首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Insulin-like growth factor (IGF) I is a potent mitogen for human osteosarcoma cells such as the Saos-2/B-10 cell line. IGF binding proteins (IGFBPs) prevent stimulation of DNA synthesis by IGFs. In contrast to recombinant human (rh) IGFBP-2, -3, -4, and -5, 10-100 nM rhIGFBP-6 stimulated [(3)H]thymidine incorporation into DNA and multiplication of Saos-2/B-10 cells. Upon withdrawal of serum, 30 nM IGFBP-6 also decreased apoptosis (within 4 h) and increased protein content and sodium-dependent phosphate uptake (within 24 h), but less potently than IGF I. (125)I-labeled rhIGFBP-6 did not bind to the cells, and cold IGFBP-6 did not affect (125)I-labeled IGF I binding. Production of IGF I, IGF II, and IGFBP-6 by the cells or significant degradation of rhIGFBP-6 could not be detected within 24 h of incubation. Thus, among the rhIGFBPs tested, rhIGFBP-6 is unique in stimulating osteosarcoma cell growth. Furthermore, it has an antiapoptotic effect.  相似文献   

2.
Cellular actions of insulin-like growth factor binding proteins.   总被引:10,自引:0,他引:10  
The insulin-like growth factors (IGFs), insulin-like growth factor binding proteins (IGFBPs), and the IGFBP proteases are involved in the regulation of somatic growth and cellular proliferation both in vivo and in vitro. IGFs are potent mitogenic agents whose actions are determined by the availability of free IGFs to interact with the IGF receptors. IGFBPs comprise a family of proteins that bind IGFs with high affinity and specificity and thereby regulate IGF-dependent actions. IGFBPs have recently emerged as IGF-independent regulators of cell growth. Various IGFBP association proteins as well as cleavage of IGFBPs by specific proteases modulate levels of free IGFs and IGFBPs. The ubiquity and complexity of the IGF axis promise exciting discoveries and applications for the future.  相似文献   

3.
Cultured hepatic stellate cells (HSCs), the cell type primarily involved in the progression of liver fibrosis, secrete insulin-like growth factor-I (IGF-I) and IGF binding protein (IGFBP) activity. IGF-I exerts a mitogenic effect on HSCs, thus potentially contributing to the fibrogenic process in an autocrine fashion. However, IGF-I action is modulated by the presence of specific IGFBPs that may inhibit and/or enhance its biologic effects. Therefore, we examined IGFBP-1 through IGFBP-6 mRNA and protein expression in HSCs isolated from human liver and activated in culture. Regulation of IGFBPs in response to IGF-I and other polypeptide growth factors involved in the hepatic fibrogenic process was also assessed. RNase protection assays and ligand blot analysis demonstrated that HSCs express IGFBP-2 through IGFBP-6 mRNAs and release detectable levels of IGFBP-2 through IGFBP-5. Because IGF-I, platelet-derived growth factor-BB (PDGF-BB), and transforming growth factor-β (TGF-β) stimulate HSC proliferation and/or matrix production, we tested their effect on IGFBPs released by HSCs. IGF-I induced IGFBP-3 and IGFBP-5 proteins in a time-dependent manner without an increase in the corresponding mRNAs. IGFBP-4 protein levels decreased in response to IGF-I. TGF-β stimulated IGFBP-3 mRNA and protein but decreased IGFBP-5 mRNA and protein. In contrast, PDGF-BB failed to regulate IGFBPs compared with controls. Recombinant human IGFBP-3 (rhIGFBP-3) was then tested for its effect on IGF-I-induced mitogenesis in HSCs. rhIGFBP-3 inhibited IGF-I-stimulated DNA synthesis in a dose-dependent manner, with a peak effect observed at 25 nM IGFBP-3. Because TGF-β is highly expressed in cirrhotic liver tissue, we determined whether IGFBP-3 mRNA expression is increased in liver biopsies obtained from patients with an active fibroproliferative response due to viral-induced chronic active hepatitis. In the majority of these samples, IGFBP-3 mRNA was increased compared with normal controls. These findings indicate that human HSCs, in their activated phenotype, constitutively produce IGFBPs. IGF-I and TGF-β differentially regulate IGFBP-3, IGFBP-4, and IGFBP-5 expression, which, in turn, may modulate the in vitro and in vivo action of IGF-I. J. Cell. Physiol. 174:240–250, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
The diverse biological activities of the insulin-like growth factors (IGF-1 and IGF-2) are mediated by the IGF-1 receptor (IGF-1R). These actions are modulated by a family of six IGF-binding proteins (IGFBP-1-6; 22-31 kDa) that via high affinity binding to the IGFs (KD ∼ 300-700 pM) both protect the IGFs in the circulation and attenuate IGF action by blocking their receptor access. In recent years, IGFBPs have been implicated in a variety of cancers. However, the structural basis of their interaction with IGFs and/or other proteins is not completely understood. A critical challenge in the structural characterization of full-length IGFBPs has been the difficulty in expressing these proteins at levels suitable for NMR/X-ray crystallography analysis. Here we describe the high-yield expression of full-length recombinant human IGFBP-2 (rhIGFBP-2) in Escherichia coli. Using a single step purification protocol, rhIGFBP-2 was obtained with >95% purity and structurally characterized using NMR spectroscopy. The protein was found to exist as a monomer at the high concentrations required for structural studies and to exist in a single conformation exhibiting a unique intra-molecular disulfide-bonding pattern. The protein retained full biologic activity. This study represents the first high-yield expression of wild-type recombinant human IGFBP-2 in E. coli and first structural characterization of a full-length IGFBP.  相似文献   

