首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cosmic Evolution     
Just as biological evolution is the heart of modern biology, cosmic evolution is the heart of modern cosmology. For instructors to be confident in teaching science, it is helpful for them to appreciate the current understanding of the composition and development of the universe, especially the revolutionary changes that have taken place in our understanding over the last two decades. Biological evolution requires the products of cosmic evolution—the elements of which life is composed were formed in the cores of stars—and the two areas of science are thus crucially, and even inspiringly, connected.  相似文献   

2.
Understanding the basic mechanism of evolution by natural selection together with examples of how it works in nature is crucial for explaining and teaching the workings of biology and ecology to young students. Dobzhansky said it best in his advice to educators of biology: “Nothing in biology makes sense except in the light of evolution.” This premise is true at all levels of biology but especially so in the elementary years where foundations of science knowledge are laid. Elementary students are capable of learning cohesive and connected stories of biological principles and learning them within a no-holds-barred arena wherein concepts and processes usually reserved for high school years are taught with special care, appropriate exercises, and patient explanations. This story must include solid introductions to the fundamental principles of evolution by natural selection that are threaded within and alongside those of basic biology and ecology. This paper attempts to make the case for the inclusion of connected stories of biology in the earliest years of education and to include within that education the unifying theme of all biology and ecology studies—evolution.  相似文献   

3.
While school textbooks are assumed to be written for and used by students, it is widely acknowledged that they also serve a vital support function for teachers, particularly in times of curriculum change. A basic assumption is that biology textbooks are scientifically accurate. Furthermore, because of the negative impact of ‘misconceptions’ on learning, it is desirable that textbooks point out common misconceptions and why they are scientifically unacceptable. This paper reports on a study of life sciences textbooks as a potential influence on misconceptions about evolution by natural selection. Textbooks for Grades 10 to 12, from two different publishers, were investigated using content analysis to establish, first, the nature and extent of scientifically incorrect statements about evolution; second, latent problems with wording which might lead to unscientific ideas; and third, whether the books identified and addressed common misconceptions. Unscientific statements were found in all six books, but latent problems associated with the way explanations were expressed were also considered to pose a significant threat to learning. While particularly important for textbook authors and publishers, these findings are also of value to teachers. Although this study was conducted in South Africa, the findings provide useful insights for a wider audience of biology education stakeholders.  相似文献   

4.
In this article, I provide an analysis of my work (1985–present) with non-major biology students and science teacher candidates in developing strategies for teaching and enhancing learning with respect to evolutionary science. This first-person account describes changes in evolution instruction over the course of a career based on personal experiences, research-informed practices, and a critical collaboration with colleague Mike U. Smith. I assert four insights concerning the influence and efficacy of teaching nature of science (NOS) prior to the introduction of evolution within college courses for science non-majors and science teacher candidates. These insights are: (a) teach explicit NOS principles first; (b) integrate evolution as a theme throughout a course in introductory biology (but after NOS principles have been introduced); (c) use active learning pedagogies; and (d) use non-threatening alternative assessments to enhance student learning and acceptance of evolutionary science. Together, these insights establish a pedagogy that I (and my colleagues) have found to be efficacious for supporting novice students as they engage in the study of evolutionary science.  相似文献   

5.
Evolution is a complex subject that requires knowledge of basic biological concepts and the ability to connect them across multiple scales of time, space, and biological organization. Avida-ED is a digital evolution educational software environment designed for teaching and learning about evolution and the nature of science in undergraduate biology courses. This study describes our backward design approach to developing an instructional activity using Avida-ED for teaching and learning about evolution in a large-enrollment introductory biology course. Using multiple assessment instruments, we measured student knowledge and understanding of key principles of natural selection before and after instruction on evolution (including the Avida-ED activity). Assessment analysis revealed significant post-instruction learning gains, although certain evolutionary principles (most notably those including genetics concepts, such as the genetic origin of variation) remained particularly difficult for students, even after instruction. Students, however, demonstrated a good grasp of the genetic component of the evolutionary process in the context of a problem on Avida-ED. We propose that: (a) deep understanding of evolution requires complex systems thinking skills, such as connecting concepts across multiple levels of biological organization, and (b) well designed use of Avida-ED holds the potential to help learners build a meaningful and transferable understanding of the evolutionary process. An erratum to this article can be found at  相似文献   

