首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 1 毫秒
1.

Introduction

The association between rheumatoid arthritis (RA) and periodontitis is suggested to be linked to the periodontal pathogen Porphyromonas gingivalis. Colonization of P. gingivalis in the oral cavity of RA patients has been scarcely considered. To further explore whether the association between periodontitis and RA is dependent on P. gingivalis, we compared host immune responses in RA patients with and without periodontitis in relation to presence of cultivable P. gingivalis in subgingival plaque.

Methods

In 95 RA patients, the periodontal condition was examined using the Dutch Periodontal Screening Index for treatment needs. Subgingival plaque samples were tested for presence of P. gingivalis by anaerobic culture technique. IgA, IgG and IgM antibody titers to P. gingivalis were measured by ELISA. Serum and subgingival plaque measures were compared to a matched control group of non-RA subjects.

Results

A higher prevalence of severe periodontitis was observed in RA patients in comparison to matched non-RA controls (27% versus 12%, p < 0.001). RA patients with severe periodontitis had higher DAS28 scores than RA patients with no or moderate periodontitis (p < 0.001), while no differences were seen in IgM-RF or ACPA reactivity. Furthermore, RA patients with severe periodontitis had higher IgG- and IgM-anti P. gingivalis titers than non-RA controls with severe periodontitis (p < 0.01 resp. p < 0.05), although subgingival occurrence of P. gingivalis was not different.

Conclusions

Severity of periodontitis is related to severity of RA. RA patients with severe periodontitis have a more robust antibody response against P. gingivalis than non-RA controls, but not all RA patients have cultivable P. gingivalis.  相似文献   

2.
Kallikrein in synovial fluid with rheumatoid arthritis   总被引:2,自引:0,他引:2  
The levels of kallikrein and collagenase in synovial fluid from rheumatoid arthritis (RA) patients were examined and the role of kallikrein in procollagenase activation is discussed. Both prekallikrein and active kallikrein in synovial fluid from patients with RA were significantly elevated when compared to synovial fluid from patients with osteoarthritis (OA). In RA synovial fluid, the ratio of the active form to total kallikrein was also higher than that in OA synovial fluid. Both active collagenase and the alpha 2-macroglobulin (alpha 2M)-collagenase complex in RA synovial fluid were higher than in OA synovial fluid. A partial correlation (r = 0.58) between active kallikrein and total collagenase (active and alpha 2M-collagenase complex) was observed in RA synovial fluid. These observations indicate that both kallikrein and collagenase are associated with the destruction of cartilage, but the role of kallikrein in procollagenase activation was not fully clarified.  相似文献   

3.
Most biological processes are mediated by complex networks of molecular interactions involving proteins. The analysis of protein expression in biological samples is especially important in the identification and monitoring of biomarkers for disease progression and therapeutic endpoints. In this paper, the development of a protein microarray format for multiplexed quantitative analysis of several potential markers for rheumatoid arthritis (RA) is described. Development of a high-performance protein microarray system depends on several key parameters such as surface chemistry, capture agents, immobilization technology, and methods used for signal detection and quantification. Several technical possibilities were investigated and compared: poly-L-lysine versus self-assembled monolayer of octadecyl phosphoric acid ester for surface chemistries; noncontact piezoelectric versus contact printing technology for antibody deposition; CCD camera capture versus fluorescent scanning for image detection; and the concentration of coating antibody. On the basis of reproducibility, signal-to-noise ratio, and sensitivity we have selected self-assembled monolayer, noncontact piezoelectric printer, and high-read-out fluorescence scanning for our microarray format. This format was used to perform multiplexed quantitative analysis of several potential markers of disease progression of rheumatoid arthritis: IL-1, IL-6, IL-8, MCP-1, and SAA. Some assays, such as MCP-1, provided a working range that covered physiologically relevant concentrations. Other assays, such as IL-6 and SAA, lacked sensitivity or were too sensitive for measuring biological concentrations, respectively. The results described demonstrate the applicability of protein microarrays to monitor RA markers; however, sandwich assay methodologies need to be further optimized to measure the appropriate biological ranges of these markers on one chip.  相似文献   

4.
Acute-phase serum amyloid A (A-SAA) is a major component of the acute-phase response. A sustained acute-phase response in rheumatoid arthritis (RA) is associated with increased joint damage. A-SAA mRNA expression was confirmed in all samples obtained from patients with RA, but not in normal synovium. A-SAA mRNA expression was also demonstrated in cultured RA synoviocytes. A-SAA protein was identified in the supernatants of primary synoviocyte cultures, and its expression colocalized with sites of macrophage accumulation and with some vascular endothelial cells. It is concluded that A-SAA is produced by inflamed RA synovial tissue. The known association between the acute-phase response and progressive joint damage may be the direct result of synovial A-SAA-induced effects on cartilage degradation.  相似文献   

