首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dissolved organic nitrogen (DON) has recently been recognized as an important component of terrestrial N cycling, especially under N-limited conditions; however, the effect of increased atmospheric N deposition on DON production and loss from forest soils remains controversial. Here we report DON and dissolved organic carbon (DOC) losses from forest soils receiving very high long-term ambient atmospheric N deposition with or without additional experimental N inputs, to investigate DON biogeochemistry under N-saturated conditions. We studied an old-growth forest, a young pine forest, and a young mixed pine/broadleaf forest in subtropical southern China. All three forests have previously been shown to have high nitrate (NO3) leaching losses, with the highest loss found in the old-growth forest. We hypothesized that DON leaching loss would be forest specific and that the strongest response to experimental N input would be in the N-saturated old-growth forest. Our results showed that under ambient deposition (35–50 kg N ha−1 y−1 as throughfall input), DON leaching below the major rooting zone in all three forests was high (6.5–16.9 kg N ha−1 y−1). DON leaching increased 35–162% following 2.5 years of experimental input of 50–150 kg N ha−1 y−1. The fertilizer-driven increase of DON leaching comprised 4–17% of the added N. A concurrent increase in DOC loss was observed only in the pine forest, even though DOC:DON ratios declined in all three forests. Our data showed that DON accounted for 23–38% of total dissolved N in leaching, highlighting that DON could be a significant pathway of N loss from forests moving toward N saturation. The most pronounced N treatment effect on DON fluxes was not found in the old-growth forest that had the highest DON loss under ambient conditions. DON leaching was highly correlated with NO3 leaching in all three forests. We hypothesize that abiotic incorporation of excess NO3 (through chemically reactive NO2) into soil organic matter and the consequent production of N-enriched dissolved organic matter is a major mechanism for the consistent and large DON loss in the N-saturated subtropical forests of southern China. Dr. YT Fang performed research, analyzed data, and wrote the paper; Prof. WX Zhu participated in the initial experimental design, analyzed data, and took part in writing the paper; Prof. P Gundersen conceived the study and took part in writing; Prof. JM Mo and Prof. GY Zhou conceived study; Prof. M Yoh analyzed part of the data and contributed to the development of DON model.  相似文献   

2.
Traditional biogeochemical theories suggest that ecosystem nitrogen retention is controlled by biotic N limitation, that stream N losses should increase with successional age, and that increasing N deposition will accelerate this process. These theories ignore the role of dissolved organic nitrogen (DON) as a mechanism of N loss. We examined patterns of organic and inorganic N export from sets of old-growth and historically (80–110 years ago) logged and burned watersheds in the northeastern US, a region of moderate, elevated N deposition. Stream nitrate concentrations were strongly seasonal, and mean (± SD) nitrate export from old-growth watersheds (1.4 ± 0.6 kg N ha−1 y−1) was four times greater than from disturbed watersheds (0.3 ± 0.3 kg N ha−1 y−1), suggesting that biotic control over nitrate loss can persist for a century. DON loss averaged 0.7 (± 0.2) kg N ha−1 y−1 and accounted for 28–87% of total dissolved N (TDN) export. DON concentrations did not vary seasonally or with successional status, but correlated with dissolved organic carbon (DOC), which varied inversely with hardwood forest cover. The patterns of DON loss did not follow expected differences in biotic N demand but instead were consistent with expected differences in DOC production and sorption. Despite decades of moderate N deposition, TDN export was low, and even old-growth forests retained at least 65% of N inputs. The reasons for this high N retention are unclear: if due to a large capacity for N storage or biological removal, N saturation may require several decades to occur; if due to interannual climate variability, large losses of nitrate may occur much sooner. Received 27 April 1999; accepted 30 May 2000.  相似文献   