5.
The mitogenic and metabolic activities of insulin-like growth factors (IGF) are modulated by a family of six high-affinity IGF-binding proteins (IGFBPs). This study describes the secretion and purification of the recombinant human IGFBP-6 expressed in methylotrophic yeast Pichia pastoris. In this research, a multicopy expression plasmid pA-O815/3xIGFBP-6 containing 3 copies of human IGFBP-6 expression cassette was constructed and transformed into P. pastoris GS115. The encoding sequence of alpha-factor leading peptide fused in-frame at the 5' end of human IGFBP-6 open reading frame and led expressed IGFBP-6 into the secretory pathway. After transformed cells were induced with methanol, medium supernatant was analyzed by SDS-PAGE and Western blotting. The two major protein bands of approximately 30 and approximately 18kDa were detected. The protein of approximately 30kDa was confirmed to be the glycosylated recombinant human IGFBP-6 (rhIGFBP-6), which was partially proteolyzed by protease Kex2 to produce a approximately 18kDa fragment. Approximately 95% homogeneity of the soluble form of 30kDa rhIGFBP-6 were achieved by two-step purification procedure using ion-exchange chromatography and then hydrophobic-interaction chromatography. The rhIGFBP-6 could be distributed to all of the cell body when cultured MDA-MB-231 cell with rhIGFBP-6 and the activities of rhIGFBP-6 were assayed by [(3)H]thymidine incorporation, which revealed that rhIGFBP-6 inhibited IGF-II-stimulated cell proliferation. Our results demonstrated that functional rhIGFBP-6 can be produced in sufficient quantities by using P. pastoris for further structural and functional studies.  相似文献   

