首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climate change is increasingly affecting the structure and dynamics of ecological communities both at local and at regional scales, and this can be expected to have important consequences for their robustness and long-term persistence. The aim of the present work is to analyse how the spatial structure of the landscape and dispersal patterns of species (dispersal rate and average dispersal distance) affects metacommunity response to two disturbances: (i) increased mortality during dispersal and (ii) local species extinction. We analyse the disturbances both in isolation and in combination. Using a spatially and dynamically explicit metacommunity model, we find that the effect of dispersal on metacommunity persistence is two-sided: on the one hand, high dispersal significantly reduces the risk of bottom-up extinction cascades following the local removal of a species; on the other hand, when dispersal imposes a risk to the dispersing individuals, high dispersal increases extinction risks, especially when dispersal is global. Large-bodied species with long generation times at the highest trophic level are particularly vulnerable to extinction when dispersal involves a risk. This suggests that decreasing the mortality risk of dispersing individuals by improving the quality of the habitat matrix may greatly increase the robustness of metacommunities.  相似文献   

2.
Understanding the factors that govern the stability of populations and communities has gained increasing importance as habitat fragmentation and environmental perturbations continue to escalate due to human activities. Dispersal is commonly viewed as essential to the maintenance of diversity in spatially subdivided communities, but few experiments have explored how dispersal interacts with the spatiotemporal components of environmental perturbations to determine community-level stability. We examined these processes using an experimental planktonic system composed of three competing species of zooplankton. We subjected zooplankton metacommunities to varying levels of dispersal and pH perturbations that varied in their degree of spatial synchrony. We show that dispersal can reverse the destabilizing effects of environmental forcing when perturbations are spatially asynchronous. Asynchrony in pH perturbations generated spatially and temporally varying species refugia that promoted source-sink dynamics and allowed prolonged persistence of zooplankton species that were otherwise extirpated in synchronously varying metacommunities. This, in turn, increased local species diversity, promoted compensatory population dynamics, and enhanced local community-level stability. Our results indicate that patterns of spatial covariation in environmental variability are critical to predicting the effects of dispersal on the dynamics and persistence of communities.  相似文献   

3.
Interspecific competition, life history traits, environmental heterogeneity and spatial structure as well as disturbance are known to impact the successful dispersal strategies in metacommunities. However, studies on the direction of impact of those factors on dispersal have yielded contradictory results and often considered only few competing dispersal strategies at the same time. We used a unifying modeling approach to contrast the combined effects of species traits (adult survival, specialization), environmental heterogeneity and structure (spatial autocorrelation, habitat availability) and disturbance on the selected, maintained and coexisting dispersal strategies in heterogeneous metacommunities. Using a negative exponential dispersal kernel, we allowed for variation of both species dispersal distance and dispersal rate. We showed that strong disturbance promotes species with high dispersal abilities, while low local adult survival and habitat availability select against them. Spatial autocorrelation favors species with higher dispersal ability when adult survival and disturbance rate are low, and selects against them in the opposite situation. Interestingly, several dispersal strategies coexist when disturbance and adult survival act in opposition, as for example when strong disturbance regime favors species with high dispersal abilities while low adult survival selects species with low dispersal. Our results unify apparently contradictory previous results and demonstrate that spatial structure, disturbance and adult survival determine the success and diversity of coexisting dispersal strategies in competing metacommunities.  相似文献   

4.
In metacommunities, diversity is the product of species interactions at the local scale and dispersal between habitat patches at the regional scale. Although warming can alter both species interactions and dispersal, the combined effects of warming on these two processes remains uncertain. To determine the independent and interactive effects of warming‐induced changes to local species interactions and dispersal, we constructed experimental metacommunities consisting of enclosed milkweed patches seeded with five herbivorous milkweed specialist insect species. We treated metacommunities with two levels of warming (unwarmed and warmed) and three levels of connectivity (isolated, low connectivity, high connectivity). Based on metabolic theory, we predicted that if plant resources were limited, warming would accelerate resource drawdown, causing local insect declines and increasing both insect dispersal and the importance of connectivity to neighboring patches for insect persistence. Conversely, given abundant resources, warming could have positive local effects on insects, and the risk of traversing a corridor to reach a neighboring patch could outweigh the benefits of additional resources. We found support for the latter scenario. Neither resource drawdown nor the weak insect‐insect associations in our system were affected by warming, and most insect species did better locally in warmed conditions and had dispersal responses that were unchanged or indirectly affected by warming. Dispersal across the matrix posed a species‐specific risk that led to declines in two species in connected metacommunities. Combined, this scaled up to cause an interactive effect of warming and connectivity on diversity, with unwarmed metacommunities with low connectivity incurring the most rapid declines in diversity. Overall, this study demonstrates the importance of integrating the complex outcomes of species interactions and spatial structure in understanding community response to climate change.  相似文献   