3.
At the Harvard Forest, Massachusetts, a long-term effort is under way to study responses in ecosystem biogeochemistry to chronic inputs of N in atmospheric deposition in the region. Since 1988, experimental additions of NH4NO3 (0, 5 and 15 g N m–2 yr–1) have been made in two forest stands:Pinus resinosa (red pine) and mixed hardwood. In the seventh year of the study, we measured solute concentrations and estimated solute fluxes in throughfall and at two soil depths, beneath the forest floors (Oa) and beneath the B horizons.Beneath the Oa, concentrations and fluxes of dissolved organic C and N (DOC and DON) were higher in the coniferous stand than in the hardwood stand. The mineral soil exerted a strong homogenizing effect on concentrations beneath the B horizons. In reference plots (no N additions), DON composed 56% (pine) and 67% (hardwood) of the total dissolved nitrogen (TDN) transported downward from the forest floor to the mineral soil, and 98% of the TDN exported from the solums. Under N amendments, fluxes of DON from the forest floor correlated positively with rates of N addition, but fluxes of inorganic N from the Oa exceeded those of DON. Export of DON from the solums appeared unaffected by 7 years of N amendments, but as in the Oa, DON composed smaller fractions of TDN exports under N amendments. DOC fluxes were not strongly related to N amendment rates, but ratios of DOC:DON often decreased.The hardwood forest floor exhibited a much stronger sink for inorganic N than did the pine forest floor, making the inputs of dissolved N to mineral soil much greater in the pine stand. Under the high-N treatment, exports of inorganic N from the solum of the pine stand were increased >500-fold over reference (5.2 vs. 0.01 g N m–2 yr–1), consistent with other manifestations of nitrogen saturation. Exports of N from the solum in the pine forest decreased in the order NO3-N> NH4-N> DON, with exports of inorganic N 14-fold higher than exports of DON. In the hardwood forest, in contrast, increased sinks for inorganic N under N amendments resulted in exports of inorganic N that remained lower than DON exports in N-amended plots as well as the reference plot.  相似文献   

4.
Despite growing attention concerning therole of dissolved organic matter (DOM) inelement cycling of forest ecosystems, thecontrols of concentrations and fluxes of bothdissolved organic carbon (DOC) and nitrogen(DON) under field conditions in forest soilsremain only poorly understood. The goal ofthis project is to measure the concentrations and fluxes of DON, NH4 +, NO3 and DOC in bulkprecipitation, throughfall, forest floorleachates and soil solutions of a deciduousstand in the Steigerwald region (northernBavaria, Germany). The DOC and DONconcentrations and fluxes were highest inleachates originating from the Oa layer of theforest floor (73 mg C L–1, 2.3 mg NL–1 and about 200–350 kg C, 8–10 kg Nha–1 yr–1). They were observed to behighly variable over time and decreased in themineral topsoil (17 mg C L–1, 0.6 mg NL–1 and about 50–90 kg C, 2.0 to 2.4 kg Nha–1 yr–1). The annual variability ofDOC and DON concentrations and subsequentialDOC/DON ratios was substantial in allsolutions. The DOC and DON concentrations inthroughfall were positively correlated withtemperature. The DOC and DON concentrationsdid not show seasonality in the forest floorand mineral soil. Concentrations were notrelated to litterfall dynamics but didcorrespond in part to the input of DOC and DONfrom throughfall. The throughfall contributionto the overall element fluxes was higher forDON than for DOC. Concentrations and fluxes ofDON were significantly correlated to DOC inthroughfall and the Oi layer. However, thecorrelation was weak in Oa leachates. Inaddition, seasonal and annual variation ofDOC/DON ratios indicated different mechanismsand release rates from the forest floor forboth components. The concentrations of DOC andDON in forest floor leachates were in mostcases dependent neither on the pH value orionic strength of the solution, nor on thewater flux or temperature changes. As aconsequence, the DOC and DON fluxes from theforest floor into the mineral soil werelargely dependent on the water flux if annualand biweekly time scales are considered.  相似文献   

5.
In this study, we estimated whether changes in hydrological pathwaysduring storms could explain the large temporal variations of dissolvedorganic carbon (DOC) and nitrogen (DON) in the runoff of threecatchments: a forest and a grassland sub-catchment of 1600m2 delineated by trenches, and a headwater catchment of 0.7km2.The average annual DOC export from the sub-catchments was 185 kg DOCha–1 y–1 for the forest, 108 kg DOCha–1 y–1 for the grassland and 84 kgDOC ha–1 y–1 for the headwatercatchment. DON was the major form of the dissolved N in soil and streamwater. DON export from all catchments was approximately 6 kg Nha–1 y–1, which corresponded to 60% ofthe total N export and to 50% of the ambient wet N deposition. DOC andDON concentrations in weekly samples of stream water were positivelycorrelated with discharge. During individual storms, concentrations andproperties of DOC and DON changed drastically. In all catchments, DOCconcentrations increased by 6 to 7 mg DOC l–1 comparedto base flow, with the largest relative increment in the headwatercatchment (+350%). Concentrations of DON, hydrolysable amino acids, andphenolics showed comparable increases, whereas the proportion ofcarbohydrates in DOC decreased at peak flow. Prediction of DOC and DONconcentrations by an end-member mixing analysis (EMMA) on the base ofinorganic water chemistry showed that changes in water flow pathslargely explained these temporal variability. According to the EMMA, thecontribution of throughfall to the runoff peaked in the initial phase ofthe storm, while water from the subsoil dominated during base flow only.EMMA indicated that the contribution of the DOC and DON-rich topsoil washighest in the later stages of the storm, which explained the highestDOC and DON concentrations as the hydrograph receded. Discrepanciesbetween observed and predicted concentrations were largest for thereactive DOC compounds such as carbohydrates and phenolics. Theyoccurred at base flow and in the initial phase of storms. This suggeststhat other mechanisms such as in-stream processes or a time-variantrelease of DOC also played an important role.  相似文献   