5.
Rheumatoid arthritis: regulation of synovial inflammation   总被引:11,自引:0,他引:11  
Rheumatoid arthritis (RA) is a systemic, inflammatory autoimmune disorder that presents as a symmetric polyarthritis associated with swelling and pain in multiple joints, often initially occurring in the joints of the hands and feet. Articular inflammation causes activation and proliferation of the synovial lining, expression of inflammatory cytokines, chemokine-mediated recruitment of additional inflammatory cells, as well as B cell activation with autoantibody production. A vicious cycle of altered cytokine and signal transduction pathways and inhibition of programmed cell death contribute to synoviocyte and osteoclast mediated cartilage and bone destruction. A combination of targeted interventions at various stages in the pathogenesis of RA will likely be required to control symptoms in certain patients with this complex and potentially disabling disease. The regulation of rheumatoid synovial inflammation will be reviewed, followed by a brief summary of the therapeutic implications of these advances, including strategies targeting key cytokines, signal transduction molecules, co-stimulatory molecules, B cells, chemokines, and adhesion molecules.  相似文献   

6.
7.
This study is to determine the role and mechanism of crocin in rheumatoid arthritis (RA). Totally 60 Wistar SD rats were randomly divided into control group, RA model group, methotrexate group, crocin high dose, middle dose, and low dose groups. The paw swelling degree, arthritis score, thymus and spleen index, the mRNA and protein levels of iNOS, and the serum content of TNF-α, IL-1β, and IL-6 were evaluated. Crocin treatment significantly alleviated the paw swelling of RA rats. The arthritis score in crocin treatment groups was significantly lower than that in RA model group. Additionally, the thymus index, but not the spleen index, declined remarkably in crocin treatment groups than in RA model group. Besides, crocin administration significantly reduced the iNOS production and the serum content of TNF-α, IL-1β, and IL-6. Crocin may exert potent anti-RA effects through inhibiting cytokine.  相似文献   

8.
The profound anti-inflammatory effects of glucocorticoids in drug therapy are reflected in the effects in vivo of endogenous glucocorticoids produced by the adrenals. The production of adrenal glucocorticoids is driven by the hypothalamus and pituitary, which in turn are responsive to circulating products of the inflammatory response, especially cytokines. That inflammation can drive the production of anti-inflammatory glucocorticoids denotes the hypothalamic-pituitary-adrenal (HPA)-immune axis as a classic negative feedback control loop. Defects in HPA axis function are implicated in susceptibility to, and severity of, animal models of rheumatoid arthritis (RA), and are hypothesized to contribute to the human disease. In this paper, data supporting the concept of the HPA axis as a regulator of the inflammatory response in animal models of arthritis are reviewed, along with data from studies in humans. Taken together, these data support the hypothesis that the HPA axis provides one of the key mechanisms for inhibitory regulation of the inflammatory response. Manipulation of HPA axis-driven endogenous anti-inflammatory responses may provide new methods for the therapeutic control of inflammatory diseases.  相似文献   

9.
The intercellular adhesion molecule-1 (ICAM-1) was found by immunostaining chondrocytes in cartilage from three patients with rheumatoid arthritis. Expression of ICAM-1 was restricted to chondrocytes in areas of erodedcartilage adjacent to the invading synovial tissue. Toluidine blue staining of these areas demonstrated severe depletion of the cartilage extracellular matrix. In areas of undamaged cartilage there was no ICAM-1 expression. Since ICAM-1 is not constitutively expressed on normal human articular cartilage, but could be induced in vitro by exogenous IL-1alpha, TNFalpha and IFNgamma or by co-culturing cartilage with inflammatory rheumatoid synovium, we conclude that the induction of ICAM-1 on rheumatoid chondrocytes results from the synergistic action of a variety of cytokines produced by the inflammatory cells of the invading pannus.  相似文献   

10.
11.

Introduction

Protein citrullination is present in the rheumatoid synovium, presumably contributing to the perpetuation of chronic inflammation, in the presence of specific autoimmunity. As a result, the present study examined the possibility that effective antirheumatic treatment will decrease the level of synovial citrullination.

