests. We studied the pollination ecology of the species and asked if there are constraints in pollination and fruiting success in its natural populations. We also discuss the potential effects of wood extraction on pollinators and reproductive success in the population.Methods The study was carried out during the flowering season in two populations with varying exploitation levels, both located in the Protected Area Network in the Western Ghats of Karnataka State. We assessed floral resource availability and measured pollinator diversity and activity in the canopy from the perspective of the biology of the species. We quantified pollinator abundance and percent fruit set as a function of population density.Important findings Flowers belong to the fly pollination syndrome and are open to visits by generalists such as Apis dorsata and Trigona iridipennis. Fruiting success did not vary between exploited and unexploited sites, but there was a significant difference in pollinator assemblage. In a lean male flowering year, fruit set was low, suggesting pollen limitation in the population. No fruiting was recorded in the second year at the site where trees were felled soon after the flowering period. We argue that when male floral resources are altered in exploited populations, pollinators of generalist nature may show a shift in foraging pattern. Also, generalist plants may be as susceptible to pollination loss as are specialist plants. The need for outcrossing in the species would probably exacerbate this vulnerability.  相似文献   

2.
Calamus thwaitesii Becc. is a potentially useful rattan found in the Western Ghats of India and Sri Lanka. The wild stock of this rattan species is greatly diminished due to overexploitation for the furniture industry and increasingly rare. Genetic diversity was estimated in 80 samples representing eight populations from the Western Ghats and Sri Lanka using Random Amplified Polymorphic DNA (RAPD) markers. RAPDs generated a total of 120 markers with 10 decamer primers, of which 85% were found to be polymorphic. The percentage of polymorphic loci varied from 40.00 to 60.83 and genetic distance between populations ranged from 0.0332 to 0.2777. Among the analysed populations, Goa was found to be genetically superior followed by Achenkovil, Sinharaja and Talakkaveri. Majority of the genetic diversity was distributed within populations (70.79%) and only (29.21%) among populations. Genetic relationships estimated by the unweighted pair-group method with arithmetic averaging (UPGMA) cluster analysis and principal co-ordinate analysis failed to separate Indian and Sri Lankan populations geographically into two distinct groups.  相似文献   

3.
The allozyme variation and population genetic structure of Horabagrus brachysoma in three natural populations from the southern part of the Western Ghats region, India, were investigated by polyacrylamide gel electrophoresis. Variations at 14 loci from 14 enzyme systems were analyzed. The allozyme analysis revealed a high level of genetic variation in this species, with an average of observed alleles per locus of 2.357 and observed heterozygosity of 0.178. The positive value of the fixation index (FIS=0.507) implied a significant deficiency of heterozygosity at the population level. The highly significant probability (P<0.0001) for the overall loci suggested that the three sample sets were not part of the same gene pool.  相似文献   

4.
This study reports the endemism and sexual system in the wet evergreen tree flora of the Western Ghats. A total of 656 species from 66 families and 231 genera were listed. This included a gymnosperm family (Podocarpaceae) and a monocot family (Arecaceae). No family was endemic to the Western Ghats, but 352 species (53%) from 43 families and five genera were endemic. Nearly 35% of the families had no endemics. The largest families with endemics were Dipterocarpaceae (92%), Anacardiaceae (84%), Lauraceae (72%), Fabaceae, Rubiaceae and Myrtaceae (68%). The top five contributing families in the tree flora of the Western Ghats were Euphorbiaceae, Lauraceae, Rubiaceae, Myrtaceae and Annonaceae. The 656 species were largely hermaphrodites (57%) followed by dioecious (20%), polygamous (16%) and monoecious species (5%). The rate of dioecy reported in this study (20%) is higher than reports for Puerto Rico (18%) but lower than the Malaysian rainforest (26%). Structurally, like the Neotropical forests, most evergreen forest types of the Western Ghats could be classified into four ensembles. Yet, the Western Ghats had fewer species than other tropical and Neotropical forests. The proportion of endemics in the ensembles of the Western Ghats ranged from 34% (ensemble IV) to 14% (ensemble I).  相似文献   