6.
The causes of non-acceptance of evolution are groupable into five categories: inadequate understanding of the empirical evidence and the content of modern evolutionary theory, inadequate understanding of the nature of science, religion, various psychological factors, and political and social factors. This multiplicity of causes is not sufficiently appreciated by many scientists, educators, and journalists, and the widespread rejection of evolution is a much more complicated problem than many of these front-line practitioners think it is. Solutions to the widespread non-acceptance of evolution must therefore involve not just further resolution of the “religion vs. science” controversy. They must also involve better communication of empirical evidence for evolution, more effective explication of the nature of science, and explicitly addressing the numerous significant psychological obstacles that evolution presents to many (perhaps most) people. There is no clear roadmap to how to do all of this, but some practical recommendations include (1) more research on why and when different people accept or do not accept evolution when they are exposed to it, especially the role of “scientific” vs. “affective” causes for non-acceptance, and also on apparently deeply rooted psychological obstacles to acceptance. (2) A more explicit approach to explication and understanding of the causes for non-acceptance of evolution should support the often-stated goal of understanding “where students are” prior to implementing the kind of approaches frequently advocated for teaching evolution. (3) Integration of multiple educational perspectives and academic disciplines to support application of pedagogical strategies in actual educational settings. (4) Increased development and application of approaches to evolution education in settings beyond the K–16 classroom, such as museums, nature centers, zoos, parks, and aquaria.  相似文献   

7.
Students in a large introductory biology course at Flinders University, South Australia, were quizzed on misconceptions relating to evolution and their acceptance of evolutionary theory before and after completing the course. By providing students with a course featuring a multifaceted approach to learning about evolution, students improved their understanding and decreased their overall misconceptions. A variety of instructional methods and assessment tools were utilized in the course, and it employed an active and historically rich pedagogical approach. Although student learning and understanding of evolutionary theory improved throughout the course, it did not alter the beliefs of students who commented both before and after the course that religious theories provided adequate explanation for the diversity of life. Interestingly, students who maintained this belief scored more poorly on the final examination than students who considered evolution as the best explanation for the diversity of life.  相似文献   

8.
The course ‘Biology of Mankind’ was introduced into the University of New South Wales for first-year students from any faculty wishing to take biology. All students, regardless of their previous background in biology or their reasons for taking the course, followed the same syllabus. Biological principles were taught in the context of the evolution of man in relation to his environment; the importance of scientific methods for the study of these interactions was emphasized. At the beginning of their university studies students were introduced to the relevance of biology for an understanding of many related disciplines. The course represented an educational innovation in both content and teaching methods. It sought to develop some independence in student learning as preparation for subsequent years. The development of the course and its evaluation over a three-year period are reviewed.  相似文献   

9.
Today there is growing interest in material culture studies among a wide range of social and biological scientists. Researchers recognize that some concepts drawn from biology can be useful in understanding aspects of material culture evolution. Indeed, recent research has demonstrated that material culture can evolve in a branching manner (vertical transmission) similar to that of biological species. However, there are many complicating factors as well, particularly the human penchant for borrowing and resurrecting old ideas resulting in extensive blending and hybridization (lateral transmission). But blending and hybridization occurs in biology as well depending upon the nature and scale of interacting organisms. There is far more lateral information transfer between populations within species than between species (although there are always exceptions). History can also be expected to play a role in the degree to which evolution is affected by vertical versus lateral transmission processes. All things equal, we should expect branching to be most important early in the history of a cultural system since blending could not become significant without the early development of distinct lineages. This is different from most biological systems in the sense that the development of distinct lineages would significantly reduce (or prevent) opportunities for blending. We explore these ideas with an analysis of skateboard decks spanning the history of professional skateboards since 1963. We apply cladistic and networking models in order to develop an understanding of the degree by which skateboard evolution was affected by branching and blending/hybridization processes. The study is enhanced by a historical record that provides significant insight into the actual innovation and borrowing processes associated with skateboard evolution. Results confirm that both branching and blending played important roles and that branching was most critical early in professional skateboard history. The study offers the important implication that while cultural systems will typically incorporate far more horizontal transmission in the evolutionary process (particularly in later stages) than many biological systems, general principles governing early stage branching and disparity may apply to both.  相似文献   

