首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 77 毫秒
1.
While the signaling properties of ubiquitin depend on the topology of polyubiquitin chains, little is known concerning the molecular basis of specificity in chain assembly and recognition. UEV/Ubc complexes have been implicated in the assembly of Lys63-linked polyubiquitin chains that act as a novel signal in postreplicative DNA repair and I kappa B alpha kinase activation. The crystal structure of the Mms2/Ubc13 heterodimer shows the active site of Ubc13 at the intersection of two channels that are potential binding sites for the two substrate ubiquitins. Mutations that destabilize the heterodimer interface confer a marked UV sensitivity, providing direct evidence that the intact heterodimer is necessary for DNA repair. Selective mutations in the channels suggest a molecular model for specificity in the assembly of Lys63-linked polyubiquitin signals.  相似文献   

2.
Different ubiquitin modifications to proliferating cell nuclear antigen (PCNA) signal distinct modes of lesion bypass in the RAD6 pathway of DNA damage tolerance. The modification of PCNA with monoubiquitin signals an error-prone bypass, whereas the extension of this modification into a Lys-63-linked polyubiquitin chain promotes error-free bypass. Chain formation is catalyzed by the Mms2/Ubc13 conjugating enzyme variant/conjugating enzyme (UEV.E2) complex together with the Rad5 ubiquitin ligase. In vitro studies of this UEV.E2 complex have identified a ubiquitin binding site that is mainly localized on Mms2. However, the role of this site in DNA damage tolerance and the molecular features of the ubiquitin/Mms2 interaction are poorly understood. Here we identify two molecular determinants, the side chains of Mms2-Ile-57 and ubiquitin-Ile-44, that are required for chain assembly in vitro and error-free lesion bypass in vivo. Mutating either of these side chains to alanine elicits a severe 10-20-fold inhibition of chain synthesis that is caused by compromised binding of the acceptor ubiquitin to Mms2. These results suggest that the ubiquitin binding site of Mms2 is necessary for error-free lesion bypass in the RAD6 pathway and provide new insights into ubiquitin recognition by UEV proteins.  相似文献   

3.
Lys(63)-linked polyubiquitin (poly-Ub) chains appear to play a nondegradative signaling and/or recruitment role in a variety of key eukaryotic cellular processes, including NF-kappaB signal transduction and DNA repair. A protein heterodimer composed of a catalytically active ubiquitin-conjugating enzyme (Ubc13) and its homologue (Mms2 or Uev1a) forms a catalytic scaffold upon which a noncovalently associated acceptor Ub and thiolester-linked donor Ub are oriented such that Lys(63)-linked poly-Ub chain synthesis is facilitated. In this study, we have used (1)H-(15)N nuclear magnetic resonance spectroscopy, in combination with isothermal titration calorimetry, to determine the thermodynamics and kinetics of the interactions between various components of the Lys(63)-linked poly-Ub conjugation machinery. Mms2 and Uev1a interact in vitro with acceptor Ub to form 1/1 complexes with macroscopic dissociation constants of 98 +/- 15 and 213 +/- 14 microM, respectively, and appear to bind Ub in a similar fashion. Interestingly, the Mms2.Ubc13 heterodimer associates with acceptor Ub in a 1/1 complex and binds with a dissociation constant of 28 +/- 6 microM, significantly stronger than the binding of Mms2 alone. Furthermore, a dissociation constant of 49 +/- 7 nM was determined for the interaction between Mms2 and Ubc13 using isothermal titration calorimetry. In connection with previous structural studies for this system, the thermodynamics and kinetics of acceptor Ub binding to the Mms2.Ubc13 heterodimer described in detail in this study will allow for a more thorough rationalization of the mechanism of formation of Lys(63)-linked poly-Ub chains.  相似文献   