6.
Piirainen  Sirpa  Finér  Leena  Mannerkoski  Hannu  Starr  Michael 《Plant and Soil》2002,239(2):301-311
Effects of clear-cutting on the dissolved fluxes of organic C (DOC), organic N (DON), NO3 and NH4 + through surface soil horizons were studied in a Norway spruce dominated mixed boreal forest in eastern Finland. Bulk deposition, total throughfall and soil water from below the organic (including understorey vegetation and, after clear-cutting, also logging residues), eluvial and illuvial horizons were sampled weekly from 1993 to 1999. Clear-cutting was carried out in September 1996. The removal of the tree canopy decreased the deposition of DOC and DON to the forest floor and increased that of NH4 + and NO3 but did not affect the deposition of total N (DTN, <3 kg ha–1 a–1). The leaching of DOC and DON from the organic horizon increased over twofold after clear-cutting (fluxes were on an average 168 kg C and 3.3 kg N ha–1 a–1), but the increased outputs were effectively retained in the surface mineral soil horizons. Inorganic N deposition was mainly retained by the logging residues and organic horizon indicating microbial immobilization. Increased NO3 formation reflected as elevated concentrations in the percolate from below the mineral soil horizons were observed especially in the third year after clear-cutting. However, the changes were small and the increased leaching of DTN from below the illuvial horizon remained small (<0.4 kg ha–1 a–1) and mainly DON. Effects of clear-cutting on the transport of C and N to surface waters will probably be negligible.  相似文献   

7.
Here we report measurements of organic and inorganic nitrogen (N) fluxes from the high-elevation Green Lakes Valley catchment in the Colorado Front Range for two snowmelt seasons (1998 and 1999). Surface water and soil samples were collected along an elevational gradient extending from the lightly vegetated alpine to the forested subalpine to assess how changes in land cover and basin area affect yields and concentrations of ammonium-N (NH4-N), nitrate-N (NO3-N), dissolved organic N (DON), and particulate organic N (PON). Streamwater yields of NO3-N decreased downstream from 4.3 kg ha−1 in the alpine to 0.75 kg ha−1 at treeline, while yields of DON were much less variable (0.40–0.34 kg ha−1). Yields of NH4-N and PON were low and showed little variation with basin area. NO3-N accounted for 40%–90% of total N along the sample transect and was the dominant form of N at all but the lowest elevation site. Concentrations of DON ranged from approximately 10% of total N in the alpine to 45% in the subalpine. For all sites, volume-weighted mean concentrations of total dissolved nitrogen (TDN) were significantly related to the DIN:DON ratio (R 2 = 0.81, P < 0.001) Concentrations of NO3-N were significantly higher at forested sites that received streamflow from the lightly vegetated alpine reaches of the catchment than in a control catchment that was entirely subalpine forest, suggesting that the alpine may subsidize downstream forested systems with inorganic N. KCl-extractable inorganic N and microbial biomass N showed no relationship to changes in soil properties and vegetative cover moving downstream in catchment. In contrast, soil carbon–nitrogen (C:N) ratios increased with increasing vegetative cover in catchment and were significantly higher in the subalpine compared to the alpine (P < 0.0001) Soil C:N ratios along the sample transect explained 78% of the variation in dissolved organic carbon (DOC) concentrations and 70% of the variation in DON concentrations. These findings suggest that DON is an important vector for N loss in high-elevation ecosystems and that streamwater losses of DON are at least partially dependent on catchment soil organic matter stoichiometry. Received 26 July 2001; accepted 6 May 2002.  相似文献   