5.
Gonoproktopterus curmuca is an endangered red tailed barb found in Southern part of Western Ghat, India. As a part of stock-specific, propagation assisted rehabilitation and management program, polymorphic microsatellites markers were used to study the genetic diversity and population structure of this species from the three River systems of Southern Western Ghats, such as Periyar River, the Chalakkudy River, and the Chaliyar River. From selected eight polymorphic microsatellite markers, the number of alleles per locus ranged from 2 to 8, and the average number of alleles among 3 populations ranged from 5.0 to 5.75. The mean observed (Hob) and expected (Hex) heterozygosity ranged from 0.5148 to 0.5360 and from 0.5996 to 0.6067, respectively. Significant deviations from Hardy–Weinberg Equilibrium expectation were found at majority of the loci (except Gcur MFW72 and Gcur MFW19) and in all three populations in which heterozygote deficits were apparent. The analysis of molecular variance indicates that the percent of variance among populations and within populations were 6.73 and 93.27, respectively. The pairwise FST values between populations indicate that there were significant deviations in genetic differentiations for the red-tailed barb populations from these three Rivers of the Western Ghats, India. The microsatellites methods reported a low degree of gene diversity and lack of genetic heterogeneity in the population of G. curmuca, which strongly emphasize the need of fishery management, conservation and rehabilitation of G. curmuca.  相似文献   

6.

Background and Question

The harvesting of medicinal plants from wild sources is escalating in many parts of the world, compromising the long-term survival of natural populations of medicinally important plants and sustainability of sources of raw material to meet pharmaceutical industry needs. Although protected areas are considered to play a central role in conservation of plant genetic resources, the effectiveness of protected areas for maintaining medicinal plant populations subject to intense harvesting pressure remain largely unknown. We conducted genetic and demographic studies of Nothapodytes nimmoniana Graham, one of the extensively harvested medicinal plant species in the Western Ghats biodiversity hotspot, India to assess the effectiveness of protected areas in long-term maintenance of economically important plant species.

Methodology/Principal Findings

The analysis of adults and seedlings of N. nimmoniana in four protected and four non-protected areas using 7 nuclear microsatellite loci revealed that populations that are distributed within protected areas are subject to lower levels of harvesting and maintain higher genetic diversity (He = 0.816, Ho = 0.607, A = 18.857) than populations in adjoining non-protected areas (He = 0.781, Ho = 0.511, A = 15.571). Furthermore, seedlings in protected areas had significantly higher observed heterozygosity (Ho = 0.630) and private alleles as compared to seedlings in adjoining non-protected areas (Ho = 0.426). Most populations revealed signatures of recent genetic bottleneck. The prediction of long-term maintenance of genetic diversity using BOTTLESIM indicated that current population sizes of the species are not sufficient to maintain 90% of present genetic diversity for next 100 years.

Conclusions/Significance

Overall, these results highlight the need for establishing more protected areas encompassing a large number of adult plants in the Western Ghats to conserve genetic diversity of economically and medicinally important plant species.  相似文献   

7.
The comparative assessment of genetic diversity using allozymes, random amplified polymorphic DNA (RAPD), and microsatellite markers was conducted in endemic and endangered yellow catfish (Horabagrus brachysoma) sampled from three locations in Western Ghats river systems of India. Among the three markers, microsatellites show more polymorphism, having 100% polymorphic loci, whereas allozymes show the least (56%). In RAPD, 60.5% of fragments were polymorphic. Observed heterozygosity and F(ST) values were very high in microsatellites, compared with the other markers. Microsatellite and RAPD markers reported a higher degree of genetic differentiation than allozymes among the populations depicted by pairwise F(ST)/G(ST), AMOVA, Nei's genetic distance, and UPGMA dendrogram. The three classes of markers demonstrated striking genetic differentiation between pairs of H. brachysoma populations. The data emphasize the need for fishery management, conservation, and rehabilitation of this species.  相似文献   