4.
The ubiquitin conjugating enzyme complex Mms2-Ubc13 plays a key role in post-replicative DNA repair in yeast and the NF-kappaB signal transduction pathway in humans. This complex assembles novel polyubiquitin chains onto yet uncharacterized protein targets. Here we report the crystal structure of a complex between hMms2 (Uev1) and hUbc13 at 1.85 A resolution and a structure of free hMms2 at 1.9 A resolution. These structures reveal that the hMms2 monomer undergoes a localized conformational change upon interaction with hUbc13. The nature of the interface provides a physical basis for the preference of Mms2 for Ubc13 as a partner over a variety of other structurally similar ubiquitin-conjugating enzymes. The structure of the hMms2-hUbc13 complex provides the conceptual foundation for understanding the mechanism of Lys 63 multiubiquitin chain assembly and for its interactions with the RING finger proteins Rad5 and Traf6.  相似文献   

5.
Modification of proteins by post-translational covalent attachment of a single, or chain, of ubiquitin molecules serves as a signaling mechanism for a number of regulatory functions in eukaryotic cells. For example, proteins tagged with lysine-63 linked polyubiquitin chains are involved in error-free DNA repair. The catalysis of lysine-63 linked polyubiquitin chains involves the sequential activity of three enzymes (E1, E2, and E3) that ultimately transfer a ubiquitin thiolester intermediate to a protein target. The E2 responsible for catalysis of lysine-63 linked polyubiquitination is a protein heterodimer consisting of a canonical E2 known as Ubc13, and an E2-like protein, or ubiquitin conjugating enzyme variant (UEV), known as Mms2. We have determined the solution structure of the complex formed by human Mms2 and ubiquitin using high resolution, solution state nuclear magnetic resonance (NMR) spectroscopy. The structure of the Mms2–Ub complex provides important insights into the molecular basis underlying the catalysis of lysine-63 linked polyubiquitin chains.  相似文献   

6.
Ubc13, a ubiquitin-conjugating enzyme (Ubc), requires the presence of a Ubc variant (Uev) for polyubiquitination. Uevs, although resembling Ubc in sequence and structure, lack the active site cysteine residue and are catalytically inactive. The yeast Uev (Mms2) incites noncanonical Lys63-linked polyubiquitination by Ubc13, whereas the increased diversity of Uevs in higher eukaryotes suggests an unexpected complication in ubiquitination. In this study, we demonstrate that divergent activities of mammalian Ubc13 rely on its pairing with either of two Uevs, Uev1A or Mms2. Structurally, we demonstrate that Mms2 and Uev1A differentially modulate the length of Ubc13-mediated Lys63-linked polyubiquitin chains. Functionally, we describe that Ubc13-Mms2 is required for DNA damage repair but not nuclear factor kappaB (NF-kappaB) activation, whereas Ubc13-Uev1A is involved in NF-kappaB activation but not DNA repair. Our finding suggests a novel regulatory mechanism in which different Uevs direct Ubcs to diverse cellular processes through physical interaction and alternative polyubiquitination.  相似文献   

7.
The repair of DNA double strand breaks by homologous recombination relies on the unique topology of the chains formed by Lys-63 ubiquitylation of chromatin to recruit repair factors such as breast cancer 1 (BRCA1) to sites of DNA damage. The human RING finger (RNF) E3 ubiquitin ligases, RNF8 and RNF168, with the E2 ubiquitin-conjugating complex Ubc13/Mms2, perform the majority of Lys-63 ubiquitylation in homologous recombination. Here, we show that RNF8 dimerizes and binds to Ubc13/Mms2, thereby stimulating formation of Lys-63 ubiquitin chains, whereas the related RNF168 RING domain is a monomer and does not catalyze Lys-63 polyubiquitylation. The crystal structure of the RNF8/Ubc13/Mms2 ternary complex reveals the structural basis for the interaction between Ubc13 and the RNF8 RING and that an extended RNF8 coiled-coil is responsible for its dimerization. Mutations that disrupt the RNF8/Ubc13 binding surfaces, or that truncate the RNF8 coiled-coil, reduce RNF8-catalyzed ubiquitylation. These findings support the hypothesis that RNF8 is responsible for the initiation of Lys-63-linked ubiquitylation in the DNA damage response, which is subsequently amplified by RNF168.  相似文献   