8.
Relatively high deposition ofnitrogen (N) in the northeastern United States hascaused concern because sites could become N saturated.In the past, mass-balance studies have been used tomonitor the N status of sites and to investigate theimpact of increased N deposition. Typically, theseefforts have focused on dissolved inorganic forms ofN (DIN = NH4-N + NO3-N) and have largelyignored dissolved organic nitrogen (DON) due todifficulties in its analysis. Recent advances in themeasurement of total dissolved nitrogen (TDN) havefacilitated measurement of DON as the residual of TDN– DIN. We calculated DON and DIN budgets using data onprecipitation and streamwater chemistry collected from9 forested watersheds at 4 sites in New England. TDNin precipitation was composed primarily of DIN. Netretention of TDN ranged from 62 to 89% (4.7 to 10 kghaminus 1 yrminus 1) of annual inputs. DON made up themajority of TDN in stream exports, suggesting thatinclusion of DON is critical to assessing N dynamicseven in areas with large anthropogenic inputs of DIN.Despite the dominance of DON in streamwater,precipitation inputs of DON were approximately equalto outputs. DON concentrations in streamwater did notappear significantly influenced by seasonal biologicalcontrols, but did increase with discharge on somewatersheds. Streamwater NO3-N was the onlyfraction of N that exhibited a seasonal pattern, withconcentrations increasing during the winter months andpeaking during snowmelt runoff. Concentrations ofNO3-N varied considerably among watersheds andare related to DOC:DON ratios in streamwater. AnnualDIN exports were negatively correlated withstreamwater DOC:DON ratios, indicating that theseratios might be a useful index of N status of uplandforests.  相似文献   

9.
Retention of soluble organic nutrients by a forested ecosystem   总被引:10,自引:6,他引:4  
We document an example of a forested watershed at the Coweeta HydrologicLaboratory with an extraordinary tendency to retain dissolved organic matter(DOM) generated in large quantities within the ecosystem. Our objectives weretodetermine fluxes of dissolved organic C, N, and P (DOC, DON, DOP,respectively),in water draining through each stratum of the ecosystem and synthesizeinformation on the physicochemical, biological and hydrologic factors leadingtoretention of dissolved organic nutrients in this ecosystem. The ecosystemretained 99.3, 97.3, and 99.0% of water soluble organic C, N and P,respectively, produced in litterfall, throughfall, and root exudates. Exportsinstreamwater were 4.1 kg ha–1yr–1of DOC, 0.191 kg ha–1 yr–1 ofDON, and 0.011 kg ha–1 yr–1 ofDOP. Fluxes of DON were greater than those of inorganic N in all strata. MostDOC, DON, and DOP was removed from solution in the A and B horizons, with DOCbeing rapidly adsorbed to Fe and Al oxyhydroxides, most likely by ligandexchange. DON and DOC were released gradually from the forest floor over theyear. Water soluble organic C produced in litterfall and throughfall had adisjoint distribution of half-decay times with very labile and veryrefractory fractions so that most labile DOC was decomposed before beingleachedinto the mineral soil and refractory fractions dominated the DOC transportedthrough the ecosystem. We hypothesize that this watershed retained solubleorganic nutrients to an extraordinary degree because the soils have very highcontents of Fe and Al oxyhydroxides with high adsorption capacities and becausethe predominant hydrologic pathway is downwards as unsaturated flow through astrongly adsorbing A and B horizon. The well recognized retention mechanismsforinorganic nutrients combine with adsorption of DOM and hydrologic pathway toefficiently prevent leaching of both soluble inorganic andorganic nutrients in this watershed.  相似文献   

