首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 443 毫秒
1.
Phosgene: a metabolite of chloroform   总被引:7,自引:0,他引:7  
Cysteine inhibited the in vitro covalent binding of [14C] chloroform, (CHCl3), to microsomal protein and concomitantly trapped a reactive metabolite, presumably phosgene (COCl2), as 2-oxothiazolidine-4-carboxylic acid. When the incubation was conducted in an atmosphere of [18O] O2, the trapped COCl2 contained [18O]. These findings suggest that the CH bond of CHCl3 is oxidized by a cytochrome P-450 monooxygenase to produce trichloromethanol, which spontaneously dehydrochlorinates to yield the toxic agent phosgene.  相似文献   

2.
To elucidate the reaction mechanism of hydroperoxide lyase (HPL), the enzyme from guava (Psidium guajava) fruits, was incubated for 10–60 s at 0 °C with 13-HPOT. The products were rapidly extracted and derivatized by trimethylsilylation. Two trapping products, namely the trimethylsilyl ether/ester derivatives of the hemiacetal 12-(1′-hydroxy-3′-hexenyloxy)-9,11-dodecadienoic acid and the enol (9Z,11E)-12-hydroxy-9,11-dodecadienoic acid, were detected by gas chromatography-mass spectrometry (GC-MS) analyses. The structural assignments were supported by mass spectra recorded for (a) hydrogenated products; (b) products biosynthesized from [9,10,12,13,15,16] 13-HPOT or [18O2]13-HPOT; (c) chemically prepared reference compounds. Kinetic experiments showed that the hemiacetal and enol were both unstable and transiently appearing compounds (half-lives, ca. 20 s and 2 min, respectively). Hemiacetal and enol biosynthesized from [18O2]13-HPOT retained two and one 18O atoms, respectively, whereas no 18O was incorporated from [18O]water. The data demonstrated that: (1) the true enzymatic product formed from 13-HPOT in the presence of HPL is a short-lived hemiacetal; (2) the hemiacetal spontaneously dissociates into (3Z)-hexenal and the unstable enol form of (9Z)-12-oxo-9-dodecenoic acid; (3) the enzymatic isomerization of 13-HPOT into the hemiacetal occurs homolytically.  相似文献   

3.
An enzyme cleaving l-2-oxothiazolidine-4-carboxylic acid to l-cysteine was purified 75-fold with 8% recovery to near homogeneity from crude extracts of Paecilomyces varioti F-1, which had been isolated as a fungus able to assimilate l-2-oxothiazolidine-4-carboxylic acid. The molecular mass was estimated to be 260 kDa by gel filtration. The purified preparation migrated as a single band of molecular mass 140 kDa upon SDS-PAGE. The maximum activity was observed at a range of pH 7.0–8.0 and at 50 °C. The enzyme activity was completely inhibited by SH-blocking reagents such as AgNO3, p-chloromercuribenzoic acid, N-ethylmaleimide, and N-bromosuccinimide. The enzyme required ATP, Mg2+, and KCl for the cleavage of l-2-oxothiazolidine-4-carboxylic acid. The enzyme also cleaved 5-oxo-l-proline to l-glutamic acid and is considered to be 5-oxo-l-prolinase. Received: 23 March 1999 / Accepted: 22 June 1999  相似文献   

4.
The 13C-nuclear magnetic resonance (NMR) spectra of chlorophyll a formed in dark-grown Scenedesmus obliquus (Turp.) Kützing in the presence of [1-13C]glutamate, [2-13C]- and [1-13C]glycineshowed that the 13C of glutamate was specifically incorporated into the eight-carbon atoms in the tetrapyrrole macrocycles derived from C-5 of 5-aminolevulinic acid (ALA), while the C-2 of glycine was only incorporated into the methyl carbon of the methoxycarbonyl group attached to the isocyclic ring of chlorophyll a. No specific enrichment of these nine carbon atoms was observed in the spectrum of chlorophyll a formed in the presence of [1-13C]-glycine. These labeling patterns provide evidence for the operation of the C5-pathway and against the operation of the ALA synthase pathway for chlorophyll formation in darkness.  相似文献   