8.
Hofmann RM  Pickart CM 《Cell》1999,96(5):645-653
Ubiquitin-conjugating enzyme variant (UEV) proteins resemble ubiquitin-conjugating enzymes (E2s) but lack the defining E2 active-site residue. The MMS2-encoded UEV protein has been genetically implicated in error-free postreplicative DNA repair in Saccharomyces cerevisiae. We show that Mms2p forms a specific heteromeric complex with the UBC13-encoded E2 and is required for the Ubc13p-dependent assembly of polyubiquitin chains linked through lysine 63. A ubc13 yeast strain is UV sensitive, and single, double, and triple mutants of the UBC13, MMS2, and ubiquitin (ubiK63R) genes display a comparable phenotype. These findings support a model in which an Mms2p/Ubc13p complex assembles novel polyubiquitin chains for signaling in DNA repair, and they suggest that UEV proteins may act to increase diversity and selectivity in ubiquitin conjugation.  相似文献   

9.
RING (really interesting new gene) and U-box E3 ligases bridge E2 ubiquitin-conjugating enzymes and substrates to enable the transfer of ubiquitin to a lysine residue on the substrate or to one of the seven lysine residues of ubiquitin for polyubiquitin chain elongation. Different polyubiquitin chains have different functions. Lys(48)-linked chains target proteins for proteasomal degradation, and Lys(63)-linked chains function in signal transduction, endocytosis and DNA repair. For this reason, chain topology must be tightly controlled. Using the U-box E3 ligase CHIP [C-terminus of the Hsc (heat-shock cognate) 70-interacting protein] and the RING E3 ligase TRAF6 (tumour-necrosis-factor-receptor-associated factor 6) with the E2s Ubc13 (ubiquitin-conjugating enzyme 13)-Uev1a (ubiquitin E2 variant 1a) and UbcH5a, in the present study we demonstrate that Ubc13-Uev1a supports the formation of free Lys(63)-linked polyubiquitin chains not attached to CHIP or TRAF6, whereas UbcH5a catalyses the formation of polyubiquitin chains linked to CHIP and TRAF6 that lack specificity for any lysine residue of ubiquitin. Therefore the abilities of these E2s to ubiquitinate a substrate and to elongate polyubiquitin chains of a specific topology appear to be mutually exclusive. Thus two different classes of E2 may be required to attach a polyubiquitin chain of a particular topology to a substrate: the properties of one E2 are designed to mono-ubiquitinate a substrate with no or little inherent specificity for an acceptor lysine residue, whereas the properties of the second E2 are tailored to the elongation of a polyubiquitin chain using a defined lysine residue of ubiquitin.  相似文献   

10.
Wen R  Newton L  Li G  Wang H  Xiao W 《Plant molecular biology》2006,61(1-2):241-253
Ubiquitylation is an important biochemical reaction found in all eukaryotic organisms and is involved in a wide range of cellular processes. Conventional ubiquitylation requires the formation of polyubiquitin chains linked through Lys48 of the ubiquitin, which targets specific proteins for degradation. Recently polyubiquitylation through a noncanonical Lys63 chain has been reported, and is required for error-free DNA damage tolerance (or postreplication repair) in yeast. To date, Ubc13 is the only known ubiquitin-conjugating enzyme (Ubc) capable of catalyzing the Lys63-linked polyubiquitylation reaction and this function requires interaction with the Ubc variant Mms2. No information is available on either Lys63-linked ubiquitylation or error-free damage tolerance in plants. We thus cloned and functionally characterized two Arabidopsis thaliana UBC13 genes, AtUBC13A and AtUBC13B. The two genes are highly conserved with respect to chromosomal structure and protein sequence, suggesting that they are derived from a recent gene duplication event. Both AtUbc13 proteins are able to physically interact with yeast or human Mms2, implying that plants also employ the Lys63-linked polyubiquitylation reaction. Furthermore, AtUBC13 genes are able to functionally complement the yeast ubc13 null mutant for spontaneous mutagenesis and sensitivity to DNA damaging agents, suggesting the existence of an error-free DNA damage tolerance pathway in plants. The AtUBC13 genes appear to express ubiquitously and are not induced by various conditions tested.  相似文献   