10.
In an informal survey, only five percent of 306 college freshmen students in an introductory biology course provided a correct scientific definition for the theory of evolution. The other respondents provided answers that ranged from “organisms improving themselves” (42 percent) to “monkeys becoming humans” (seven percent). Some of the potential reasons for the lack of understanding of the concept of evolution are explored.  相似文献   

11.
The research study investigated the possible associations among science and biology teachers?? knowledge and belief variables concerning teaching evolution in science and biology classes. Specifically, this study examined how a set of variables including teachers?? understanding of evolution and nature of science (NOS) is related to the set of variables including teachers?? acceptance of evolution and perceptions of teaching evolution (i.e., perceptions of the necessity of addressing evolution in their classrooms, perceptions of the factors that impede addressing evolution in their classrooms, and personal science teaching efficacy beliefs regarding evolution). Data were collected from science and biology teachers through administration of Evolution Content Knowledge Test, Measure of Acceptance of the Theory of Evolution, Nature of Science as Argument Questionnaire and Teachers?? Perceptions of Teaching Evolution Scale. Canonical correlation analysis findings suggested that teachers who had thorough understanding of evolution and NOS were likely to both accept the scientific validity of evolution and believe the necessity of addressing evolution in the classrooms. On the other hand, teachers with thorough understanding of evolution and NOS did not necessarily believe that they have a stronger sense of self-efficacy beliefs regarding teaching evolution and that there are fewer obstacles to addressing evolution in the classroom. The research is significant in that it provides empirical evidence clarifying the interactions between teachers?? understanding and beliefs in teaching evolution. Implications for science teacher education are discussed.  相似文献   

12.
Traditional accounts of the role of learning in evolution have concentrated upon its capacity as a source of fitness to individuals. In this paper I use a case study from invasive species biology—the role of conditioned taste aversion in mitigating the impact of cane toads on the native species of Northern Australia—to highlight a role for learning beyond this—as a source of evolvability to populations. This has two benefits. First, it highlights an otherwise under-appreciated role for learning in evolution that does not rely on social learning as an inheritance channel nor “special” evolutionary processes such as genetic accommodation (both of which many are skeptical about). Second, and more significantly, it makes clear important and interesting parallels between learning and exploratory behaviour in development. These parallels motivate the applicability of results from existing research into learning and learning evolution to our understanding the evolution of evolvability more generally.  相似文献   

13.
Brundin, L. (Section of Entomology, Swedish Museum of Natural History, Stockholm, Sweden.) Evolution, causal biology, and classification. Zool. Scripta 1 (3–4): 107–120, 1972.–The pros and cons of different approaches to classification are discussed against the background of a critical survey of the leading principles of evolution and the methodological advices furnished by the nature of the evolutionary process for the attainment of an adequate reference system of causal biology. It is shown that such a system has to be a reconstruction of nature's own hierarchy. The reasons for the present disagreement between the Hennig school and the Simpson-Mayr school are discussed at some length, and it is stressed that the classificatory dilemma of the latter school is an unavoidable consequence of its quantitative approach and hence self-inflicted.  相似文献   

14.
15.
Because humans are the product of our evolutionary past, learning how we evolved is fundamental to all anthropological investigations. We now realize that reconstructing why unique human attributes evolved requires an understanding of our starting point, but this is a relatively recent perspective. One hundred years ago, the question of human origins was identical to that of hominin origins. Accepting Australopithecus into human ancestry, coupled with the modern synthesis of evolution, led anthropologists to consider humans as products of natural selection. They realized that increased intelligence did not initially distinguish our lineage, and that early hominins were apelike in many ways. Australopithecus brought bipedalityr and brain expansion came with Homo . Because the human mind and behavior are products of evolution, we must reconstruct the selective pressures that shaped our lineage in order to understand ourselves today. Paleoanthropology, as with all anthropology, is becoming ever more question oriented, drawing on many areas of inquiry. [Keywords: human origins, human evolution, history, data, theory]  相似文献   