5.
The terminal carbon of palmitic acid, traced with 14C, is preferentially incorporated into carbon 4 of hydroxybutyrate formed by hepatocytes and perfused livers from 18- to 19-day-old rats and perfused livers from fasted adult rats. However, 14C from [13-14C]palmitic acid is incorporated into carbon 1 of the hydroxybutyrate to the same extent as any one of the first 12 carbons of palmitic acid as assessed with [1-14C]palmitic acid and [6-14C]palmitic acid. Therefore, the hydroxybutyrate is formed via hydroxymethylglutaryl-CoA, i.e., it is in the d configuration, and hydrolysis of l-hydroxybutyryl-CoA, the intermediate in the β oxidation of the palmitate, does not occur. Further, a negligible amount of 14C remains in hydroxybutyrate formed from 14C-labeled palmitic acid by isolated hepatocytes and perfused livers from the young rats, when the hydroxybutyrate is treated with d-(?)-3-hydroxybutyrate dehydrogenase to convert the d isomer to acetoacetate. Thus, l-(+)-3-hydroxybutyrate is not produced by rat liver as assessed using these preparations.  相似文献   

6.
The labelling reagent 2-[18F]fluoroethylazide was used in a traceless Staudinger ligation. This reaction was employed to obtain the GABAA receptor binding 6-benzyl-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid (2-[18F]fluoroethyl) amide. The radiotracer was prepared with a non-decay corrected radiochemical yield of 7%, a radiochemical purity >95% and a specific radioactivity of 0.9 GBq/μmol. The compound showed low brain penetration in normal rats. A series of fluoroalkyl 4-quinolone analogues with nanomolar to sub-nanomolar affinity for the GABAA receptor has been prepared as well.  相似文献   

7.
[2H]Steviol (ent-13-hydroxykaur-16-en-19-oic acid) was synthesized from steviol acetate norketone (ent-13-acetoxy-16-oxo-17-norkauran-19-oic acid) by the Wittig reaction using (methyl-d3)triphenylphosphonium bromide. A mixture of steviol analogs was produced containing from one to four 2H/molecule. [2H]Steviol was fed to strain LM-45-399 of the fungus Gibberella fujikuroi which was grown on synthetic medium (ICI, 0% N) in the presence of the growth retardant CCC. [2H]GA1, [2H]GA18, [2H]GA23 and [2H]GA53 were isolated from the fungal medium after 4 days. This strain converted steviol to 13-hydroxy GAs in the highest yields of the four Gibberella strains tested, and in amounts suitable for metabolic studies with higher plants.  相似文献   

8.
N,N-Dimethyl-N-[4-[[[2-(4-methylphenyl)-6,7-dihydro-5H-benzocyclohepten-8-yl]carbonyl]amino]benzyl]tetrahydro-2H-pyran-4-aminium chloride (TAK779) is a potent and selective non-peptide CCR5 antagonist. To use a site-specifically labeled form as a molecular probe, TAK779 containing 13C at positions C19, 35, and 36 was produced. A commercially available [13C]-methyl iodide was employed for the labeling. Starting from a known carboxylic acid segment containing no labeled carbon, the labeled TAK779 was constructed by the successive coupling of [13C]-labeled tolyl boronic ester by the Suzuki–Miyaura reaction and a [13C]-labeled aniline segment by amide bond formation.  相似文献   

9.
The effect of diet on carbon tetrachloride metabolism   总被引:4,自引:1,他引:3       下载免费PDF全文
1. Blood and liver concentrations of carbon tetrachloride were measured, at intervals after an oral dose, in rats given stock and protein-free diets. The values did not correlate with the resistance to poisoning found in the rats on protein-free diets. 2. The metabolism of carbon tetrachloride to carbon dioxide in vivo and in liver microsomal preparations was depressed in animals given protein-free diets. 3. Rats given a single dose of DDT [1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane] were highly sensitive to carbon tetrachloride poisoning. The livers of such animals had an increased microsomal protein content and greatly increased microsomal activity in the demethylation of Pyramidon (aminopyrine) and in the conversion of 14CCl4 into 14CO2. 4. The incorporation of [14C]leucine into protein by liver slices was depressed by carbon tetrachloride. This effect was decreased by addition of SKF525A (2-diethylaminoethyl 2,2-diphenyl-2-propylacetate) and in slices from rats given protein-free diets. It is suggested that the toxicity of carbon tetrachloride is closely linked to its metabolism.  相似文献   

10.
PR04.MZ 8-(4-fluoro-but-2-ynyl)-3-p-tolyl-8-aza-bicyclo[3.2.1]octane-2-carboxylic acid methyl ester (1) and LBT999 8-((E)-4-fluoro-but-2-enyl)-3b-p-tolyl-8-aza-bicyclo[3.2.1]octane-2β-carboxylic acid methyl ester (2) are selective dopamine reuptake inhibitors, derived from cocaine. Compounds 1 and 2 were labelled with fluorine-18 at their terminally fluorinated N-substituents employing microwave enhanced direct nucleophilic fluorination. K[18F]F? Kryptofix®222 cryptate, tetrabutyl ammonium [18F]fluoride and caesium [18F]fluoride were compared as fluoride sources under conventional and microwave enhanced conditions. Fluorination yields were remarkably increased under microwave irradiation for all three fluoride salts. Radiochemically pure (>98%) [18F]PR04.MZ (0.95–1.09 GBq, 42–135 GBq/μmol) was obtained within 34–40 min starting from 3.0 GBq [18F]fluoride ion in 32–36% non-decay-corrected overall yield using K[18F]F?Kryptofix®222 cryptate in MeCN.  相似文献   