11.
Recent structural analyses support a model whereby Mms2 interacts with and orientates Ub to promote Ubc13-mediated Lys63 chain formation. However, residues of the hMms2-Ub interface have not been addressed. We found two hMms2 residues to be critical for binding and polyUb conjugation. Surprisingly, while each single mutation reduces the binding affinity, the double mutation causes significant reduction of Ub binding and abolishes polyUb chain formation. Furthermore, the corresponding yeast mms2 double mutant exhibited an additive phenotype that caused a complete loss of MMS2 function. Taken together, this study identifies key residues of the Mms2-Ub interface and provides direct experimental evidence that Mms2 physical association with Ub is correlated with its ability to promote Lys63-linked Ub chain assembly.  相似文献   

12.
Human Ubc13 and Mms2 (or its homolog, Uev1) form a unique ubiquitin-conjugating enzyme (Ubc) complex that generates atypical Lys(63)-linked ubiquitin conjugates. Such conjugates are attached to specific targets that modulate the activity of various cellular processes including DNA repair, mitotic progression, and nuclear factor-kappaB signaling. Whereas Ubc13 is a typical Ubc, Mms2 is a non-catalytic Ubc variant. Substantial biochemical evidence has revealed a mechanism whereby Mms2 properly orients ubiquitin to allow for Lys(63) conjugation by Ubc13; however, how this specific Ubc13-Mms2 complex is formed and why Mms2 does not form a complex with other Ubcs have not been reported. In order to address these questions, we used a structure-based approach to design mutations and characterize the human Ubc13-Mms2 interface. We used the yeast two-hybrid assay, glutathione S-transferase pull-downs, and surface plasmon resonance to test in vivo and in vitro binding. These experiments were paired with functional complementation and ubiquitin conjugation studies to provide in vivo and in vitro functional data. The results in this study allowed us to identify important residues of the Ubc13-Mms2 interface, determine a correlation between heterodimer formation and function, and conclude why Mms2 forms a specific complex with Ubc13 but not other Ubc proteins.  相似文献   

13.
Ashley C  Pastushok L  McKenna S  Ellison MJ  Xiao W 《Gene》2002,285(1-2):183-191
The E2 enzyme, Ubc13, and the E2 enzyme variants, Uevs, form stable, high affinity complexes for the assembly of Lys63-linked ubiquitin chains. This process is involved in error-free DNA postreplication repair, the activation of kinases in the NF-kappaB signaling pathway and possibly other cellular processes. To further investigate the roles played by Ubc13 in a whole animal model, we report here the molecular cloning of mouse UBC13 and show for the first time that a mammalian UBC13 gene is able to complement the yeast ubc13 null mutant. Furthermore, in vitro analyses and a yeast two-hybrid assay show that mUbc13 is able to form stable complexes with various Uevs. In the presence of E1 and ATP, mUbc13 forms thiolesters with ubiquitin; however, the formation of Lys63-linked di-ubiquitin and multi-ubiquitin chains is dependent on Uevs. These results suggest that the roles of UBC13 are conserved throughout eukaryotes and that the mouse is an appropriate model for the study of Ubc13-mediated Lys63-linked ubiquitin signaling pathways in humans.  相似文献   