5.
6.
The spatial insurance hypothesis predicts that intermediate rates of dispersal between patches in a metacommunity allow species to track favourable conditions, preserving diversity and stabilizing biomass at local and regional scales. However, theory is unclear as to whether dispersal will provide spatial insurance when environmental conditions are changing directionally. In particular, increased temperatures as a result of climate change are expected to cause synchronous growth or decline across species and communities, and this has the potential to erode the stabilizing compensatory dynamics facilitated by dispersal. Here we report on an experimental test of how dispersal affects the diversity and stability of metacommunities under warming using replicate two‐patch pond zooplankton metacommunities. Initial differences in local community composition and abiotic conditions were established by seeding each patch in the metacommunities with plankton and sediment from one of two natural ponds that differed in water chemistry and species composition. We exposed metacommunities to a 2°C increase in average ambient temperature, crossed with three rates of dispersal (none, intermediate, high). In ambient conditions, intermediate dispersal rates preserved diversity and stabilized metacommunities by promoting spatially asynchronous fluctuations in biomass, especially between local populations of the dominant genus, Ceriodaphnia. However, warming synchronized their populations so that these effects of dispersal were lost. Furthermore, because the stabilizing effect of dispersal was primarily due to asynchronous fluctuations between populations of a single genus, metacommunity biomass was stabilized, but dispersal did not stabilize local community biomass. Our results show that dispersal can preserve diversity and provide stability to metacommunities, but also show that this benefit can be eroded when warming is directional and synchronous across patches of a metacommunity, as is expected with climate warming.  相似文献   

7.
Although density-dependent dispersal and relative dispersal (the difference in dispersal rates between species) have been documented in natural systems, their effects on the stability of metacommunities are poorly understood. Here we investigate the effects of intra- and interspecific density-dependent dispersal on the regional stability in a predator-prey metacommunity model. We show that, when the dynamics of the populations reach equilibrium, the stability of the metacommunity is not affected by density-dependent dispersal. However, the regional stability, measured as the regional variability or the persistence, can be modified by density-dependent dispersal when local populations fluctuate over time. Moreover these effects depend on the relative dispersal of the predator and the prey. Regional stability is modified through changes in spatial synchrony. Interspecific density-dependent dispersal always desynchronizses local dynamics, whereas intraspecific density-dependent dispersal may either synchronize or desynchronize it depending on dispersal rates. Moreover, intra- and interspecific density-dependent dispersal strengthen the top-down control of the prey by the predator at intermediate dispersal rates. As a consequence the regional stability of the metacommunity is increased at intermediate dispersal rates. Our results show that density-dependent dispersal and relative dispersal of species are keys to understanding the response of ecosystems to fragmentation.  相似文献   

8.
Dispersal and the underlying movement behaviour are processes of pivotal importance for understanding and predicting metapopulation and metacommunity dynamics. Generally, dispersal decisions are condition‐dependent and rely on information in the broad sense, like the presence of conspecifics. However, studies on metacommunities that include interspecific interactions generally disregard condition‐dependence. Therefore, it remains unclear whether and how dispersal in metacommunities is condition‐dependent and whether rules derived from single‐species contexts can be scaled up to (meta)communities. Using experimental protist metacommunities, we show how dispersal and movement depend on and are adjusted by the strength of interspecific interactions. We found that the predicting movement and dispersal in metacommunities requires knowledge on behavioural responses to intra‐ and interspecific interaction strengths. Consequently, metacommunity dynamics inferred directly from single‐species metapopulations without taking interspecific interactions into account are likely flawed. Our work identifies the significance of condition‐dependence for understanding metacommunity dynamics, stability and the coexistence and distribution of species.  相似文献   

9.
Theoretical development in the field of community ecology needs ground proofing with empirical tests. In addition, these tests need to be continuously updated. Cottenie (2005) linked observed metacommunities to theoretical models based on whether environmental and/or spatial effects in the observed metacommunity significantly explain community structure. However, a species-sorting metacommunity with high dispersal and one with limited dispersal cannot be distinguished in this manner; both produce significant environmental and spatial effects. In the present study, we demonstrate a solution to this problem using a zooplankton rock pool metacommunity in Churchill, Manitoba, sampled in August 2006. We established a hierarchy of metacommunities in the Churchill rock bluff system—a large, across-bluff metacommunity, and small, within-bluff metacommunities. Using this spatial hierarchy, it is possible to determine the zooplankton dispersal capability in the rock bluff system and hence to link the metacommunity to its corresponding model. We found the zooplankton rock bluff system to exhibit limited dispersal, meaning that spatial effects were significant at the across-bluff scale, but depending on the bluff, were significant or insignificant at the within-bluff scale. Environmental effects were significant at both scales. This study demonstrates a novel way to determine dispersal capabilities in species that are cryptic dispersers, and to successfully link observed metacommunities with theoretical models. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Handling editor: S. I. Dodson  相似文献   

