首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marine reserves are widely used throughout the world to prevent overfishing and conserve biodiversity, but uncertainties remain about their optimal design. The effects of marine reserves are heterogeneous. Despite theoretical findings, empirical studies have previously found no effect of size on the effectiveness of marine reserves in protecting commercial fish stocks. Using 58 datasets from 19 European marine reserves, we show that reserve size and age do matter: Increasing the size of the no-take zone increases the density of commercial fishes within the reserve compared with outside; whereas the size of the buffer zone has the opposite effect. Moreover, positive effects of marine reserve on commercial fish species and species richness are linked to the time elapsed since the establishment of the protection scheme. The reserve size-dependency of the response to protection has strong implications for the spatial management of coastal areas because marine reserves are used for spatial zoning.  相似文献   

2.
Coral reef fishes differ in their intrinsic vulnerability to fishing and rates of population recovery after cessation of fishing. We reviewed life history-based predictions about the vulnerability of different groups of coral reef fish and examined the empirical evidence for different rates of population recovery inside no-take marine reserves to (1) determine if the empirical data agree with predictions about vulnerability and (2) show plausible scenarios of recovery within fully protected reserves and periodically-harvested fishery closures. In general, larger-bodied carnivorous reef fishes are predicted to be more vulnerable to fishing while smaller-bodied species lower in the food web (e.g., some herbivores) are predicted to be less vulnerable. However, this prediction does not always hold true because of the considerable diversity of life history strategies in reef fishes. Long-term trends in reef fish population recovery inside no-take reserves are consistent with broad predictions about vulnerability, suggesting that moderately to highly vulnerable species will require a significantly longer time (decades) to attain local carrying capacity than less vulnerable species. We recommend: (1) expanding age-based demographic studies of economically and ecologically important reef fishes to improve estimates of vulnerability; (2) long term (20–40 years), if not permanent, protection of no-take reserves to allow full population recovery and maximum biomass export; (3) strict compliance to no-take reserves to avoid considerable delays in recovery; (4) carefully controlling the timing and intensity of harvesting periodic closures to ensure long-term fishery benefits; (5) the use of periodically-harvested closures together with, rather than instead of, permanent no-take reserves.  相似文献   

3.
No-take marine reserves (NTMRs) provide hope that local carrying capacity may be partially restored if reserves are protected long enough. How long is long enough? We assess the duration of protection required for populations of large predatory reef fish in marine reserves to attain new steady states. We monitored biomass of large predatory fish in two marine reserves at Sumilon and Apo Islands, Philippines, almost annually for 26 years (1983–2009), and fit a logistic model to the data. As duration of reserve protection increased, biomass of predatory fish approached an asymptote, although the models suggest that 20–40 years of protection is required to attain new steady states. Thus, for local carrying capacity to be rebuilt, no-take protection must be effective on decadal timescales.  相似文献   

4.
No-take marine reserves are effective management tools used to restore fish biomass and community structure in areas depleted by overfishing. Cabo Pulmo National Park (CPNP) was created in 1995 and is the only well enforced no-take area in the Gulf of California, Mexico, mostly because of widespread support from the local community. In 1999, four years after the establishment of the reserve, there were no significant differences in fish biomass between CPNP (0.75 t ha(-1) on average) and other marine protected areas or open access areas in the Gulf of California. By 2009, total fish biomass at CPNP had increased to 4.24 t ha(-1) (absolute biomass increase of 3.49 t ha(-1), or 463%), and the biomass of top predators and carnivores increased by 11 and 4 times, respectively. However, fish biomass did not change significantly in other marine protected areas or open access areas over the same time period. The absolute increase in fish biomass at CPNP within a decade is the largest measured in a marine reserve worldwide, and it is likely due to a combination of social (strong community leadership, social cohesion, effective enforcement) and ecological factors. The recovery of fish biomass inside CPNP has resulted in significant economic benefits, indicating that community-managed marine reserves are a viable solution to unsustainable coastal development and fisheries collapse in the Gulf of California and elsewhere.  相似文献   