8.
The impact of fragmentation by human activities on genetic diversity of forest trees is an important concern in forest conservation, especially in tropical forests. Dysoxylum malabaricum (white cedar) is an economically important tree species, endemic to the Western Ghats, India, one of the world's eight most important biodiversity hotspots. As D. malabaricum is under pressure of disturbance and fragmentation together with overharvesting, conservation efforts are required in this species. In this study, range‐wide genetic structure of twelve D. malabaricum populations was evaluated to assess the impact of human activities on genetic diversity and infer the species’ evolutionary history, using both nuclear and chloroplast (cp) DNA simple sequence repeats (SSR). As genetic diversity and population structure did not differ among seedling, juvenile and adult age classes, reproductive success among the old‐growth trees and long distance seed dispersal by hornbills were suggested to contribute to maintain genetic diversity. The fixation index (FIS) was significantly correlated with latitude, with a higher level of inbreeding in the northern populations, possibly reflecting a more severe ecosystem disturbance in those populations. Both nuclear and cpSSRs revealed northern and southern genetic groups with some discordance of their distributions; however, they did not correlate with any of the two geographic gaps known as genetic barriers to animals. Approximate Bayesian computation‐based inference from nuclear SSRs suggested that population divergence occurred before the last glacial maximum. Finally we discussed the implications of these results, in particular the presence of a clear pattern of historical genetic subdivision, on conservation policies.  相似文献   

9.
A crucial step in understanding the origin and maintenance of biological diversity is the assessment of its distribution over space and time and across environmental gradients. At the regional scale, two important attributes of species can be assessed that provide insight into speciation processes: species geographical and environmental ranges. The endemic tree flora of the Western Ghats is an interesting case for analyzing broad-scale biodiversity patterns because of the steep environmental gradients that characterize this tropical region of India. We analysed species geographical and environmental ranges by Canonical Correlation Analysis of point data from herbarium collections. We performed partial analyses to discriminate spatial and environmental correlates of species distribution, and evaluate the contribution of higher taxonomic ranks to these ranges. We identified different levels of organization in the distribution of endemism: 1) general features, such as the concentration of endemic species in the southern part of the Western Ghats, and the decrease in endemic species richness along the altitudinal and the dry season length gradients, and 2) patterns specific to genera or families, such as species niche separation along the environmental gradients. Our analyses enabled us to formulate hypotheses about the diversification of the endemic tree flora of the Western Ghats. They also confirm the value of Canonical Correlation Analysis as the suitable method for collection data analysis.  相似文献   

10.
The genus Atalantia Correa is represented in India with four species and two varieties. The infra — generic classification and the species limits in Atalantia are, however, not well defined, due to the occurrence of intermediate forms. Two species, A. racemosa Wight and A. monophylla (L.) DC., are widely distributed, while the third species, A. wightii Tanaka is endemic in the Western Ghats, a well-known biodiversity hotspot. PCR-based methods have been commonly used for the assessment of genetic diversity in plants. We report for the first time the genetic diversity within and between populations of the above three species using two Single Primer Amplification Reaction (SPAR) methods. AMOVA analysis clearly indicates the lesser diversity among the species than within them. The UPGMA tree included all of the doubtful species in one single sub-cluster within the major cluster of A. racemosa and A. wightii, suggesting that these are probably hybrids derived from these two species. At the population level, all A. monophylla populations grouped together in a cluster that was clearly separated from all other species and populations.Key words: AMOVA, Atalantia, diversity, PCA, Rutaceae, SPAR methods, Western Ghats  相似文献   

11.
Rhododendron arboreum of the family Ericaceae represents one of the ancient relict tree species of the genus showing extreme disjunction in the Indian subcontinent. It is represented by two sub-species viz., ssp. arboreum Smith in the forests of north-eastern India (temperate) and spp. nilagiricum (Zenker) Tagg distributed in the southern Western Ghats (tropical) of India with apparently no distribution in the intervening plains. 35 Samples corresponding to different locations in the tropical montane forests of Nilgiris and temperate forests of northeast India were analyzed for distribution of genetic variation using 25 random primers. Relatively high genetic diversity was measured in the temperate populations (Ht = 0.21; Nm = 1.13) than tropical Rhododendrons. The hierarchical analysis of molecular variance showed that among the total variance, 25% is residing within populations while 63% of variance is among regions apparently revealing that disjunct distribution has structured genetic differentiation pattern in this species. Grouping of samples was in conformity with their spatial distribution, which was confirmed by UPGMA cluster analysis and PCA scatter plot. The taxon with its unique distribution pattern and wide cross compatibility between sub-species is however threatened by low genetic variation and gene flow that catalyses it’s shifting towards genetic drift and hence long-term conservation strategies need to be formulated particularly for the tropical Rhododendron sub-species. Among the various hypotheses and theory proposed to explain the Malayan affinity in the flora and fauna of Western Ghats, Satpura hypothesis based on dispersal model of distribution largely explains the discontinues distribution of R. arboreum.  相似文献   