14.
Polyubiquitin chains assembled through lysine 48 (Lys-48) of ubiquitin act as a signal for substrate proteolysis by 26 S proteasomes, whereas chains assembled through Lys-63 play a mechanistically undefined role in post-replicative DNA repair. We showed previously that the products of the UBC13 and MMS2 genes function in error-free post-replicative DNA repair in the yeast Saccharomyces cerevisiae and form a complex that assembles Lys-63-linked polyubiquitin chains in vitro. Here we confirm that the Mms2.Ubc13 complex functions as a high affinity heterodimer in the chain assembly reaction in vitro and report the results of a kinetic characterization of the polyubiquitin chain assembly reaction. To test whether a Lys-63-linked polyubiquitin chain can signal degradation, we conjugated Lys-63-linked tetra-ubiquitin to a model substrate of 26 S proteasomes. Although the noncanonical chain effectively signaled substrate degradation, the results of new genetic epistasis studies agree with previous genetic data in suggesting that the proteolytic activity of proteasomes is not required for error-free post-replicative repair.  相似文献   

15.
CHIP is a dimeric U box E3 ubiquitin ligase that binds Hsp90 and/or Hsp70 via its TPR-domain, facilitating ubiquitylation of chaperone bound client proteins. We have determined the crystal structure of CHIP bound to an Hsp90 C-terminal decapeptide. The structure explains how CHIP associates with either chaperone type and reveals an unusual asymmetric homodimer in which the protomers adopt radically different conformations. Additionally, we identified CHIP as a functional partner of Ubc13-Uev1a in formation of Lys63-linked polyubiquitin chains, extending CHIP's roles into ubiquitin regulation as well as targeted destruction. The structure of Ubc13-Uev1a bound to the CHIP U box domain defines the basis for selective cooperation of CHIP with specific ubiquitin-conjugating enzymes. Remarkably, the asymmetric arrangement of the TPR domains in the CHIP dimer occludes one Ubc binding site, so that CHIP operates with half-of-sites activity, providing an elegant means for coupling a dimeric chaperone to a single ubiquitylation system.  相似文献   

16.
The ubiquitin-related modifier SUMO regulates a wide range of cellular processes by post-translational modification with one, or a chain of SUMO molecules. Sumoylation is achieved by the sequential action of several enzymes in which the E2, Ubc9, transfers SUMO from the E1 to the target mostly with the help of an E3 enzyme. In this process, Ubc9 not only forms a thioester bond with SUMO, but also interacts with SUMO noncovalently. Here, we show that this noncovalent interaction promotes the formation of short SUMO chains on targets such as Sp100 and HDAC4. We present a crystal structure of the noncovalent Ubc9-SUMO1 complex, showing that SUMO is located far from the E2 active site and resembles the noncovalent interaction site for ubiquitin on UbcH5c and Mms2. Structural comparison suggests a model for poly-sumoylation involving a mechanism analogous to Mms2-Ubc13-mediated ubiquitin chain formation.  相似文献   

17.
Ubiquitin-conjugating enzyme variants share significant sequence similarity with typical E2 (ubiquitin-conjugating) enzymes of the protein ubiquitination pathway but lack their characteristic active site cysteine residue. The MMS2 gene of Saccharomyces cerevisiae encodes one such ubiquitin-conjugating enzyme variant that is involved in the error-free DNA postreplicative repair pathway through its association with Ubc13, an E2. The Mms2-Ubc13 heterodimer is capable of linking ubiquitin molecules to one another through an isopeptide bond between the C terminus and Lys-63. Using highly purified components, we show here that the human forms of Mms2 and Ubc13 associate into a heterodimer that is stable over a range of conditions. The ubiquitin-thiol ester form of the heterodimer can be produced by the direct activation of its Ubc13 subunit with E1 (ubiquitin-activating enzyme) or by the association of Mms2 with the Ubc13-ubiquitin thiol ester. The activated heterodimer is capable of transferring its covalently bound ubiquitin to Lys-63 of an untethered ubiquitin molecule, resulting in diubiquitin as the predominant species. In (1)H (15)N HSQC ((1)H (15)N heteronuclear single quantum coherence) NMR experiments, we have mapped the surface determinants of tethered and untethered ubiquitin that interact with Mms2 and Ubc13 in both their monomeric and dimeric forms. These results have identified a surface of untethered ubiquitin that interacts with Mms2 in the monomeric and heterodimeric form. Furthermore, the C-terminal tail of ubiquitin does not participate in this interaction. These results suggest that the role of Mms2 is to correctly orient either a target-bound or untethered ubiquitin molecule such that its Lys-63 is placed proximally to the C terminus of the ubiquitin molecule that is linked to the active site of Ubc13.  相似文献   