Methods

Synovial biopsies were obtained from 11 rheumatoid arthritis (RA) patients before and after 8 weeks of treatment with 20 mg methotrexate weekly, 15 RA patients before and 2 weeks after an intraarticular glucocorticoid injection, and eight healthy volunteers. Synovial inflammation was assessed with double-blind semiquantitative analysis of lining thickness, cell infiltration, and vascularity by using a 4-point scale. Expression of citrullinated proteins (CPs) with the monoclonal antibody F95 and peptidylarginine deiminase (PAD) 2 and 4 was assessed immunohistochemically with double-blind semiquantitative analysis. In vitro synovial fluid (SF), peripheral blood (PB), mononuclear cells (MCs), and synovial explants obtained from RA patients were incubated with dexamethasone and analyzed with immunohistochemistry for expression of CP as well as PAD2 and PAD4 enzymes.

Results

The presence of synovial CP was almost exclusive in RA compared with healthy synovium and correlated with the degree of local inflammation. Treatment with glucocorticoids but not methotrexate alters expression of synovial CP and PAD enzymes, in parallel with a decrease of synovial inflammation. Ex vivo and in vitro studies suggest also a direct effect of glucocorticoids on citrullination, as demonstrated by the decrease in the level of citrullination and PAD expression after incubation of SFMC and synovial explants with dexamethasone.

Conclusion

Synovial citrullination and PAD expression are dependent on local inflammation and targeted by glucocorticoids.  相似文献   

12.
B-cells of the rheumatoid synovial tissue are a constant part of and, in some histopathological subtypes, the dominant population of the inflammatory infiltrate, located in the region of tissue destruction. The pattern of B-cell distribution and the relationship to the corresponding antigen-presenting cells (follicular dendritic reticulum cells: FDCs) show a great variety. B-cells may exhibit (i) a follicular organization forming secondary follicles; (ii) follicle-like patterns with irregularly formed FDC networks, and (iii) a diffuse pattern of isolated FDCs. Molecular analysis of immunoglobulin VH and VL genes from human synovial B-cell hybridomas and synovial tissue demonstrates somatic mutations due to antigen activation. The FDC formations in the synovial tissue may therefore serve as an environment for B-cell maturation, which is involved in the generation of autoantibodies. An autoantibody is defined as "pathogenic" if it fulfills the Witebsky-Rose-Koch criteria for classical autoimmune diseases: definition of the autoantibody; induction of the disease by transfer of the autoantibody; and isolation of the autoantibody from the disease-specific lesion. B-cells from rheumatoid synovial tissue show specificity for FcIgG, type II collagen, COMP, sDNA, tetanus toxoid, mitochondrial antigens (M2), filaggrin and bacterial HSPs. The contributions of these antigens to the pathogenesis of RA are still hypothetical. A possible contribution could derive from crossreactivity and epitope mimicry: due to crossreaction, an antibody directed originally against a foreign infectious agent could react with epitopes from articular tissues, perpetuating the local inflammatory process. The characteristic distribution pattern, the localisation within the area of tissue destruction, the hypermutated IgVH and IgVL genes, and their exclusive function to recognize conformation-dependent antigens suggest a central role for B-cells in the inflammatory process of rheumatoid arthritis. Therefore, the analysis of synovial B-cell hybridomas and experimental expression of synovial IgVH and IgVL genes will help to characterise the antigens responsible for the pathogenesis of rheumatoid arthritis.  相似文献   

13.
Rheumatoid arthritis (RA), and not osteoarthritis (OA) synovial cells proliferate in serum-free medium, a finding that suggests that, in vitro, RA synovial cells may be stimulated to grow by the continuous autocrine production of at least one polypeptide growth factor. Adding monoclonal antibody 1D11.16, or rabbit polyclonal anti-tumor growth factor beta (anti-TGF-beta) antibodies (both neutralizing antibodies to TGF-beta 1 and TGF-beta 2) to RA synovial cells, in culture, caused a significant reduction in cell growth, an effect not seen when other growth factor antibodies (platelet-derived growth factor [PDGF], epidermal growth factor [EGF], or EGF receptor) were added to the culture medium. Taken together, these data are consistent with the concept that RA synovial cell growth in vitro is driven endogenous TGF-beta. Moreover, when EGF was added to the culture medium, this caused the numbers of RA, and not OA, synovial cells to increase significantly. This finding suggests that RA synovial cells are in G1 phase of the cell cycle; an effect that could be mediated by endogenous TGF-beta.  相似文献   