10.
Recent reviews indicate that N deposition increases soil organic matter (SOM) storage in forests but the undelying processes are poorly understood. Our aim was to quantify the impacts of increased N inputs on soil C fluxes such as C mineralization and leaching of dissolved organic carbon (DOC) from different litter materials and native SOM. We added 5.5 g N m?2 yr?1 as NH4NO3 over 1 year to two beech forest stands on calcareous soils in the Swiss Jura. We replaced the native litter layer with 13C‐depleted twigs and leaves (δ13C: ?38.4 and ?40.8‰) in late fall and measured N effects on litter‐ and SOM‐derived C fluxes. Nitrogen addition did not significantly affect annual C losses through mineralization, but altered the temporal dynamics in litter mineralization: increased N inputs stimulated initial mineralization during winter (leaves: +25%; twigs: +22%), but suppressed rates in the subsequent summer. The switch from a positive to a negative response occurred earlier and more strongly for leaves than for twigs (?21% vs. 0%). Nitrogen addition did not influence microbial respiration from the nonlabeled calcareous mineral soil below the litter which contrasts with recent meta‐analysis primarily based on acidic soils. Leaching of DOC from the litter layer was not affected by NH4NO3 additions, but DOC fluxes from the mineral soils at 5 and 10 cm depth were significantly reduced by 17%. The 13C tracking indicated that litter‐derived C contributed less than 15% of the DOC flux from the mineral soil, with N additions not affecting this fraction. Hence, the suppressed DOC fluxes from the mineral soil at higher N inputs can be attributed to reduced mobilization of nonlitter derived ‘older’ DOC. We relate this decline to an altered solute chemistry by NH4NO3 additions, an increased ionic strength and acidification resulting from nitrification, rather than to a change in microbial decomposition.  相似文献   

11.
Tropical dry forest is the most widely distributed land-cover type in the tropics. As the rate of land-use/land-cover change from forest to pasture or agriculture accelerates worldwide, it is becoming increasingly important to quantify the ecosystem biomass and carbon (C) and nitrogen (N) pools of both intact forests and converted sites. In the central coastal region of México, we sampled total aboveground biomass (TAGB), and the N and C pools of two floodplain forests, three upland dry forests, and four pastures converted from dry forest. We also sampled belowground biomass and soil C and N pools in two sites of each land-cover type. The TAGB of floodplain forests was as high as 416 Mg ha–1, whereas the TAGB of the dry forest ranged from 94 to 126 Mg ha–1. The TAGB of pastures derived from dry forest ranged from 20 to 34 Mg ha–1. Dead wood (standing and downed combined) comprised 27%–29% of the TABG of dry forest but only about 10% in floodplain forest. Root biomass averaged 32.0 Mg ha–1 in floodplain forest, 17.1 Mg ha–1 in dry forest, and 5.8 Mg ha–1 in pasture. Although total root biomass was similar between sites within land-cover types, root distribution varied by depth and by size class. The highest proportion of root biomass occurred in the top 20 cm of soil in all sites. Total aboveground and root C pools, respectively, were 12 and 2.2 Mg ha–1 in pasture and reached 180 and 12.9 Mg ha–1 in floodplain forest. Total aboveground and root pools, respectively, were 149 and 47 kg ha–1 in pasture and reached 2623 and 264 kg ha–1 in floodplain forest. Soil organic C pools were greater in pastures than in dry forest, but soil N pools were similar when calculated for the same soil depths. Total ecosystem C pools were 306. The Mg ha–1 in floodplain forest, 141 Mg ha–1 in dry forest, and 124 Mg ha–1 in pasture. Soil C comprised 37%–90% of the total ecosystem C, whereas soil N comprised 85%–98% of the total. The N pools lack of a consistent decrease in soil pools caused by land-use change suggests that C and N losses result from the burning of aboveground biomass. We estimate that in México, dry forest landscapes store approximately 2.3 Pg C, which is about equal to the C stored by the evergreen forests of that country (approximately 2.4 Pg C). Potential C emissions to the atmosphere from the burning of biomass in the dry tropical landscapes of México may amount to 708 Tg C, as compared with 569 Tg C from evergreen forests.  相似文献   

12.
This study examined impacts of succession on N export from 20 headwater stream systems in the west central Cascades of Oregon, a region of low anthropogenic N inputs. The seasonal and successional patterns of nitrate (NO3−N) concentrations drove differences in total dissolved N concentrations because ammonium (NH4−N) concentrations were very low (usually < 0.005 mg L−1) and mean dissolved organic nitrogen (DON) concentrations were less variable than nitrate concentrations. In contrast to studies suggesting that DON levels strongly dominate in pristine watersheds, DON accounted for 24, 52, and 51% of the overall mean TDN concentration of our young (defined as predominantly in stand initiation and stem exclusion phases), middle-aged (defined as mixes of mostly understory reinitiation and older phases) and old-growth watersheds, respectively. Although other studies of cutting in unpolluted forests have suggested a harvest effect lasting 5 years or less, our young successional watersheds that were all older than 10 years still lost significantly more N, primarily as NO3−N, than did watersheds containing more mature forests, even though all forest floor and mineral soil C:N ratios were well above levels reported in the literature for leaching of dissolved inorganic nitrogen. The influence of alder may contribute to these patterns, although hardwood cover was quite low in all watersheds; it is possible that in forested ecosystems with very low anthropogenic N inputs, even very low alder cover in riparian zones can cause elevated N exports. Only the youngest watersheds, with the highest nitrate losses, exhibited seasonal patterns of increased summer uptake by vegetation as well as flushing at the onset of fall freshets. Older watersheds with lower N losses did not exhibit seasonal patterns for any N species. The results, taken together, suggest a role for both vegetation and hydrology in N retention and loss, and add to our understanding of N cycling by successional forest ecosystems influenced by disturbance at various spatial and temporal scales in a region of relatively low anthropogenic N input.  相似文献   