12.
Dysoxylum malabaricum (white cedar) is an economically important tree species, endemic to the Western Ghats, India, which is the world’s most densely populated biodiversity hotspot. In this study, we used variation at ten nuclear simple sequence repeat loci to investigate genetic diversity and fine scale spatial genetic structure (FSGS) in seedlings and adults of D. malabaricum from four forest patches in the northern part of the Western Ghats. When genetic variation was compared between seedlings and adults across locations, significant differences were detected in allelic richness, observed heterozygosity, fixation index (F IS), and relatedness (P < 0.05). Reduced genetic diversity and increased relatedness at the seedling stage might be due to fragmentation and disturbance. There was no FSGS at the adult stage and FSGS was limited to shorter distance classes at the seedling stage. However, there was clear spatial genetic structure at the landscape level (<50 km), regardless of age class, due to limited gene flow between forest patches. A comparison of the distributions of size classes in the four locations with published data from a more southern area, showed that large trees (diameter at breast height, DBH, >130 cm) are present in the southern sacred forests but not in the northern forest reserves. This pattern is likely due to stronger harvesting pressure in the north compared to the south, because in the north there are no cultural taboos regulating the extraction of natural resources. The implications for forest conservation in this biodiversity hotspot are discussed.  相似文献   

13.
Ecological niche models (ENM) have become a popular tool to define and predict the “ecological niche” of a species. An implicit assumption of the ENMs is that the predicted ecological niche of a species actually reflects the adaptive landscape of the species. Thus in sites predicted to be highly suitable, species would have maximum fitness compared to in sites predicted to be poorly suitable. As yet there are very few attempts to address this assumption. Here we evaluate this assumption. We used Bioclim (DIVA GIS version 7.3) and Maxent (version 3.3.2) to predict the habitat suitability of Myristica malabarica Lam., an economically important tree occurring in the Western Ghats, India. We located populations of the trees naturally occurring in different habitat suitability regimes (from highly suitable to poorly suitable) and evaluated them for their regeneration ability and genetic diversity. We also evaluated them for two plant functional traits, fluctuating asymmetry – an index of genetic homeostasis, and specific leaf weight – an index of primary productivity, often assumed to be good surrogates of fitness. We show a significant positive correlation between the predicted habitat quality and plant functional traits, regeneration index and genetic diversity of populations. Populations at sites predicted to be highly suitable had a higher regeneration and gene diversity compared to populations in sites predicted to be poor or unsuitable. Further, individuals in the highly suitable sites exhibited significantly less fluctuating asymmetry and significantly higher specific leaf weight compared to individuals in the poorly suitable habitats. These results for the first time provide an explicit test of the ENM with respect to the plant functional traits, regeneration ability and genetic diversity of populations along a habitat suitability gradient. We discuss the implication of these resultsfor designing viable species conservation and restoration programs.  相似文献   

14.
Western Australian sandalwood, Santalum spicatum, is widespread in the semi-arid and arid regions of Western Australia, and there is some morphological variation suggestive of two ecotypes. The level and structuring of genetic diversity within the species was investigated using anonymous nuclear RFLP loci. Santalum spicatum showed moderate levels of genetic diversity compared to other Australian tree species. The northern populations in the arid region showed greater levels of diversity and less population differentiation than the southern populations in the semi-arid region due to differences in the distribution of rare alleles. Equilibrium between drift and gene flow in the northern populations indicated that they have been established for a long period of time with stable conditions conducive to gene flow. In contrast, the southern populations showed a relationship between drift and gene flow indicative of a pattern of fragmentation and isolation where drift has greater effect than gene flow. The different patterns of diversity suggest that the ecotypes in the two regions have been subject to differences in the relative influences of drift and gene flow during their evolutionary history.Communicated by D.B. Neale  相似文献   