14.
Activating Fc gamma receptors (FcgammaRs) have been identified as having important roles in the inflammatory joint reaction in rheumatoid arthritis (RA) and murine models of arthritis. However, the role of the inhibitory FcgammaRIIb in the regulation of the synovial inflammation in RA is less known. Here we have investigated synovial tissue from RA patients using a novel monoclonal antibody (GB3) specific for the FcgammaRIIb isoform. FcgammaRIIb was abundantly expressed in synovia of RA patients, in sharp contrast to the absence or weak staining of FcgammaRIIb in synovial biopsies from healthy volunteers. In addition, the expression of FcgammaRI, FcgammaRII and FcgammaRIII was analyzed in synovia obtained from early and late stages of RA. Compared with healthy synovia, which expressed FcgammaRII, FcgammaRIII but not FcgammaRI, all activating FcgammaRs were expressed and significantly up-regulated in RA, regardless of disease duration. Macrophages were one of the major cell types in the RA synovium expressing FcgammaRIIb and the activating FcgammaRs. Anti-inflammatory treatment with glucocorticoids reduced FcgammaR expression in arthritic joints, particularly that of FcgammaRI. This study demonstrates for the first time that RA patients do not fail to up-regulate FcgammaRIIb upon synovial inflammation, but suggests that the balance between expression of the inhibitory FcgammaRIIb and activating FcgammaRs may be in favour of the latter throughout the disease course. Anti-inflammatory drugs that target activating FcgammaRs may represent valuable therapeutics in this disease.  相似文献   

15.

Introduction  

Rheumatoid arthritis (RA) is characterised by invasion of cartilage, bone and tendon by inflamed synovium. Previous studies in our laboratory have shown that hypoxia is a feature of RA synovitis. In the present study, we investigated the consequences of hypoxia on angiogenesis and synovial fibroblast migration in RA.  相似文献   

16.
T cell activation and function are critically regulated by positive and negative costimulatory molecules. Aberrant expression and function of costimulatory molecules have been associated with persistent activation of self-reactive T cells in autoimmune diseases such as rheumatoid arthritis (RA). In this study, initial analysis of costimulatory molecules led to the unexpected observation that, in addition to CD80, several negative regulators (e.g., CTLA-4, programmed death-1 (PD-1), and PD ligand-1) were overexpressed in synovial T cells and macrophages derived from RA patients as opposed to controls. The expression of CD80 and PD ligand-1 on monocytes could be induced in vitro by IFN-gamma and TNF-alpha that were produced abundantly in RA-derived synovial fluid (SF). Furthermore, the soluble form of negative costimulatory molecules occurred at high concentrations in sera and SF of RA patients and correlated with titers of rheumatoid factor in RA patients. In particular, the levels of soluble PD-1 were found to correlate significantly with those of TNF-alpha in SF derived from RA patients. Detailed characterization of soluble PD-1 revealed that it corresponded to an alternative splice variant (PD-1Deltaex3) and could functionally block the regulatory effect of membrane-bound PD-1 on T cell activation. Our data indicate a novel pathogenic pathway in which overexpression of negative costimulatory molecules to restrict synovial inflammation in RA is overruled by the excessive production of soluble costimulatory molecules.  相似文献   

17.
18.
Rheumatoid arthritis (RA) is a chronic symmetrical autoimmune disease of unknown etiology that affects primarily the diarthrodial joints. Characteristic features of RA pathogenesis are synovial inflammation and proliferation accompanied by cartilage erosion and bone loss. Fibroblast-like synoviocytes (FLS) display an important role in the pathogenesis of RA. Several lines of evidence show that the Wnt signaling pathway significantly participates in the RA pathogenesis. The Wnt proteins are glycoproteins that bind to the Fz receptors on the cell surface, which leads to several important biological functions, such as cell differentiation, embryonic development, limb development and joint formation. Accumulated evidence has suggested that this signaling pathway plays a key role in the FLS activation, bone resorption and joint destruction during RA development. Greater knowledge of the role of the Wnt signaling pathway in RA could improve understanding of the RA pathogenesis and the differences in RA clinical presentation and prognosis. In this review, new advances of the Wnt signaling pathway in RA pathogenesis are discussed, with special emphasis on its different roles in synovial inflammation and bone remodeling. Further studies are needed to reveal the important role of the members of the Wnt signaling pathway in the RA pathogenesis and treatment.  相似文献   