13.
The effects of changes in tropical land use on soil emissions of nitrous oxide (N2O) and nitric oxide (NO) are not well understood. We examined emissions of N2O and NO and their relationships to land use and forest composition, litterfall, soil nitrogen (N) pools and turnover, soil moisture, and patterns of carbon (C) cycling in a lower montane, subtropical wet region of Puerto Rico. Fluxes of N2O and NO were measured monthly for over 1 year in old (more than 60 years old) pastures, early- and mid-successional forests previously in pasture, and late-successional forests not known to have been in pasture within the tabonuco (Dacryodes excelsa) forest zone. Additional, though less frequent, measures were also made in an experimentally fertilized tabonuco forest. N2O fluxes exceeded NO fluxes at all sites, reflecting the consistently wet environment. The fertilized forest had the highest N oxide emissions (22.0 kg N · ha−1· y−1). Among the unfertilized sites, the expected pattern of increasing emissions with stand age did not occur in all cases. The mid-successional forest most dominated by leguminous trees had the highest emissions (9.0 kg N · ha−1· y−1), whereas the mid-successional forest lacking legumes had the lowest emissions (0.09 kg N · ha−1· y−1). N oxide fluxes from late-successional forests were higher than fluxes from pastures. Annual N oxide fluxes correlated positively to leaf litter N, net nitrification, potential nitrification, soil nitrate, and net N mineralization and negatively to leaf litter C:N ratio. Soil ammonium was not related to N oxide emissions. Forests with lower fluxes of N oxides had higher rates of C mineralization than sites with higher N oxide emissions. We conclude that (a) N oxide fluxes were substantial where the availability of inorganic N exceeded the requirements of competing biota; (b) species composition resulting from historical land use or varying successional dynamics played an important role in determining N availability; and (c) the established ecosystem models that predict N oxide loss from positive relationships with soil ammonium may need to be modified. Received 22 February 2000; accepted 6 September 2000.  相似文献   

14.
Borken  W.  Xu  Y.J.  Beese  F. 《Plant and Soil》2004,258(1):121-134
Fertilization of nutrient-depleted and degraded forest soils may be required to sustain utilization of forests. In some European countries, the application of composts may now be an alternative to the application of inorganic fertilizers because commercial compost production has increased and compost quality has been improved. There is, however, concern that compost amendments may cause increased leaching of nitrogen, trace metals and toxic organic compounds to groundwater. The objective of this study was to assess the risk of ammonium (NH4 +), nitrate (NO3 ) and dissolved organic nitrogen (DON) leaching following a single compost application to silty and sandy soils in mature beech (Fagus sylvatica L.), pine (Pinus silvestris L.) and spruce (Picea abies Karst.) forests at Solling and Unterlüß in Lower Saxony, Germany. Mature compost from separately collected organic household waste was applied to the soil surface at a rate of 6.3 kg m–2 in the summer of 1997 and changes in NH4 +, NO3 and DON concentrations in throughfall and soil water at 10 and 100 cm soil depths were determined for 32 months. The spruce forests had the highest N inputs by throughfall water and the highest N outputs in both the control and compost plots compared with the pine and beech forests. Overall, the differences in total N outputs at 100 cm soil depth between the control and compost plots ranged between 0.3 and 11.2 g N m–2 for the entire 32-month period. The major leaching of these amounts occurred during the first 17 months after compost amendments, but there was no significant difference in total N outputs (–0.2 to 1.8 g N m–2) between the control and compost plots during the remaining 15 months. Most of the mineral soils acted as a significant sink for NO3 and DON as shown by a reduction of their outputs from 10 to 100 cm depth. Based on these results, we conclude that application of mature compost with high inorganic N contents could diminish the groundwater quality in the first months after the amendments. A partial, moderate application of mature compost with low inorganic N content to nutrient depleted forest soils can minimize the risk of NO3 leaching.  相似文献   