18.
CHIP is a ubiquitin ligase implicated in the degradation of misfolded proteins. In the November 23 issue of Molecular Cell, identified CHIP as a protein that interacts with the ubiquitin E2 complex Ubc13-Uev1A, which catalyzes the synthesis of Lys-63-linked polyubiquitin chains. Although the ubiquitin ligase activity of CHIP requires its dimerization through the U box domain, the crystal structure of the CHIP-E2 complex reveals that the protomers in the CHIP homodimer adopt distinct conformations such that only one U box of CHIP interacts with Ubc13.  相似文献   

19.
An E3 ubiquitin ligase mediates the transfer of activated ubiquitin from an E2 ubiquitin-conjugating enzyme to its substrate lysine residues. Using a structure-based, yeast two-hybrid strategy, we discovered six previously unidentified interactions between the human heterodimeric RING E3 BRCA1-BARD1 and the human E2s UbcH6, Ube2e2, UbcM2, Ubc13, Ube2k and Ube2w. All six E2s bind directly to the BRCA1 RING motif and are active with BRCA1-BARD1 for autoubiquitination in vitro. Four of the E2s direct monoubiquitination of BRCA1. Ubc13-Mms2 and Ube2k direct the synthesis of Lys63- or Lys48-linked ubiquitin chains on BRCA1 and require an acceptor ubiquitin attached to BRCA1. Differences between the mono- and polyubiquitination activities of the BRCA1-interacting E2s correlate with their ability to bind ubiquitin noncovalently at a site distal to the active site. Thus, BRCA1 has the ability to direct the synthesis of specific polyubiquitin chain linkages, depending on the E2 bound to its RING.  相似文献   

20.
Ubiquitination is an important post-translational protein modification that functions in diverse cellular processes of all eukaryotic organisms. Conventional Lys48-linked poly-ubiquitination leads to the degradation of specific proteins through 26S proteasomes, while Lys63-linked polyubiquitination appears to regulate protein activities in a non-proteolytic manner. To date, Ubc13 is the only known ubiquitin-conjugating enzyme capable of poly-ubiquitinating target proteins via Lys63-linked chains, and this activity absolutely requires a Ubc variant (Uev or Mms2) as a co-factor. However, Lys63-linked poly-ubiquitination and error-free DNA damage tolerance in zebrafish are yet to be defined. Here, we report molecular cloning and functional characterization of two zebrafish ubc13 genes, ubc13a and ubc13b. Analysis of their genomic structure, nucleotide and protein sequence indicates that the two genes are highly conserved during evolution and derived from whole genome duplication. Zebrafish Ubc13 proteins are able to physically interact with yeast or human Mms2 and both zebrafish ubc13 genes are able to functionally complement the yeast ubc13 null mutant for spontaneous mutagenesis and sensitivity to DNA damaging agents. In addition, upon DNA damage, the expression of zebrafish ubc13a and ubc13b is induced during embryogenesis and zebrafish Ubc13 is associated with nuclear chromatin. These results suggest the involvement of Lys63-linked poly-ubiquitylation in DNA damage response in zebrafish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号