5.
The relationships between fish assemblages, their associated habitat, and degree of protection from fishing were evaluated over a broad spatial scale throughout the main Hawaiian islands. Most fish assemblage characteristics showed positive responses to protection whether it was physical (e.g. habitat complexity), biological (e.g. coral cover growth forms), or human-induced (e.g. marine reserves). Fish biomass was lowest in areas of direct wave exposure and highest in areas partially sheltered from swells. Higher values for fish species richness, number of individuals, biomass, and diversity were observed in locations with higher substrate complexity. Areas completely protected from fishing had distinct fish assemblages with higher standing stock and diversity than areas where fishing was permitted or areas that were partially protected from fishing. Locations influenced by customary stewardship harbored fish biomass that was equal to or greater than that of no-take protected areas. Marine protected areas in the main Hawaiian islands with high habitat complexity, moderate wave disturbance, a high percentage of branching and/or lobate coral coupled with legal protection from fishing pressure had higher values for most fish assemblage characteristics.  相似文献   

6.
We have used an end-to-end ecosystem model to explore responses over 30 years to coastal no-take reserves covering up to 6% of the fifty thousand square kilometres of continental shelf and slope off the coast of New South Wales (Australia). The model is based on the Atlantis framework, which includes a deterministic, spatially resolved three-dimensional biophysical model that tracks nutrient flows through key biological groups, as well as extraction by a range of fisheries. The model results support previous empirical studies in finding clear benefits of reserves to top predators such as sharks and rays throughout the region, while also showing how many of their major prey groups (including commercial species) experienced significant declines. It was found that the net impact of marine reserves was dependent on the pre-existing levels of disturbance (i.e. fishing pressure), and to a lesser extent on the size of the marine reserves. The high fishing scenario resulted in a strongly perturbed system, where the introduction of marine reserves had clear and mostly direct effects on biomass and functional biodiversity. However, under the lower fishing pressure scenario, the introduction of marine reserves caused both direct positive effects, mainly on shark groups, and indirect negative effects through trophic cascades. Our study illustrates the need to carefully align the design and implementation of marine reserves with policy and management objectives. Trade-offs may exist not only between fisheries and conservation objectives, but also among conservation objectives.  相似文献   

7.
The net movement of individuals from marine reserves (also known as no-take marine protected areas) to the remaining fishing grounds is known as spillover and is frequently used to promote reserves to fishers on the grounds that it will benefit fisheries. Here we consider how mismanaged a fishery must be before spillover from a reserve is able to provide a net benefit for a fishery. For our model fishery, density of the species being harvested becomes higher in the reserve than in the fished area but the reduction in the density and yield of the fished area was such that the net effect of the closure was negative, except when the fishery was mismanaged. The extent to which effort had to exceed traditional management targets before reserves led to a spillover benefit varied with rates of growth and movement of the model species. In general, for well-managed fisheries, the loss of yield from the use of reserves was less for species with greater movement and slower growth. The spillover benefit became more pronounced with increasing mis-management of the stocks remaining available to the fishery. This model-based result is consistent with the literature of field-based research where a spillover benefit from reserves has only been detected when the fishery is highly depleted, often where traditional fisheries management controls are absent. We conclude that reserves in jurisdictions with well-managed fisheries are unlikely to provide a net spillover benefit.  相似文献   