11.
L-2-oxothiazolidine-4-carboxylic acid (OTZ), a 5-oxoproline analog, is metabolized by 5-oxoprolinase and converted to cysteine, the rate-limiting amino acid for GSH synthesis, with the release of CO(2). [(13)C]OTZ (1.5 mg/kg) was used in 12 healthy men and women (ages 23-73 yr) to indirectly assess precursor mobilization for GSH synthesis when stores were reduced by 2 g acetaminophen. Expired breath samples were analyzed for (13)CO(2), and results were analyzed using noncompartmental and two-compartment open minimal models. Results show an increase in (13)C excretion (higher OTZ hydrolysis) when GSH stores were reduced and 5-oxoprolinase substrate utilization patterns, consequently, were altered (P < 0. 01). A metabolic rate index (MRI) of the OTZ probe was found to be significantly higher after reduction of GSH content by acetaminophen (P < 0.05). The difference in adaptive capacity (difference between control and postacetaminophen metabolic rate indexes) was two times as large in the young than the old subjects (P < 0.01). These data support the use of [(13)C]OTZ as a probe to identify individuals who may be at risk for low GSH stores or who have an impaired capacity to synthesize GSH.  相似文献   

12.
Active-site residues in rat kidney γ-glutamyltransferase (EC 2.3.2.2) were investigated by means of chemical modification. 1. In the presence of maleate, the activity was inhibited by phenylmethanesulphonyl fluoride, and the inhibition was not reversed by β-mercaptoethanol, suggesting that a serine residue is close to the active site, but is shielded except in the presence of maleate. 2. Treatment of the enzyme with N-acetylimidazole modified an amino group, exposed a previously inaccessible cysteine residue and inhibited hydrolysis of the γ-glutamyl-enzyme intermediate, but not its formation. 3. After reaction of the enzyme successively with N-acetylimidazole and with non-radioactive iodoacetamide/serine/borate, two active-site residues reacted with iodo[14C]acetamide. One of these possessed a carboxy group, which formed a [14C]glycollamide ester, and the other was cysteine, shown by isolation of S-[14C]carboxymethylcysteine after acid hydrolysis. When N-acetylimidazole treatment was omitted, only the carboxy group reacted with iodo[14C]acetamide. 4. Isolation of the γ-[14C]glutamyl-enzyme intermediate was made easier by prior treatment of the enzyme with N-acetylimidazole. The γ-glutamyl-enzyme bond was stable to performic acid, and to hydroxylamine/urea at pH10, but was hydrolysed slowly at pH12, indicating attachment of the γ-[14C]glutamyl group in amide linkage to an amino group on the enzyme. Proteolysis of the γ-[14C]glutamyl-enzyme after performic acid oxidation gave rise to a small acidic radioactive peptide that was resistant to further proteolysis and was not identical with γ-glutamyl-ε-lysine. 5. A scheme for the catalytic mechanism is proposed.  相似文献   

13.
Purpose[18F]Fluoromethylcholine ([18F]FMCH) is a radiopharmaceutical used in positron emission tomography (PET) imaging for the study of prostate, breast, and brain tumors. It is usually synthesized in cyclotron facilities where 18F is produced by proton irradiation of [18O]H2O through 18O(p,n)18F reaction. Due to the activation of target materials, the bombardment causes unwanted radionuclidic impurities in [18O]H2O, that need to be removed during the radiopharmaceutical synthesis. Thus, the aim of this study is to quantify the radionuclide impurities in the 18F production process and in the synthesized [18F]FMCH, demonstrating the radionuclidic purity of this radiopharmaceutical.MethodsLong-lived radionuclide impurities were experimentally assessed using high-resolution gamma and liquid scintillation spectrometries, while short-lived impurities were monitored analyzing the decay curve of the irradiated [18O]H2O with an activity calibrator. As spectrometric radionuclide library, a Geant4 Monte Carlo simulation of the 18F-target assembly was previously performed.Results3H, 52,54Mn, 56,57,58Co, 95m,96Tc, 109Cd, and 184Re were found in the irradiated [18O]H2O, but no radionuclide was found in the non-irradiated [18O]H2O neither in the final [18F]FMCH solution with an activity concentration greater than the minimum detectable activity concentration. A total impurity activity <6.2 kBq was measured in the irradiated [18O]H2O, whereas a [18F]FMCH radionuclide purity >99.9999998% was estimated. Finally, the decay curve of the irradiated [18O]H2O revealed a very low maximum of 13N activity (<0.03% of 18F) even immediately after the end of bombardment.ConclusionsThis study demonstrated the radionuclidic purity of [18F]FMCH according to the EU Pharmacopeia.  相似文献   