6.
The insulin-like growth factors (IGFs) are potent mitogens for malignant cell proliferation. The majority of secreted IGFs are bound to specific IGF-binding proteins (IGFBPs) that are secreted by a large number of cells. These proteins may either inhibit or enhance IGF actions. Breast carcinoma cells secrete a variety of IGFBPs. We have previously demonstrated that retinoic acid (RA) inhibition of IGF-l– stimulated MCF-7 cell proliferation is associated with increased IGFBP-3 levels in the conditioned media. We therefore investigated the effect of recombinant IGFBP-3 as well as IGFBP-2, -4 and -5 on IGF-l stimulation of DNA synthesis and IGF-I binding in the MCF-7 human breast carcinoma cell line. IGFBP-2 and -3 enhanced IGF-l stimulation of DNA synthesis in MCF-7 cells while IGFBP-4 and -5 had no effect. Transfection of MCF-7 cells with an IGFBP-3 expression vector resulted in the enhanced secretion of IGFBP-3 with an accompanying increase in IGF-l binding as well as increased cell proliferation upon treatment of the cells with IGF-l. IGF-l preincubation of MCF-7 cells transfected with control pSVneo plasmids results in cells refractory to further IGF-l stimulation of thymidine incorporation while IGF-l continues to stimulate [3H]-thymidine incorporation in IGFBP-3–transfected MCF-7 cells, suggesting that IGFBP-3 protects the cells from IGF-l–mediated down regulation of its receptor. Therefore, IGFBP-3 secreted by MCF-7 cells can enhance IGF-l stimulation of DNA synthesis, increase IGF-l binding to these cells, and prevent IGF-l–induced desensitization of its own receptor, suggesting that IGFBP-3 plays a significant role in IGF-l–mediated breast carcinoma proliferation. © 1994 Wiley-Liss, Inc.  相似文献   

7.
We have previously shown that insulin-like growth factor II (IGF-II) is produced by bone cells and that IGF-II stimulates cell proliferation and collagen synthesis in bone cells. We now extend these in vitro findings by demonstrating specific IGF-II binding to bone cells derived from newborn mouse calvaria and embryonic chick calvaria. The kinetics of [125I] IGF-II binding in embryonic chick calvaria cells showed time and temperature dependence. Scatchard analysis of [125I]IGF-II binding to chick calvaria cells showed an apparent Kd of 1.4 x 10(-10) M, with a calculated receptor site concentration of 40,000/cell. The specificity characteristics showed that IGF-II was significantly more potent than IGF-I or insulin in displacing IGF-II tracer. Competition for binding of [125I]IGF-II by unlabeled IGF-II showed a dose-dependent displacement between 0.5 and 25 ng/ml. Fifty percent displacement of [125I]IGF-II binding to chick and mouse calvarial cells was achieved at 1-2 ng/ml; 90% of specific binding of [125I]IGF-II was displaceable in the presence of 125 ng/ml of unlabeled IGF-II. IGF-I showed less than 5% cross reactivity for displacement of [125I]IGF-II binding to chick and mouse bone cells. Type II receptor inhibitory antibodies, R-II-PAB1 inhibited the binding of [125I]IGF-II to mouse bone cells and H-35 rat hepatoma cells (which contain type II but not type I receptors) in a dose-dependent manner. R-II-PAB1 also inhibited basal cell proliferation as well as IGF-II-, IGF-I-, and fibroblast growth factor (FGF)-induced cell proliferation in mouse bone cells. In chick calvaria bone cells and TE89 human osteosarcoma cells, R-II-PABI inhibited neither binding of [125I]IGF-II nor IGF-II-induced cell proliferation. These results together with our findings that IGF-II increased chick bone cell proliferation in the presence of maximal doses of IGF-I suggest that at least part of the mitogenic action of IGF-II is mediated through type II rather than type I receptors in bone cells.  相似文献   

8.
The insulin-like growth factor binding protein (IGFBP) family comprises six structurally distinct, but highly homologous proteins. They have been identified in serum and other biological fluids, tissue extracts, and cell culture media. We have recently cloned cDNAs encoding human IGFBP-4, -5, and -6 and have now expressed these BPs in yeast as ubiquitin (Ub)-IGFBP fusion proteins. Western ligand blotting with 125I-IGF II under nonreducing conditions of recombinant human (rh) IGFBP-containing yeast lysates revealed specific binding bands for IGFBP-4, -5, and -6 at apparent molecular masses of 24-26, 30-32, and 24-26 kDa, respectively, indicating processing of the fusion proteins. High-performance liquid chromatography-purified rhIGFBPs had virually the same amino acid composition, amino acid number, and NH2-terminal sequences as the native BPs. Except for the affinity of rhIGFBP-6 for IGF I (Ka = 8.5 x 10(8) M-1), the affinity constants of the three IGFBPs for IGF I and II lie between 1.7 and 3.3 x 10(10) M-1, i.e. 25-100 times higher than the IGF I and II affinities of the type I IGF receptor. When present in excess, rhIGFBP-4, -5, and -6 inhibited IGF I- and II-stimulated DNA and glycogen synthesis in human osteoblastic cells, but rhIGFBP-6 had only a weak inhibitory effect on IGF I in agreement with its relatively lower IGF I affinity constant. The results of this study show that the primary effect of the three rhIGFBPs is the attenuation of IGF activity and suggest that IGFBPs contribute to the control of IGF-mediated cell growth and metabolism.  相似文献   