8.
Marine Protected Areas are usually static, permanently closed areas. There are, however, both social and ecological reasons to adopt dynamic closures, where reserves move through time. Using a general theoretical framework, we investigate whether dynamic closures can improve the mean biomass of herbivorous fishes on reef systems, thereby enhancing resilience to undesirable phase-shifts. At current levels of reservation (10–30%), moving protection between all reefs in a system is unlikely to improve herbivore biomass, but can lead to a more even distribution of biomass. However, if protected areas are rotated among an appropriate subset of the entire reef system (e.g. rotating 10 protected areas between only 20 reefs in a 100 reef system), dynamic closures always lead to increased mean herbivore biomass. The management strategy that will achieve the highest mean herbivore biomass depends on both the trajectories and rates of population recovery and decline. Given the current large-scale threats to coral reefs, the ability of dynamic marine protected areas to achieve conservation goals deserves more attention.  相似文献   

9.
Historical exploitation of the Mediterranean Sea and the absence of rigorous baselines makes it difficult to evaluate the current health of the marine ecosystems and the efficacy of conservation actions at the ecosystem level. Here we establish the first current baseline and gradient of ecosystem structure of nearshore rocky reefs at the Mediterranean scale. We conducted underwater surveys in 14 marine protected areas and 18 open access sites across the Mediterranean, and across a 31-fold range of fish biomass (from 3.8 to 118 g m(-2)). Our data showed remarkable variation in the structure of rocky reef ecosystems. Multivariate analysis showed three alternative community states: (1) large fish biomass and reefs dominated by non-canopy algae, (2) lower fish biomass but abundant native algal canopies and suspension feeders, and (3) low fish biomass and extensive barrens, with areas covered by turf algae. Our results suggest that the healthiest shallow rocky reef ecosystems in the Mediterranean have both large fish and algal biomass. Protection level and primary production were the only variables significantly correlated to community biomass structure. Fish biomass was significantly larger in well-enforced no-take marine reserves, but there were no significant differences between multi-use marine protected areas (which allow some fishing) and open access areas at the regional scale. The gradients reported here represent a trajectory of degradation that can be used to assess the health of any similar habitat in the Mediterranean, and to evaluate the efficacy of marine protected areas.  相似文献   

10.
The excessive and unsustainable exploitation of our marine resources has led to the promotion of marine reserves as a fisheries management tool. Marine reserves, areas in which fishing is restricted or prohibited, can offer opportunities for the recovery of exploited stock and fishery enhancement. This study examines the impact of the creation of marine protected areas, from both economic and biological perspectives. The consequences of reserve establishment on the long-run equilibrium fish biomass and fishery catch levels are evaluated. We include reserve size as control variable to maximize catch at equilibrium. A continuous time model is used to simulate the effects of reserve size on fishing catch. Fish movements between the sites is assumed to take place at a faster time scale than the variation of the stock and the change of the fleet size. We take advantage of these two time scales to derive a reduced model governing the dynamics of the total fish stock and the fishing effort. Simulation results suggest that the establishment of a protected marine reserve will always lead to an increase in total fish biomass, an optimal size of a marine reserve can achieve to maximize the catch at equilibrium.  相似文献   

11.
Modern fishery science, which began in 1957 with Beverton and Holt, is ca. 50 years old. At its inception, fishery science was limited by a nineteenth century mechanistic worldview and by computational technology; thus, the relatively simple equations of population ecology became the fundamental ecological science underlying fisheries. The time has come for this to change and for community ecology to become the fundamental ecological science underlying fisheries. This point will be illustrated with two examples. First, when viewed from a community perspective, excess production must be considered in the context of biomass left for predators. We argue that this is a better measure of the effects of fisheries than spawning biomass per recruit. Second, we shall analyse a simple, but still multi-species, model for fishery management that considers the alternatives of harvest regulations, inshore marine protected areas and offshore marine protected areas. Population or community perspectives lead to very different predictions about the efficacy of reserves.  相似文献   