16.
The learning and teaching of biological evolution is conceptually challenging. To fully comprehend evolution, it is posited that individuals also need to understand the roles that the nature of science and situations of chance play in the process. The consistent detection of misconceptions of evolution suggests that new approaches to increasing understanding need to be explored. I predicted that preservice teachers’ ideas for teaching biological evolution could be influenced by three brief web-based interventions, one focused on the common misconceptions of evolution, one on the nature of science, and one on situations of uncertainty in the context of evolution. An experimental group received a combination of the three web-based tutorials while a control group received the misconceptions and nature of science instruction and a time on task filler tutorial. Participants were directed to develop a lesson idea applying the knowledge they learned from the tutorials. The lesson ideas were examined for evidence of the influence of the web-based instruction, participant understanding and misconceptions of concepts, and their ideas about teaching evolution. The results of this study revealed that the participating preservice teachers held a wide range of conception and misconception of evolution, were somewhat influenced by the tutorials, and had an array of visions for teaching evolution. The outcomes support the need for further investigation into the multifaceted nature of preparing preservice teachers to teach evolution.  相似文献   

17.
Summary: Sex is shrouded in mystery. Not only does it preferentially occur in the dark for both fungi and many animals, but evolutionary biologists continue to debate its benefits given costs in light of its pervasive nature. Experimental studies of the benefits and costs of sexual reproduction with fungi as model systems have begun to provide evidence that the balance between sexual and asexual reproduction shifts in response to selective pressures. Given their unique evolutionary history as opisthokonts, along with metazoans, fungi serve as exceptional models for the evolution of sex and sex-determining regions of the genome (the mating type locus) and for transitions that commonly occur between outcrossing/self-sterile and inbreeding/self-fertile modes of reproduction. We review here the state of the understanding of sex and its evolution in the fungal kingdom and also areas where the field has contributed and will continue to contribute to illuminating general principles and paradigms of sexual reproduction.  相似文献   

18.

Background  

While studies of non-model organisms are critical for many research areas, such as evolution, development, and environmental biology, they present particular challenges for both experimental and computational genomic level research. Resources such as mass-produced microarrays and the computational tools linking these data to functional annotation at the system and pathway level are rarely available for non-model species. This type of "systems-level" analysis is critical to the understanding of patterns of gene expression that underlie biological processes.  相似文献   

19.
Opsins are the universal photoreceptor molecules of all visual systems in the animal kingdom. They can change their conformation from a resting state to a signalling state upon light absorption, which activates the G protein, thereby resulting in a signalling cascade that produces physiological responses. This process of capturing a photon and transforming it into a physiological response is known as phototransduction. Recent cloning techniques have revealed the rich and diverse nature of these molecules, found in organisms ranging from jellyfish to humans, functioning in visual and non-visual phototransduction systems and photoisomerases. Here we describe the diversity of these proteins and their role in phototransduction. Then we explore the molecular properties of opsins, by analysing site-directed mutants, strategically designed by phylogenetic comparison. This site-directed mutant approach led us to identify many key features in the evolution of the photoreceptor molecules. In particular, we will discuss the evolution of the counterion, the reduction of agonist binding to the receptor, and the molecular properties that characterize rod opsins apart from cone opsins. We will show how the advances in molecular biology and biophysics have given us insights into how evolution works at the molecular level.  相似文献   

20.
MR Cookson 《Current biology : CB》2012,22(17):R753-R761
A number of neurodegenerative diseases principally affect humans as they age and are characterized by the loss of?specific groups of neurons in different brain regions. Although these disorders are generally sporadic, it is now clear that many of them have a substantial genetic component. As genes are the raw material with which evolution works, we might benefit from understanding these genes in an evolutionary framework. Here, I will discuss how we can understand whether evolution has shaped genes involved in neurodegeneration and the implications for practical issues, such as our choice of model systems for studying these diseases, and more theoretical concerns, such as the level of selection against these phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号