9.
Elevated insulin-like growth factor (IGF)-1 levels are prognostic for the development of prostate and breast cancers and exacerbate the complications of diabetes. In each case, perturbation of the balance between IGF-1/2, the IGF-1 receptor, and the IGF-binding proteins (IGFBPs) leads to elevated IGF-1 sensitivity. Blockade of IGF action in these diseases would be clinically significant. Unfortunately, effective IGF antagonists are currently unavailable. The IGFBPs exhibit high affinity and specificity for the IGFs and serve as natural IGF antagonists, limiting their mitogenic/anti-apoptotic effects. As an initial step in designing IGFBP-based agents that antagonize IGF action, we have begun to analyze the structure of the IGF-binding site on IGFBP-2. To this end, two IGF-1 photoprobes, N(alphaGly1)-(4-azidobenzoyl)-IGF-1 (abG(1)IGF-1) and N(alphaGly1)-([2-6-(biotinamido)-2(p-azidobenzamido)hexanoamido]ethyl-1,3'-dithiopropionoyl)-IGF-1 (bedG(1)IGF-1), selective for the IGFBPs were synthesized by derivatization of the alpha-amino group of Gly(1), known to be part of the IGFBP-binding domain. Mass spectrometric analysis of the reduced, alkylated, and trypsin-digested abG(1)IGF-1.recombinant human IGFBP-2 (rhIGFBP-2) complex indicated photoincorporation near the carboxyl terminus of rhIGFBP-2, between residues 266 and 287. Mass spectrometric analysis of avidin-purified tryptic peptides of the bedG(1)IGF-1.rhIGFBP-2 complex revealed photoincorporation within residues 212-227. Taken together, these data indicate that the IGFBP-binding domain on IGF-1 contacts the distal third of IGFBP-2, providing evidence that the IGF-1-binding domain is located within the C terminus of IGFBP-2.  相似文献   

10.
The insulin-like growth factor binding proteins (IGFBPs) play a major role in the regulation of the effects and the bioavailability of the insulin-like growth factors (IGFs). IGFs are released from IGFBP-IGF complexes by proteolysis of IGFBPs generating fragments with reduced ligand-binding properties. To identify naturally occurring fragments of IGFBP-2, a peptide library generated from human hemofiltrate was immunologically screened. Purification of immunoreactive IGFBP-2 fragments was performed by consecutive chromatographic steps. A total of 18 different IGFBP-2 fragments was isolated and characterized. The peptides exhibited different N-terminal amino acid residues that were located in the variable midregion of IGFBP-2. Four major cleavage sites were determined to be between Tyr103 and Gly104, Leu152 and Ala153, Arg156 and Glu157, and Gln165 and Met166. The resulting fragments were further processed by amino and/or carboxy peptidases and comprised 37-185 amino acid residues. Ligand blotting, solution binding assays, and BIAcore analyses revealed that all tested fragments retained low IGF-binding capacity. The most abundant fragment IGFBP-2 (167-279) showed 10% of IGF-II binding compared to recombinant human (rh)IGFBP-2. Furthermore, the disulfide bonding pattern of the C-terminal domain of rhIGFBP-2 was defined, indicating linkages between cysteine residues 191-225, 236-247, and 249-270. This study provides the most comprehensive molecular characterization of human IGFBP-2 fragments formed in vivo, exhibiting both residual IGF-binding capacities and the integrin-binding sequence.  相似文献   