12.
Marine no-take zones can have positive impacts for target species and are increasingly important management tools. However, whether they indirectly benefit higher order predators remains unclear. The endangered African penguin (Spheniscus demersus) depends on commercially exploited forage fish. We examined how chick survival responded to an experimental 3-year fishery closure around Robben Island, South Africa, controlling for variation in prey biomass and fishery catches. Chick survival increased by 18% when the closure was initiated, which alone led to a predicted 27% higher population compared with continued fishing. However, the modelled population continued to decline, probably because of high adult mortality linked to poor prey availability over larger spatial scales. Our results illustrate that small no-take zones can have bottom-up benefits for highly mobile marine predators, but are only one component of holistic, ecosystem-based management regimes.  相似文献   

13.
Marine reserves and optimal harvesting   总被引:7,自引:1,他引:6  
Advocates of no‐take marine reserves emphasize their conservation benefits. Critics counter that reserves would decrease fisheries yield. Analysis of a spatially explicit harvesting model, however, shows that no‐take marine reserves are always part of an optimal harvest designed to maximize yield. The optimal harvest generates a spatial source–sink structure with source populations placed in reserves. The sizes and locations of the optimal reserves depend on a dimensionless length parameter. For small values of this parameter, the maximum yield is obtained by placing a large reserve in the centre of the habitat. For large values of this parameter, the optimal harvesting strategy is a spatial ‘chattering control’ with infinite sequences of reserves alternating with areas of intense fishing. Such a chattering strategy would be impossible to actually implement, but in these cases an approximate yet practicable policy, utilizing a small number of reserves, can be constructed.  相似文献   

14.
Marine reserves have rapid and lasting effects   总被引:9,自引:1,他引:8  
Marine reserves are becoming a popular tool for marine conservation and resource management worldwide. In the past, reserves have been created with little understanding of how they actually affect the areas they are intended to protect. A few recent reviews have evaluated how reserves in general affect the density and biomass of organisms within them, but little work has been done to assess temporal patterns of these impacts. Here we review 112 independent measurements of 80 reserves to show that the higher average values of density, biomass, average organism size, and diversity inside reserves (relative to controls) reach mean levels within a short (1–3 y) period of time and that the values are subsequently consistent across reserves of all ages (up to 40 y). Therefore, biological responses inside marine reserves appear to develop quickly and last through time. This result should facilitate their use in the management of marine resources.  相似文献   

15.
Many fishery management tools currently in use have conservation value. They are designed to maintain stocks of commercially important species above target levels. However, their limitations are evident from continuing declines in fish stocks throughout the world. We make the case that to reverse fishery declines, safeguard marine life and sustain ecosystem processes, extensive marine reserves that are off limits to fishing must become part of the management strategy. Marine reserves should be incorporated into modern fishery management because they can achieve many things that conventional tools cannot. Only complete and permanent protection from fishing can protect the most sensitive habitats and vulnerable species. Only reserves will allow the development of natural, extended age structures of target species, maintain their genetic variability and prevent deleterious evolutionary change from the effects of fishing. Species with natural age structures will sustain higher rates of reproduction and will be more resilient to environmental variability. Higher stock levels maintained by reserves will provide insurance against management failure, including risk-prone quota setting, provided the broader conservation role of reserves is firmly established and legislatively protected. Fishery management measures outside protected areas are necessary to complement the protection offered by marine reserves, but cannot substitute for it.  相似文献   

16.
To provide more information about whether sharks benefit from no-take marine reserves, we quantified the relative abundance and biomass of reef sharks inside and outside of Namena, Fiji’s largest reserve (60.6 km2). Using stereo baited remote underwater video systems (stereo-BRUVs), we found that the abundance and biomass of sharks was approximately two and four times greater in shallow and deep locations, respectively, within the Namena reserve compared to adjacent fished areas. The greater abundance and biomass of reef sharks inside Namena is likely a result of greater prey availability rather than protection from fishing. This study demonstrates that marine reserves can benefit sharks.  相似文献   