15.
Genetic diversity and mating system were quantified for shelterwood, patch cut and green tree-retention silvicultural systems, and compared to adjacent old-growth. This is a component of a larger study conducted in montane old-growth forests of coastal British Columbia to evaluate the feasibility and ecological consequences of alternative silvicultural systems. The experiment includes replicated treatments representing a range of overstory removal adjacent to old-growth and clearcut areas. Based on 22 electrophoretically assayed loci, the effects of silvicultural systems on genetic parameters of amabilis fir (Abies amabilis and western hemlock (Tsuga heterophylla were assessed by comparing an average number of alleles per locus, the percent polymorphic loci, and observed and expected heterozygosity between parental populations and naturally regenerated progeny as well as among treatments. Genetic variation in natural regeneration was greater than in parental populations, especially for low-frequency alleles. Silvicultural treatments caused no significant differences in amabilis fir genetic-diversity parameters, while the shelterwood system resulted in lower observed and expected heterozygosity in western hemlock. Nei's genetic distance revealed that all parental populations were extremely similar. The two species had contrasting mating system dynamics with amabilis fir producing higher levels of correlated paternity and inbreeding with wider variation among individual tree outcrossing-rate estimates. Western hemlock had significant levels of correlated paternity only for the green tree and shelterwood treatments demonstrating family structuring inversely related to stand density. Inbreeding in western hemlock was significant but lower than that observed for amabilis fir with a J-shaped distribution for individual tree multilocus outcrossing-rate estimates. The pollination and dispersal mechanisms of the two species represent the most-likely factors causing these differences. Artificial regeneration may be utilized to augment the genetic resources of natural ingress.  相似文献   

16.
Tropical agro-forest landscapes are potentially valuable reserves of forest genetic resources for forestry and restoration of degraded forests. The Dipterocarpaceae is a dominant Southeast Asian family of tree species of global significance for the tropical timber industry. Very little information exists about how effective human modified landscapes are for conserving genetic diversity in dipterocarp species. This study provides a baseline for understanding how fragmented agro-forest landscapes in India sustain forest genetic resources in an endemic dipterocarp tree. We compare genetic diversity and fine-scale spatial genetic structure (FSGS) in the threatened tree species Vateria indica within an isolated and a continuous forest site in the Western Ghats, South India. We place these results in the context of dipterocarps from both the Seychelles and Borneo. Parentage analysis of 694 progeny using twelve nuclear microsatellite markers is applied to estimate pollen and seed dispersal. Using a nursery trial we evaluate effects of inbreeding on growth performance. Our results show that levels of FSGS, and gene dispersal are comparable between a small isolated and a large continuous site of V. indica. Realized long-distance pollen flow into the isolated patch appears to help maintaining genetic diversity. The nursery experiment suggests that selection favours outbred progeny. Individuals of V. indica in close proximity appear less related to each other than in another highly fragmented and endangered dipterocarp species from the Seychelles, but more related than in three dipterocarp species studied in continuous forest in Borneo. We discuss the wider implications of our findings in the context of conservation and restoration of dipterocarp forest genetic resources in fragmented populations.  相似文献   

17.
Red pine (Pinus resinosa Ait.) is an ecologically and economically important forest tree species of northeastern North America and is considered one of the most genetically depauperate conifer species in the region. We have isolated and characterized 13 nuclear microsatellite loci by screening a partial genomic library with di-, tri-, and tetranucleotide repeat oligonucleotide probes. In an analysis of over 500 individuals representing 17 red pine populations from Manitoba through Newfoundland, five polymorphic microsatellite loci with an average of nine alleles per locus were identified. The mean expected and observed heterozygosity values were 0.508 and 0.185, respectively. Significant departures from Hardy-Weinberg equilibrium with excess homozygosity indicating high levels of inbreeding were evident in all populations studied. The population differentiation was high with 28-35% of genetic variation partitioned among populations. The genetic distance analysis showed that three northeastern (two Newfoundland and one New Brunswick) populations are genetically distinct from the remaining populations. The coalescence-based analysis suggests that "northeastern" and "main" populations likely became isolated during the most recent Pleistocene glacial period, and severe population bottlenecks may have led to the evolution of a highly selfing mating system in red pine.  相似文献   