14.
Summary The discrimination between the isotopes of hydrogen in the reaction catalyzed by yeast phosphoglucoisomerase is examined by NMR, as well as by spectrofluorometric or radioisotopic methods. The monodirectional conversion of D-glucose 6-phosphate to D-fructose 6-phosphate displays a lower maximal velocity with D-[2-2H]glucose 6-phosphate than unlabelled D-glucose 6-phosphate, with little difference in the affinity of the enzyme for these two substrates. About 72% of the deuterium located on the C2 of D-[1-13C,2-2H]glucose 6-phosphate is transferred intramolecularly to the C1 of D-[1-13C,1-2H]fructose 6-phosphate. The velocity of the monodirectional conversion of D-[U-14C]glucose 6-phosphate (or D-[2-3H]glucose 6-phosphate) to D-fructose 6-phosphate is virtually identical in H2O and D2O, respectively, but is four times lower with the tritiated than 14C-labelled ester. In the monodirectional reaction, the intramolecular transfer from the C2 of D-[2-3H]glucose 6-phosphate is higher in the presence of D2O than H2O. Whereas prolonged exposure of D-[1-13C]glucose 6-phosphate to D2O, in the presence of phosphoglucoisomerase, leads to the formation of both D-[1-13C,2-2H]glucose 6-phosphate and D-[1-13C,1-2H]fructose 6-phosphate, no sizeable incorporation of deuterium from D2O on the C1 of D-[1-13C]fructose 1,6-bisphosphate is observed when the monodirectional conversion of D-[1-13C]glucose 6-phosphate occurs in the concomitant presence of phosphoglucoisomerase and phosphofructokinase. The latter finding contrasts with the incorporation of hydrogen from 1H2O or tritium from 3H2O in the monodirectional conversion of D-[2-3H]glucose 6-phosphate and unlabelled D-glucose 6-phosphate, respectively, to their corresponding ketohexose esters.  相似文献   

15.
4-Thialysine (S-(2-aminoethyl)-l-cysteine) is an analog of lysine. It has been used as an alternative substrate for lysine in enzymatic reactions. Site-directed isotopomers are often needed for elucidation of mechanism of reactions. 4-Thialysine can be synthesized by reacting cysteine with 2-bromoethylamine, an important reagent in chemical-modification rescue (CMR) of proteins. Here, we present the synthesis of 4-thia-[6-13C]lysine, one of the isotopomers of 4-thialysine, from commercially available starting material [2-13C]glycine via formation of five intermediates including 2-amino[2-13C]ethanol and 2-bromo[1-13C]ethylamine. The compounds were characterized using various spectroscopic techniques. Moreover, we discuss that our strategy would provide access to site-directed isotopomers of 2-aminoethanol, 2-bromoethylamine and 4-thialysine. Biological activity of 4-thia-[6-13C]lysine was tested in the enzymatic reaction of lysine 5,6-aminomutase.  相似文献   

16.
Bicarbonate is a recycling substrate for cyanase   总被引:1,自引:0,他引:1  
Cyanase is an inducible enzyme in Escherichia coli that catalyzes bicarbonate-dependent decomposition of cyanate to ammonia and bicarbonate. Previous studies provided evidence that carbamate is an initial product and that the kinetic mechanism is rapid equilibrium random (bicarbonate serving as substrate as opposed to activator); the following mechanism was proposed (Anderson, P. M. (1980) Biochemistry 19, 2282-2888; Anderson, P. M., and Little, R. M. (1986) Biochemistry 25, 1621-1626). (formula; see text) Direct evidence for this mechanism was obtained in this study by 1) determining whether CO2 or HCO3- serves as substrate and is formed as product, 2) identifying the products formed from [14C]HCO3- and [14C] OCN-, 3) identifying the products formed from [13C] HCO3- and [12C]OCN- in the presence of [18O]H2O, and 4) determining whether 18O from [18O]HCO3- is incorporated into CO2 derived from OCN-. Bicarbonate (not CO2) is the substrate. Carbon dioxide (not HCO3-) is produced in stoichiometric amounts from both HCO3- and OCN-. 18O from [18O]H2O is not incorporated into CO2 formed from either HCO3- or OCN-. Oxygen-18 from [18O]HCO3- is incorporated into CO2 derived from OCN-. These results support the above mechanism, indicating that decomposition of cyanate catalyzed by cyanase is not a hydrolysis reaction and that bicarbonate functions as a recycling substrate.  相似文献   