17.
Networks of no-take marine reserves and partially-protected areas (with limited fishing) are being increasingly promoted as a means of conserving biodiversity. We examined changes in fish assemblages across a network of marine reserves and two different types of partially-protected areas within a marine park over the first 5 years of its establishment. We used Baited Remote Underwater Video (BRUV) to quantify fish communities on rocky reefs at 20–40 m depth between 2008–2011. Each year, we sampled 12 sites in 6 no-take marine reserves and 12 sites in two types of partially-protected areas with contrasting levels of protection (n = 4 BRUV stations per site). Fish abundances were 38% greater across the network of marine reserves compared to the partially-protected areas, although not all individual reserves performed equally. Compliance actions were positively associated with marine reserve responses, while reserve size had no apparent relationship with reserve performance after 5 years. The richness and abundance of fishes did not consistently differ between the two types of partially-protected areas. There was, therefore, no evidence that the more regulated partially-protected areas had additional conservation benefits for reef fish assemblages. Overall, our results demonstrate conservation benefits to fish assemblages from a newly established network of temperate marine reserves. They also show that ecological monitoring can contribute to adaptive management of newly established marine reserve networks, but the extent of this contribution is limited by the rate of change in marine communities in response to protection.  相似文献   

18.
This study investigated body size to fecundity relationships of a reef fish species targeted by line fishing, and examines the potential benefits of increased batch fecundity in no-take reserves compared to fished areas around the Palm, Whitsunday and Keppel Island Groups, Great Barrier Reef, Australia. Lutjanus carponotatus batch fecundity increased with fork length in a non-linear relationship that was best described by a power function. Batch fecundity differed by more than 100-fold among individuals, with a range from 7,074 to 748,957 eggs in fish ranging from 184 to 305 mm fork length. Furthermore, egg diameter increased with fish size. Based on underwater visual census, the potential batch fecundity per unit area in all three island groups ranged from 1.0 to 4.2 times greater in the no-take reserves than in the fished areas between 2001 and 2004. In 2002, a mean 2.3-fold difference in biomass between no-take reserves and fished areas converted to a mean 2.5-fold difference in batch fecundity per unit area. Greater batch fecundity, longer spawning seasons and potentially greater larval survival due to larger egg size from bigger individuals might significantly enhance the potential benefits of no-take marine reserves on the Great Barrier Reef.  相似文献   

19.
In this study, we use a spatially implicit, stage-structured model to evaluate marine reserve effectiveness for a fish population exhibiting depensatory (strong Allee) effects in its dynamics. We examine the stability and sensitivity of the equilibria of the modelled system with regards to key system parameters and find that for a reasonable set of parameters, populations can be protected from a collapse if a small percentage of the total area is set aside in reserves. Furthermore, the overall abundance of the population is predicted to achieve a maximum at a certain ratio \(A\) of reserve area to fished area, which depends heavily on the other system parameters such as the net export rate of fish from the marine reserves to the fished areas. This finding runs contrary to the contested “equivalence at best” result when comparing fishery management through traditional catch or effort control and management through marine reserves. Lastly, we analyse the problem from a bioeconomics perspective by computing the optimal harvesting policy using Pontryagin’s Maximum Principle, which suggests that the value for \(A\) which maximizes the optimal equilibrium fishery yield also maximizes population abundance when the cost per unit harvest is constant, but can increase substantially when the cost per unit harvest increases with the area being harvested.  相似文献   

20.
Abstract Establishing permanent ‘no-take’ marine reserves, areas where fishing and all other extractive activities are prohibited, is an attractive but under-utilized tool for fisheries management. Marine reserves could potentially deal with many fishery problems that are not effectively addressed by other traditional management measures; they also offer numerous social, economic, and scientific benefits not directly related to fisheries. Limited but growing research has shown beneficial biological and economic effects of marine reserves on fisheries. More research is needed, especially at larger scales, to determine the ideal marine reserve size, number and location necessary to optimize fisheries productivity and resource conservation. Sufficient evidence is available to justify the expanded use of marine reserves in an adaptive approach to fisheries management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号