19.
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by extensive synovitis resulting in erosions of articular cartilage and marginal bone that lead to joint destruction. The autoimmune process in RA depends on the activation of immune cells, which use intracellular kinases to respond to external stimuli such as cytokines, immune complexes, and antigens. An intricate cytokine network participates in inflammation and in perpetuation of disease by positive feedback loops promoting systemic disorder. The widespread systemic effects mediated by pro-inflammatory cytokines in RA impact on metabolism and in particular in lymphocyte metabolism. Moreover, RA pathobiology seems to share some common pathways with atherosclerosis, including endothelial dysfunction that is related to underlying chronic inflammation. The extent of the metabolic changes and the types of metabolites seen may be good markers of cytokine-mediated inflammatory processes in RA. Altered metabolic fingerprints may be useful in predicting the development of RA in patients with early arthritis as well as in the evaluation of the treatment response. Evidence supports the role of metabolomic analysis as a novel and nontargeted approach for identifying potential biomarkers and for improving the clinical and therapeutical management of patients with chronic inflammatory diseases. Here, we review the metabolic changes occurring in the pathogenesis of RA as well as the implication of the metabolic features in the treatment response.  相似文献   

20.
In a recent interesting review, Alex Clarke and Timothy Vyse described the genetics of rheumatic disease [1]. In the past several years, genome-wide association studies (GWAS) have led to the identification of six high-risk rheumatoid arthritis (RA) susceptibility genes - namely, CD244, PADI4, SLC22A2, PTPN22, CTLA4, and STAT4 (summarized in [2]). In vitro studies using mutant alleles and cultured cells have revealed the individual upregulation of CD244, PADI4, SLC22A2, and PTPN22 [2-6]; however, studies on the expression of RA susceptibility genes in RA patients are rare. We therefore investigated the expression of the above-mentioned six RA susceptibility genes in 112 RA patients using DNA microarray analysis. This study aims to clarify whether DNA microarray analysis and GWAS produce comparable results with respect to RA susceptibility genes.Total RNA extracted from total peripheral blood cells obtained from 112 RA patients and 45 healthy individuals was used to prepare aminoallyl RNA. As a reference, mixed RNA from 45 healthy individuals was used. The aminoallyl RNA of each individual and the reference was subjected to Cy3 and Cy5 labeling, respectively, and was hybridized with an oligonucleotide-based DNA microarray. The data obtained were analyzed by nonparametric statistical group comparison. The intensities of the noprobe spots were used as the background. The median and standard deviation of the background intensity were calculated. The genes with an intensity value that was less than the median plus 2 standard deviation of the background intensity were identified as null. The Cy3/Cy5 ratios of all spots on the DNA microarray were normalized using the global ratio median. Only gene expression data that were collected from at least 80% of samples from each group were selected for further analysis. The unpaired Mann-Whitney test was used to determine statistically significant differences in the mRNA expression levels between the RA and healthy groups. Statistical significance was set at P < 0.05.The results of our DNA microarray analysis showed that the expressions of four out of the six RA susceptibility genes were significantly higher in RA patients than in healthy individuals (1.0 × 10-16 to 2.32 × 10-5) (Table (Table1).1). As described above, the upregulation of these four genes (CD244, PADI4, SLC22A2, and PTPN22) has been previously confirmed in in vitro studies. We found, however, that CTLA4 expression levels were similar between the RA and control groups, whereas STAT4 expression was significantly downregulated in the RA group (1.38 × 10-8). We investigated the expression of other RA susceptibility genes - namely, TRF1/C5 [7], CD40 [8], and CCL21 [8] - and found that their expressions were similar in both groups. The genetic risk factors for RA were recently reported to differ between Caucasian and Asian (Korean) populations [9]. The samples used in our microarray analysis were derived from the same Asian (Japanese) cohort. The expression profiles for these three genes may therefore not be consistent with the profiles determined by GWAS.

Table 1

Candidate genes identified from rheumatoid arthritis genome-wide association studies
GeneGeneIDPMIDGene expression (up or down)Microarray P valuesa
CD24460555418794858Up1.0 × 10-16
PADI460534712833157Up2.32 × 10-5
SLC22A260260814608356Up1.94 × 10-6
PTPN2260071615208781Up9.66 × 10-8
CTLA412389016380915No change0.767
STAT460055817804842Up1.38 × 10-8
Open in a separate windowaP values determined by comparison between 112 rheumatoid arthritis patients and 45 healthy individuals.In this study, we revealed the correlation between five out of the six high-risk RA susceptibility genes using DNA microarray analysis. Prostate cancer susceptibility genes identified by GWAS were recently reported to be consistent with those identified by microarray analysis [10]. We therefore concluded that the combination of microarray analysis and GWAS would be a more effective approach for gene identification than the analysis of individual datasets. Moreover, the simultaneous use of both methods would allow for more accurate identification of RA candidate genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号