18.
The harvest of non-timber forest products (NTFPs), together with other sources of anthropogenic disturbance, impact plant populations greatly. Despite this, conservation research on NTFPs typically focuses on harvest alone, ignoring possible confounding effects of other anthropogenic and ecological factors. Disentangling anthropogenic disturbances is critical in regions such as India’s Western Ghats, a biodiversity hotspot with high human density. Identifying strategies that permit both use and conservation of resources is essential to preserving biodiversity while meeting local needs. We assessed the effects of NTFP harvesting (fruit harvest from canopy and lopping of branches for fruit) in combination with other common anthropogenic disturbances (cattle grazing, fire frequency and distance from village), in order to identify which stressors have greater effects on recruitment of three tropical dry forest fruit tree species. Specifically, we assessed the structure of 54 populations of Phyllanthus emblica, P. indofischeri and Terminalia chebula spread across the Nilgiri Biosphere Reserve, Western Ghats to ask: (1) How are populations recruiting? and (2) What anthropogenic disturbance and environmental factors, specifically forest type and elevation, are the most important predictors of recruitment status? We combined participatory research with an information-theoretic model-averaging approach to determine which factors most affect population structure and recruitment status. Our models illustrate that for T. chebula, high fire frequency and high fruit harvest intensity decreased the proportion of saplings, while lopping branches or stems to obtain fruit increased it. For Phyllanthus spp, recruitment was significantly lower in plots with more frequent fire. Indices of recruitment of both species were significantly higher for plots in more open-canopy environments of savanna woodlands than in dry forests. Our research illustrates an approach for identifying which factors are most important in limiting recruitment of NTFP populations and other plant species that may be in decline, in order to design effective management strategies.  相似文献   

19.
We analysed genetic diversity across the natural populations of three montane plant species in the Western Ghats, India; Symplocos laurina, Gaultheria fragrantissima and Eurya nitida using intersimple sequence repeat (ISSR) markers. These markers revealed genetic diversity within the populations of these plants from Nilgiri and also between two populations of S. laurina from Nilgiri and Amboli. Genetic variation within and between populations was analysed using various parameters such as total heterozygosity (HT), heterozygosity within population (HS), diversity between populations (DST), coefficient of population differentiation (GST), genetic distance (D) and gene flow (Nm). Total heterozygosity (HT) was higher for S. laurina (0.238) than for G. fragrantissima (0.172) and E. nitida (0.182). Two populations of S. laurina, separated by > 1000 km, showed a high within-population variation (53.7%) and a low gene flow (Nm = 0.447). upgma phenograms depicted a tendency of accessions to group according to their geographical locations in all the three plant species. The insight gained into the genetic structure of these plant populations might have implications in developing in situ and ex situ conservation strategies.  相似文献   

20.
Allozyme and PCR-based molecular markers have been widely used to investigate genetic diversity and population genetic structure in autotetraploid species. However, an empirical but inaccurate approach was often used to infer marker genotype from the pattern and intensity of gel bands. Obviously, this introduces serious errors in prediction of the marker genotypes and severely biases the data analysis. This article developed a theoretical model to characterize genetic segregation of alleles at genetic marker loci in autotetraploid populations and a novel likelihood-based method to estimate the model parameters. The model properly accounts for segregation complexities due to multiple alleles and double reduction at autotetrasomic loci in natural populations, and the method takes appropriate account of incomplete marker phenotype information with respect to genotype due to multiple-dosage allele segregation at marker loci in tetraploids. The theoretical analyses were validated by making use of a computer simulation study and their utility is demonstrated by analyzing microsatellite marker data collected from two populations of sycamore maple (Acer pseudoplatanus L.), an economically important autotetraploid tree species. Numerical analyses based on simulation data indicate that the model parameters can be adequately estimated and double reduction is detected with good power using reasonable sample size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号