11.
The actions of insulin-like growth factors (IGFs) are modulated by a family of six high affinity binding proteins (IGFBPs 1-6). IGFBP-6 differs from other IGFBPs in having the highest affinity for IGF-II and in binding IGF-I with 20-100-fold lower affinity. IGFBPs 1-5 contain 18 conserved cysteines, but human IGFBP-6 lacks 2 of the 12 N-terminal cysteines. The complete disulfide linkages of IGFBP-6 were determined using electrospray ionization mass spectrometry of purified tryptic peptide complexes digested with combinations of chymotrypsin, thermolysin, and endoproteinase Glu-C. Numbering IGFBP-6 cysteines sequentially from the N terminus, the first three disulfide linkages are Cys1-Cys2, Cys3-Cys4, and Cys5-Cys6. The next two linkages are Cys7-Cys9 and Cys8-Cys10, which are analogous to those previously determined for IGFBP-3 and IGFBP-5. The C-terminal linkages are Cys11-Cys12, Cys13-Cys14, and Cys15-Cys16, analogous to those previously determined for IGFBP-2. Disulfide linkages of IGFBP-1 were partially determined and show that Cys1 is not linked to Cys2 and Cys3 is not linked to Cys4. Analogous with IGFBP-3, IGFBP-5, and IGFBP-6, Cys9-Cys11 and Cys10-Cys12 of IGFBP-1 are also disulfide-linked. The N-terminal linkages of IGFBP-6 differ significantly from those of IGFBP-1 (and, by implication, the other IGFBPs), which could contribute to the distinctive IGF binding properties of IGFBP-6.  相似文献   

12.
Insulin-like growth factor binding proteins (IGFBPs) modulate the cellular action of the insulin-like growth factors. Inhibition or enhancement of IGF effects by these cell-secreted binding proteins have been described. We have purified two IGFBPs (23 and 29 kDa) from media conditioned by U-2 human osteosarcoma cells using ligand-affinity chromatography and reversed phase HPLC. N-terminal amino acid analysis of the 23 kDa protein revealed a unique sequence with variable homology to IGFBPs 1-4. The 29 kDa IGFBP was found to be nearly identical to a recently reported IGFBP. Because the affinity purified U-2 IGFBPs enhanced IGF-I-stimulated osteoblast mitogenesis, we suggest that one or both of these binding proteins enhance IGF action in bone.  相似文献   

13.
Interest in the role of the insulin-like growth factor (IGF) axis in growth control and carcinogenesis has recently been increased by the finding of elevated serum insulin-like growth factor I (IGF-I) levels in association with three of the most prevalent cancers in the United States: prostate cancer, colorectal cancer, and lung cancer. IGFs serve as endocrine, autocrine, and paracrine stimulators of mitogenesis, survival, and cellular transformation. These actions are mediated through the type 1 IGF-receptor (IGF-1R), a tyrosine kinase that resembles the insulin receptor. The availability of free IGF for interaction with the IGF-1R is modulated by the insulin-like growth factor-binding proteins (IGFBPs). IGFBPs, especially IGFBP-3, also have IGF-independent effects on cell growth. IGF-independent growth inhibition by IGFBP-3 is believed to occur through IGFBP-3-specific cell surface association proteins or receptors and involves nuclear translocation. IGFBP-3-mediated apoptosis is controlled by numerous cell cycle regulators in both normal and disease processes. IGFBP activity is also regulated by IGFBP proteases, which affect the relative affinities of IGFBPs, IGFs and IGF-1R. Perturbations in each level of the IGF axis have been implicated in cancer formation and progression in various cell types.  相似文献   