15.
Reductions in snow cover undera warmer climate may cause soil freezing eventsto become more common in northern temperateecosystems. In this experiment, snow cover wasmanipulated to simulate the late development ofsnowpack and to induce soil freezing. Thismanipulation was used to examine the effects ofsoil freezing disturbance on soil solutionnitrogen (N), phosphorus (P), and carbon (C)chemistry in four experimental stands (twosugar maple and two yellow birch) at theHubbard Brook Experimental Forest (HBEF) in theWhite Mountains of New Hampshire. Soilfreezing enhanced soil solution Nconcentrations and transport from the forestfloor. Nitrate (NO3 ) was thedominant N species mobilized in the forestfloor of sugar maple stands after soilfreezing, while ammonium (NH4 +) anddissolved organic nitrogen (DON) were thedominant forms of N leaching from the forestfloor of treated yellow birch stands. Rates ofN leaching at stands subjected to soil freezingranged from 490 to 4,600 mol ha–1yr–1, significant in comparison to wet Ndeposition (530 mol ha–1 yr–1) andstream NO3 export (25 mol ha–1yr–1) in this northern forest ecosystem. Soil solution fluxes of Pi from the forestfloor of sugar maple stands after soil freezingranged from 15 to 32 mol ha–1 yr–1;this elevated mobilization of Pi coincidedwith heightened NO3 leaching. Elevated leaching of Pi from the forestfloor was coupled with enhanced retention ofPi in the mineral soil Bs horizon. Thequantities of Pi mobilized from the forestfloor were significant relative to theavailable P pool (22 mol ha–1) as well asnet P mineralization rates in the forest floor(180 mol ha–1 yr–1). Increased fineroot mortality was likely an important sourceof mobile N and Pi from the forest floor,but other factors (decreased N and P uptake byroots and increased physical disruption of soilaggregates) may also have contributed to theenhanced leaching of nutrients. Microbialmortality did not contribute to the acceleratedN and P leaching after soil freezing. Resultssuggest that soil freezing events may increaserates of N and P loss, with potential effectson soil N and P availability, ecosystemproductivity, as well as surface wateracidification and eutrophication.  相似文献   

16.
Spatial variations in soil processes regulating mineral N losses to streams were studied in a small watershed near Toronto, Ontario. Annual net N mineralization in the 0–8 cm soil was measured in adjacent upland and riparian forest stands using in situ soil incubations from April 1985 to 1987. Mean annual rates of soil N mineralization and nitrification were higher in a maple soil (93.8 and 87.0 kg.ha–1) than in a pine soil (23.3 and 8.2 kg.ha–1 ). Very low mean rates of mineralization (3.3 kg.ha–1) and nitrification (3.4 kg.ha–1) were found in a riparian hemlock stand. Average NO3-N concentrations in soil solutions were 0.3–1.0 mg.L–1 in the maple stand and >0.06mg.L–1 in the pine stand. Concentrations of NO3–N in shallow ground water and stream water were 3–4× greater in a maple subwatershed than in a pine subwatershed. Rapid N uptake by vegetation was an important mechanism reducing solution losses of NO3–N in the maple stand. Low rates of nitrification were mainly responsible for negligible NO3–N solution losses in the pine stand.  相似文献   

17.
Transformations and fluxes of N were examined in three forested sites located along a gradient of soil texture in the coastal forests of the Waquoit Bay watershed on Cape Cod. Total N leaching losses to ground water were 0.5 kg ha-1 yr-1 in the loamy sand site and 1.5 kg ha-1 yr-1 in the fine sand site. Leaching loss to groundwater was not measured in the coarse sand site due to the prohibitive depth of the water table but total N leaching loss to 1m depth in the mineral soil was 3.9 kg ha-1 yr-1. DON accounted for most of the leaching losses below the rooting zone (77–89%) and through the soil profile to ground water (60%–80%). Differences in DON retention capacity of the mineral soil in the sites along the soil texture gradient were most likely related to changes in mineral soil particle surface area and percolation rates associated with soil texture. Forests of the watershed functioned as a sink for inorganic N deposited on the surface of the watershed in wet and dry deposition but a source of dissolved organic N to ground water and adjoining coastal ecosystems.  相似文献   