10.
Models of metapopulations have often ignored local community dynamics and spatial heterogeneity among patches. However, persistence of a community as a whole depends both on the local interactions and the rates of dispersal between patches. We study a mathematical model of a metacommunity with two consumers exploiting a resource in a habitat of two different patches. They are the exploitative competitors or the competing predators indirectly competing through depletion of the shared resource. We show that they can potentially coexist, even if one species is sufficiently inferior to be driven extinct in both patches in isolation, when these patches are connected through diffusive dispersal. Thus, dispersal can mediate coexistence of competitors, even if both patches are local sinks for one species because of the interactions with the other species. The spatial asynchrony and the competition-colonization trade-off are usual mechanisms to facilitate regional coexistence. However, in our case, two consumers can coexist either in synchronous oscillation between patches or in equilibrium. The higher dispersal rate of the superior prompts rather than suppresses the inferior. Since differences in the carrying capacity between two patches generate flows from the more productive patch to the less productive, loss of the superior by emigration relaxes competition in the former, and depletion of the resource by subsidized consumers decouples the local community in the latter.  相似文献   

11.
We studied the role of spatial (regional) and environmental (local) processes in the structuring of rodent metacommunities in three contiguous ecoregions that share the same species pool. The two northern ecoregions are mainly affected by anthropogenic processes (agriculture and urbanization) while the southern one is mainly affected by natural processes (flood and drought pulses). Local communities were described based on the analysis of 77 samples of barn owl pellets. To identify which processes (patch dynamics, species sorting, mass effect or neutral theory) structure each metacommunity we evaluated the percentage of variance explained by space (spatial arrangement of communities) and environment (topography, climate and land cover) in three Variation Partitioning Redundancy Analyses. The percentage of variance in rodent metacommunities composition explained by space and environment was between 38 and 61%, and was significant in all three analyses. The pure space fraction was significant for two of the three ecoregions, while the pure environmental fraction was significant for all three ecoregions. The processes that structure rodent metacommunities change across the region. In all three ecoregions the species sorting played a key role, while, mass effect was a structuring factor for northern metacommunities. These results can be explained by species-specific dispersal characteristics and environmental filtering.  相似文献   

12.
Although it is well‐known that dispersal of organisms within a metacommunity will influence patterns of coexistence and richness, theoretical and experimental studies generally assume that dispersal rates are constant through time. However, dispersal is often a highly variable process that can vary seasonally and/or when stochastic events (e.g. wind storms, droughts, floods) occur. Using a well‐known source–sink metacommunity model, we present novel predictions for local and regional species richness when stochasticity in dispersal is expressly considered. We demonstrate that dispersal stochasticity alters some of the predictions obtained with constant dispersal; the peak of the predicted hump‐shaped relationship between dispersal and local species richness is diminished and shifted towards higher values of dispersal. Dispersal stochasticity increases extinction probabilities of inferior competitor species particularly in metacommunities subjected to severe isolation events (i.e. decreases of dispersal) or homogenization events (i.e. sudden increases of dispersal). Our results emphasize how incorporating dispersal stochasticity into theoretical predictions will broaden our understanding of metacommunities dynamics and their responses to natural and human‐related disturbances.  相似文献   

13.
Resource enrichment can potentially destabilize predator-prey dynamics. This phenomenon historically referred as the "paradox of enrichment" has mostly been explored in spatially homogenous environments. However, many predator-prey communities exchange organisms within spatially heterogeneous networks called metacommunities. This heterogeneity can result from uneven distribution of resources among communities and thus can lead to the spreading of local enrichment within metacommunities. Here, we adapted the original Rosenzweig-MacArthur predator-prey model, built to study the paradox of enrichment, to investigate the effect of regional enrichment and of its spatial distribution on predator-prey dynamics in metacommunities. We found that the potential for destabilization was depending on the connectivity among communities and the spatial distribution of enrichment. In one hand, we found that at low dispersal regional enrichment led to the destabilization of predator-prey dynamics. This destabilizing effect was more pronounced when the enrichment was uneven among communities. In the other hand, we found that high dispersal could stabilize the predator-prey dynamics when the enrichment was spatially heterogeneous. Our results illustrate that the destabilizing effect of enrichment can be dampened when the spatial scale of resource enrichment is lower than that of organismss movements (heterogeneous enrichment). From a conservation perspective, our results illustrate that spatial heterogeneity could decrease the regional extinction risk of species involved in specialized trophic interactions. From the perspective of biological control, our results show that the heterogeneous distribution of pest resource could favor or dampen outbreaks of pests and of their natural enemies, depending on the spatial scale of heterogeneity.  相似文献   