14.
Insulin-like growth factor (IGF)-I is a pleiotropic hormone that regulates vascular smooth muscle cell (VSMC) migration, proliferation, apoptosis, and differentiation. These actions are mediated by the IGF-I receptor. How activation of the same receptor by the same ligand leads to these diverse cellular responses is not well understood. Here we describe a novel mechanism specifying VSMC responses to IGF-I stimulation, distinctive for the pivotal roles of local IGF-binding proteins (IGFBPs). The role of local IGFBPs was indicated by comparing the activities of IGF-I and des-1-3-IGF-I, an IGF-I analog with reduced binding affinity to IGFBPs. Compared with IGF-I, des-1-3-IGF-I was more potent in stimulating DNA synthesis but much less potent in inducing directed migration of VSMCs. When the effects of individual IGFBPs were tested, IGFBP-2 and IGFBP-4 were found to inhibit IGF-I-stimulated DNA synthesis and migration. IGFBP-5 had an inhibitory effect on IGF-I-stimulated DNA synthesis, but it strongly potentiated IGF-I-induced VSMC migration. By using a non-IGF-binding IGFBP-5 mutant and an IGF-I-neutralizing antibody, it was demonstrated that IGFBP-5 also stimulates VSMC migration in an IGF-independent manner. This effect of IGFBP-5 was inhibited by soluble heparin and by treating cells with heparinase. Mutation of the heparin-binding motif of IGFBP-5 reduced its migration promoting activity. These findings suggest that local IGFBPs are important determinants of cellular responses to IGF-I stimulation, and a key player in this paradigm is IGFBP-5. IGFBP-5 not only modulates IGF-I actions, but it also stimulates cell migration by interacting with cell-surface heparan sulfate proteoglycans.  相似文献   

15.
Recent studies have indicated that the insulin-like growth factors (IGFs) stimulate skeletal myoblast proliferation and differentiation. However, the question of whether IGFs are required for myoblast differentiation has not been resolved. To address this issue directly, we used a retroviral vector (LBP4SN) to develop a subline of mouse C2 myoblasts (C2-BP4) that constitutively overexpress IGF binding protein-4 (IGFBP-4). A control C2 myoblast subline (C2-LNL6) was also developed by using the LNL6 control retroviral vector. C2-BP4 myoblasts expressed sixfold higher levels of IGFBP-4 protein than C2-LNL6 myoblasts. 125I-IGF-I cross linking indicated that IGFBP-4 overexpression reduced IGF access to the type-1 IGF receptor tenfold. At low plating densities, myoblast proliferation was inhibited, and myoblast differentiation was abolished in C2-BP4 cultures compared with C2-LNL6 cultures. At high plating densities in which nuclear numbers were equal in the two sets of cultures, C2-BP4 myoblast differentiation was inhibited completely. Differentiation was restored in C2-BP4 cells by treatment with high levels of exogenous IGF-I or with des(1–3)IGF-I, an analog of IGF-I with reduced affinity for IGFBPs. These findings confirm the hypothesis that positive differentiation signals from the IGFs are necessary for C2 myoblast differentiation, and they suggest that the present model of myogenic differentiation, which involves only negative external control of differentiation by mitogens, may be incomplete. J. Cell. Physiol. 175:109–120, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
To study the roles of insulin-like growth factors (IGFs) and their binding proteins (IGFBPs) in the differentiation of tongue myoblasts, we established a mouse tongue organ culture system and examined the effects of exogenous IGF-I, exogenous IGFBP4, 5, 6, and des(1-3)IGF-I, an IGF-I analogue with reduced affinity for IGFBPs, on the differentiation of tongue myoblasts. The exogenous IGF-I stimulated differentiation of tongue myoblasts and induced the expressions of endogenous IGFBP4, 5, and 6, suggesting that these IGFBPs were involved in the regulation of tongue myoblast differentiation by the IGF-I. Exogenous IGFBP4 and 5 slightly stimulated early tongue myoblast differentiation in which myogenin was involved. The stimulation seems to be due to the protection of endogenous IGFs from proteolytic degradation by the binding of these IGFBPs to endogenous IGFs. A low concentration of des(1-3)IGF-I stimulated tongue myoblast differentiation, whereas high concentrations of des(1-3)IGF-I inhibited it. The abnormal shape of the tongue, low cell density and low staining intensity with hematoxylin and eosin in tongues treated with high concentrations of des(1-3)IGF-I, suggest that the inhibition is due to abnormal reactions of tongue tissues to the toxicity caused by high concentrations of des(1-3)IGF-I. From these results, we suggest that IGFBPs may function to regulate the differentiation of mouse tongue myoblasts by controlling the concentration of free IGFs within a range suitable for the progress of tongue myoblast differentiation.  相似文献   