18.
To identify the controls on dissolved organic carbon (DOC) production, we incubated soils from 18 sites, a mixture of 52 forest floor and peats and 41 upper mineral soil samples, at three temperatures (3, 10, and 22°C) for over a year and measured DOC concentration in the leachate and carbon dioxide (CO2) production from the samples. Concentrations of DOC in the leachate were in the range encountered in field soils (<2 to >50 mg l−1). There was a decline in DOC production during the incubation, with initial rates averaging 0.03–0.06 mg DOC g−1 soil C day−1, falling to averages of 0.01 mg g−1 soil C day−1; the rate of decline was not strongly related to temperature. Cumulative DOC production rates over the 395 days ranged from less than 0.01 to 0.12 mg g−1 soil C day−1 (0.5–47.6 mg g−1 soil C), with an average of 0.021 mg g−1 soil C day−1 (8.2 mg g−1 soil C). DOC production rate was weakly related to temperature, equivalent to Q10 values of 0.9 to 1.2 for mineral samples and 1.2 to 1.9 for organic samples. Rates of DOC production in the organic samples were correlated with cellulose (positively) and lignin (negatively) proportion in the organic matter, whereas in the mineral samples C and nitrogen (N) provided positive correlations. The partitioning of C released into CO2–C and DOC showed a quotient (CO2–C:DOC) that varied widely among the samples, from 1 to 146. The regression coefficient of CO2–C:DOC production (log10 transformed) ranged from 0.3 to 0.7, all significantly less than 1. At high rates of DOC production, a smaller proportion of CO2 is produced. The CO2–C:DOC quotient was dependent on incubation temperature: in the organic soil samples, the CO2–C:DOC quotient rose from an average of 6 at 3 to 16 at 22°C and in the mineral samples the rise was from 7 to 27. The CO2–C:DOC quotient was related to soil pH in the organic samples and C and N forms in the mineral samples.  相似文献   

19.
Dissolved organic carbon (DOC) and NO3 are important forms of C and N in stream water. Hypotheses concerning relationships between DOC and NO3 concentrations have been proposed, but there are no reports demonstrating a relationship between them in stream water. We observed 35 natural streams in the Lake Biwa watershed, central Japan, and found an inverse relationship between DOC and NO3 concentrations. This relationship was also found in observations of their seasonal variations in the Lake Biwa watershed. Moreover, this relationship was also found to apply to watersheds in other regions in Japan. These results suggest that forest biogeochemical processes which control DOC and NO3 concentrations in Japanese streams are closely related. Excess N availability together with a C (energy) deficit in a soil environment may explain this relationship. DOC and NO3 concentrations in streams will thus be a useful index indicating C and N availability in catchments.  相似文献   

20.
Dissolved organic carbon (DOC) and nitrogen (DON)represent an important part of the C and N cycles inforest ecosystems. Little is known about the controlson fluxes and concentrations of these compounds insoils under field conditions. Here we compiledpublished data on concentrations and fluxes of DOC andDON from 42 case studies in forest ecosystems of thetemperate zone in order to evaluate controls on alarger temporal and spatial scale. The focus was onannual fluxes and concentrations in throughfall,forest floor leachates and soil solutions. In allcompartments considered, concentrations and fluxesdiffered widely between the sites. Highestconcentrations of DOC and DON were generally observedin forest floor leachates and in A horizons. Highestfluxes occurred in forest floor leachates. The fluxesof DOC and DON in forest floor leachates increasedwith increasing annual precipitation and were alsopositively related to DOC and DON fluxes withthroughfall. Variation in throughfall fluxes couldexplain 46% and 65% of the variation in DOC and DONfluxes from the forest floor, respectively. No generaldifference in DOC and DON concentrations and fluxes inforest floor leachates was found when comparingconiferous and hardwood sites. Concentrations of DOCin forest floor leachates were positively correlatedto the pH of the forest floor. Furthermore, there wasno relationship between organic C and N stocks, soilC/N, litterfall or mineral N inputs and concentrationsand fluxes of DOC and DON in forest floor leachates.Including all compartments, fluxes of DOC and DON werehighly correlated. Ratios of DOC to DON calculatedfrom fluxes from the forest floor were independent ofthe amount of annual precipitation, pointing to asimilar response of DOC and DON to precipitationconditions. A decrease in the ratio of DOC to DON withsoil depth as observed on a plot-scale, was notconfirmed by data analysis on a large scale. Thecontrols observed on annual fluxes and concentrationsof DON and DOC at regional scale differed from thosereported for smaller time and space scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号