14.
Landscape connectivity structure, specifically the dendritic network structure of rivers, is expected to influence community diversity dynamics by altering dispersal patterns, and subsequently the unfolding of species interactions. However, previous comparative and experimental work on dendritic metacommunities has studied diversity mostly from an equilibrium perspective. Here we investigated the effect of dendritic versus linear network structure on local (α‐diversity), among (β‐diversity) and total (γ‐diversity) temporal species community diversity dynamics. Using a combination of microcosm experiments, which allowed for active dispersal of 14 protists and a rotifer species, and numerical analyses, we demonstrate the general importance of spatial network configuration and basic life history tradeoffs as driving factors of different diversity patterns in linear and dendritic systems. We experimentally found that community diversity patterns were shaped by the interaction of dispersal within the networks and local species interactions. Specifically, α‐diversity remained higher in dendritic networks over time, especially at highly connected sites. β‐diversity was initially greater in linear networks, due to increased dispersal limitation, but became more similar to β‐diversity in dendritic networks over time. Comparing the experimental results with a neutral metacommunity model we found that dispersal and network connectivity alone may, to a large extent, explain α‐ and β‐diversity dynamics. However, additional mechanisms, such as variation in carrying capacity and competition–colonization tradeoffs, were needed in the model to capture the detailed temporal diversity dynamics of the experiments, such as a general decline in γ‐diversity and long‐term dynamics in α‐diversity.  相似文献   

15.
Metapopulation processes are important determinants of epidemiological and evolutionary dynamics in host-pathogen systems, and are therefore central to explaining observed patterns of disease or genetic diversity. In particular, the spatial scale of interactions between pathogens and their hosts is of primary importance because migration rates of one species can affect both spatial and temporal heterogeneity of selection on the other. In this study we developed a stochastic and discrete time simulation model to specifically examine the joint effects of host and pathogen dispersal on the evolution of pathogen specialisation in a spatially explicit metapopulation. We consider a plant-pathogen system in which the host metapopulation is composed of two plant genotypes. The pathogen is dispersed by air-borne spores on the host metapopulation. The pathogen population is characterised by a single life-history trait under selection, the infection efficacy. We found that restricted host dispersal can lead to high amount of pathogen diversity and that the extent of pathogen specialisation varied according to the spatial scale of host-pathogen dispersal. We also discuss the role of population asynchrony in determining pathogen evolutionary outcomes.  相似文献   

16.
A major challenge in community ecology is to understand the underlying factors driving metacommunity (i.e., a set of local communities connected through species dispersal) dynamics. However, little is known about the effects of varying spatial scale on the relative importance of environmental and spatial (i.e., dispersal related) factors in shaping metacommunities and on the relevance of different dispersal pathways. Using a hierarchy of insect metacommunities at three spatial scales (a small, within‐stream scale, intermediate, among‐stream scale, and large, among‐sub‐basin scale), we assessed whether the relative importance of environmental and spatial factors shaping metacommunity structure varies predictably across spatial scales, and tested how the importance of different dispersal routes vary across spatial scales. We also studied if different dispersal ability groups differ in the balance between environmental and spatial control. Variation partitioning showed that environmental factors relative to spatial factors were more important for community composition at the within‐stream scale. In contrast, spatial factors (i.e., eigenvectors from Moran's eigenvector maps) relative to environmental factors were more important at the among‐sub‐basin scale. These results indicate that environmental filtering is likely to be more important at the smallest scale with highest connectivity, while dispersal limitation seems to be more important at the largest scale with lowest connectivity. Community variation at the among‐stream and among‐sub‐basin scales were strongly explained by geographical and topographical distances, indicating that overland pathways might be the main dispersal route at the larger scales among more isolated sites. The relative effect of environmental and spatial factors on insect communities varied between low and high dispersal ability groups; this variation was inconsistent among three hierarchical scales. In sum, our study indicates that spatial scale, connectivity, and dispersal ability jointly shape stream metacommunities.  相似文献   