17.
Charcoal was found to catalyze the release of 3H2O from [1-3H]2-hydroxyestradiol-17β ([1-3H]2-OHE2) or [4-3H]2-hydroxy-estradiol-17β ([4-3H]2-OHE2) and this effect was shown to occur in the presence of glutathione or other thiols and to depend on the concentration of free steroid. The radiometric assay for measuring the formation of 3H2O was not affected significantly by subsequent treatment of the incubation mixture with charcoal if the ratio of steroid to tissue (rat brain or liver microsomes) was low and only initial rates of 3H release were measured. 2-Hydroxyestradiol did not show the charcoal effect in the presence of tyrosinase, either when it was generated from its parent estrogen or added to the enzyme. The formation of 3H2O from [4-3H]2-OHE2 in the presence of glutathione was inhibited by ascorbic acid but the addition of dextran or albumin did not protect the catechol estrogen from the charcoal-catalyzed loss of tritium. The reaction with glutathione and charcoal occurred even at 4°C but other adsorbants such as alumina, silica or hydroxylapatite were without effect.  相似文献   

18.
The mode of biosynthesis of the thiazole moiety of thiamine, 4-methyl-5β-hydroxyethyl thiazole (MHET) was studied using Salmonella typhimurium as test organism. It was shown by isotope incorporation experiments, that the sulfur atom, but not carbon-3, of cysteine is incorporated into MHET, indicating a separation of the sulfur atom of cysteine from the carbon chain during incorporation. Isotope competition experiments revealed that the incorporation of [35S]cysteine is not significantly diluted by the presence of methionine, homocysteine, and glutathione. No incorporation of label from [14C]glutamate and [14C]formate was observed, leaving the origin of the five-carbon unit still in doubt.  相似文献   

19.
Convallaria majalis plants were fed dl-methionine-[1-14C]. [1-14C, 4-3H], and [1-14C, 2-3H], S-adenosyl-l-methionine-[1-14C], and dl-homoserine-[1-14C], resulting in the formation of labeled azetidine-2-carboxylic acid (A-2-C). The complete retention of tritium relative to carbon-14 in the feeding experiment involving methionine-[1-14C, 4-3H] indicates that aspartic acid or aspartic-β-semialdehyde are not intermediates between methionine and A-2-C. However, since the A-2-C derived from methionine-[1-14C, 2-3H] had lost 95% of the tritium relative to the C-14, it is not considered that methionine or its S-adenosyl derivative are the immediate precursors of A-2-C. Our data and that of others is consistent with the intermediate formation of γ-amino-α-ketobutyric acid which on cyclization yields 1-azetine-2-carboxylic acid, A-2-C then being formed on reduction.  相似文献   

20.
The nature of the in vivo defluorination of non-β-oxidizable no-carrier-added ω-[18F]fluoro long chain fatty acid (LCFA) analogs was studied with the aim of developing PET tracers of LCFA utilization. Extensive defluorination of 15-[18F]fluoro-3-thia-pentadecanoic acid (FTPA) in mouse was evidenced by radioactivity uptake by bone. [18F]Fluoride in the blood was verified analytically. Incubations of FTPA in rat-liver homogenates and subcellular fractions thereof showed a strong defluorination process in microsomes which was O2- and NADPH-dependent. In contrast, defluorination of FTPA was relatively slow in Langendorff perfused rat heart. High bone uptake in mouse was also observed with 14-[18F]fluoro-13, 13-dimethyl-3-thia-tetradecanoic acid, where gem-dimethyl substitution precludes direct elimination of H18F. These data indicate that the defluorination of non-β-oxidizable ω-[18F]fluoro LCFA analogs is primarily governed by cytochrome P-450-mediated ω-oxidation.Therefore, labeling at the (ω-3) carbon was proposed to provide a more stabile 18F-label. Defluorination of the (ω-3)-labeled 13 (R,S)-[18F]fluoro-3-thia-hexadecanoic acid was lower than that of FTPA in mouse and was independent of O2 and NADPH in vitro. Thus, (ω-3) labeling with 18F is preferable to ω labeling of non-β-oxidizable LCFA analogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号