17.
Insulin-like growth factor binding proteins: new proteins, new functions.   总被引:12,自引:0,他引:12  
The insulin-like growth factors (IGFs), IGF binding proteins (IGFBPs), and IGFBP proteases regulate somatic growth and cellular proliferation both in vivo and in vitro. IGFs are potent mitogens whose actions are determined by the availability of free IGFs to interact with IGF receptors. IGFBPs comprise a family of six proteins that bind IGFs with high affinity and specificity and thereby regulate IGF-dependent actions. IGFBPs have recently emerged as IGF-independent regulators of cell growth. Cleavage of IGFBPs by specific proteases modulate levels of free IGFs and IGFBPs and thereby their actions. IGFBP-related proteins (IGFBP-rPs) bind IGFs with low affinity and also play important roles in cell growth and differentiation. The GH-IGF-IGFBP axis is complex and powerful. Future research on its physiology promises exciting insights into cell biology as well as therapies for diseases such as cancer and diabetes mellitus.  相似文献   

18.
19.
卵巢中的胰岛素样生长因子系统   总被引:4,自引:0,他引:4  
本文详细阐述了胰岛素样生长因子(IGFs)系统各个成员的结构及其在卵巢中的表达和作用机制。IGFs是这一系统的中间环节,与IGFs受体作用刺激卵巢细胞中类固醇激素的生产和DNA合成,能够介导和扩大促性腺激素对卵巢功能的作用。IGFs与胰岛素样生长因子结合蛋白(IGFBPs)发生高亲和性结合,卵巢中自由的IGFs的水平受IGFBPs的调节。而IGFBPs蛋白酶能够降低IGFBPs和IGFs的亲和性,从而参与调节IGFs在卵巢中的作用。深入的研究这一系统,对于进一步了解卵巢卵泡生长发育、分化以及闭锁,卵泡细胞的增殖和凋亡的内在机制,以及提高动物的繁殖力有重要意义。  相似文献   

20.
The bone morphogenetic protein-1 (BMP1)-like metalloproteinases play key roles in extracellular matrix formation, by converting precursors into mature functional proteins involved in forming the extracellular matrix. The BMP1-like proteinases also play roles in activating growth factors, such as BMP2/4, myostatin, growth differentiation factor 11, and transforming growth factor β1, by cleaving extracellular antagonists. The extracellular insulin-like growth factor-binding proteins (IGFBPs) are involved in regulating the effects of insulin-like growth factors (IGFs) on growth, development, and metabolism. Of the six IGFBPs, IGFBP3 has the greatest interaction with the large pool of circulating IGFs. It is also produced locally in tissues and is itself regulated by proteolytic processing. Here, we show that BMP1 cleaves human and mouse IGFBP3 at a single conserved site, resulting in markedly reduced ability of cleaved IGFBP3 to bind IGF-I or to block IGF-I-induced cell signaling. In contrast, such cleavage is shown to result in enhanced IGF-I-independent ability of cleaved IGFBP3 to block FGF-induced proliferation and to induce Smad phosphorylation. Consistent with in vivo roles for such cleavage, it is shown that, whereas wild type mouse embryo fibroblasts (MEFs) produce cleaved IGFBP3, MEFs doubly null for the Bmp1 gene and for the Tll1 gene, which encodes the related metalloproteinase mammalian Tolloid-like 1 (mTLL1), produce only unprocessed IGFBP3, thus demonstrating endogenous BMP1-related proteinases to be responsible for IGFBP3-processing activity in MEFs. Similarly, in zebrafish embryos, overexpression of Bmp1a is shown to reverse an Igfbp3-induced phenotype, consistent with the ability of BMP1-like proteinases to cleave IGFBP3 in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号