17.
A common property of landscapes and metacommunities is the occurrence of abrupt shifts in connectivity along gradients of individual dispersal abilities. Animals with short‐range dispersal capability perceive fragmented landscapes, but organisms moving across critical thresholds perceive continuous landscapes. This qualitative shift in landscape perception may determine several attributes of local communities and the dynamics of whole metacommunities. Modularity describes the existence in some communities of relatively high numbers of mutual connections favoring the movement of neighboring individuals (even when each individual is able to reach any patch in the landscape). Local patch linkages and metacommunity connectivity along gradients of dispersal ability have been reported frequently. However, the intermediate level of structure captured by modularity has not been considered. We evaluated landscape connectivity and modularity along gradients of individual dispersal abilities. Random landscapes with different degrees of cell aggregation and occupancy were simulated; we also analyzed ten real ecosystems. An expected, a shift in landscape connectivity was always detected; modularity consistently decreased gradually along dispersal gradients in both simulated networks and empirical landscapes. Neutral metacommunities within simulated landscapes demonstrated that modularity and connectivity may reflect landscape traits in the shaping of metacommunity diversity. Average beta‐diversity was strongly associated with modularity, particularly with low migration rates, while connectivity trends tracked changes in beta‐diversity at intermediate to high migrations rates. Consequently, while some species are able to perceive abrupt transitions in the landscape, many others probably experience a gradual continuum in landscape perception, contrary to predictions from previous analyses. Furthermore, the gradual behavior of modularity indicates that it may represent an exceptional early‐warning tool that measures system distance to tipping points. Our study highlights the multiple perceptions that different species may have of a single landscape and shows, for the first time, a theoretical and empirical relationship between landscape modularity, and metacommunity diversity.  相似文献   

18.
Spatial structure is of central importance in the dynamics of plant-parasite interactions and is imposed by the growth habit and distribution of host plants and by parasite dispersal which is frequently restricted. To investigate the effects of spatial heterogeneity on the dynamics of plant parasites we introduce a simple model for epidemic development within a spatially structured host population. Here the host population is subdivided into a number of patches which are linked to allow for transmission from one patch to another with the connections defining the spatial structure of the host population. Three key parameters are identified that play a critical role in the ability of the parasite to invade and persist within the host population: the within-patch parasite basic reproductive number which characterises the infection dynamics at the local spatial scale; and the neighbourhood of interaction which describes which patches interact with which and the strength of coupling between patches within the neighbourhood which together characterise the spread of the parasite over larger spatial scales. Using both deterministic and stochastic formulations of the model, we investigate how the thresholds and probabilities of invasion and persistence are affected by these parameters, by demographic stochasticity and by differences in the initial level of infection.  相似文献   

19.
  1. Despite years of attention, the dynamics of species constrained to disperse within riverine networks are not well captured by existing metapopulation models, which often ignore local dynamics within branches.
  2. We develop a modelling framework, based on traditional metapopulation theory, for patch occupancy dynamics subject to local colonisation–extinction dynamics within branches and regional dispersal between branches in size-structured, bifurcating riverine networks. Using this framework, we investigate whether and how spatial variation in branch size affects species persistence for dendritic systems with directional dispersal, including one-way (up- or downstream only) and two-way (both up- and downstream) dispersal.
  3. Variation in branch size generally promotes species persistence more obviously at higher relative extinction rate, suggesting that previous studies ignoring differences in branch size in real riverine systems might overestimate species extinction risk.
  4. Two-way dispersal is not always superior to one-way dispersal as a strategy for metapopulation persistence especially at high relative extinction rate. The type of dispersal that maximises species persistence is determined by the hierarchical level of the largest, and hence most influential, branch within the network. When considering the interactive effects of up- and downstream dispersal, we find that moderate upstream-biased dispersal maximises metapopulation viability, mediated by spatial branch arrangement.
  5. Overall, these results suggest that both branch-size variation and species traits interact to determine species persistence, theoretically demonstrating the ecological significance of their interplay.
  相似文献   

20.
The dendritic structure of a river network creates directional dispersal and a hierarchical arrangement of habitats. These two features have important consequences for the ecological dynamics of species living within the network. We apply matrix population models to a stage-structured population in a network of habitat patches connected in a dendritic arrangement. By considering a range of life histories and dispersal patterns, both constant in time and seasonal, we illustrate how spatial structure, directional dispersal, survival, and reproduction interact to determine population growth rate and distribution. We investigate the sensitivity of the asymptotic growth rate to the demographic parameters of the model, the system size, and the connections between the patches. Although some general patterns emerge, we find that a species’ modes of reproduction and dispersal are quite important in its response to changes in its life history parameters or in the spatial structure. The framework we use here can be customized to incorporate a wide range of demographic and dispersal scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号