首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Local adaptation and dispersal evolution are key evolutionary processes shaping the invasion dynamics of populations colonizing new environments. Yet their interaction is largely unresolved. Using a single‐species population model along a one‐dimensional environmental gradient, we show how local competition and dispersal jointly shape the eco‐evolutionary dynamics and speed of invasion. From a focal introduction site, the generic pattern predicted by our model features a temporal transition from wave‐like to pulsed invasion. Each regime is driven primarily by local adaptation, while the transition is caused by eco‐evolutionary feedbacks mediated by dispersal. The interaction range and cost of dispersal arise as key factors of the duration and speed of each phase. Our results demonstrate that spatial eco‐evolutionary feedbacks along environmental gradients can drive strong temporal variation in the rate and structure of population spread, and must be considered to better understand and forecast invasion rates and range dynamics.  相似文献   

2.
Individual heterogeneity in life history shapes eco‐evolutionary processes, and unobserved heterogeneity can affect demographic outputs characterising life history and population dynamical properties. Demographic frameworks like matrix models or integral projection models represent powerful approaches to disentangle mechanisms linking individual life histories and population‐level processes. Recent developments have provided important steps towards their application to study eco‐evolutionary dynamics, but so far individual heterogeneity has largely been ignored. Here, we present a general demographic framework that incorporates individual heterogeneity in a flexible way, by separating static and dynamic traits (discrete or continuous). First, we apply the framework to derive the consequences of ignoring heterogeneity for a range of widely used demographic outputs. A general conclusion is that besides the long‐term growth rate lambda, all parameters can be affected. Second, we discuss how the framework can help advance current demographic models of eco‐evolutionary dynamics, by incorporating individual heterogeneity. For both applications numerical examples are provided, including an empirical example for pike. For instance, we demonstrate that predicted demographic responses to climate warming can be reversed by increased heritability. We discuss how applications of this demographic framework incorporating individual heterogeneity can help answer key biological questions that require a detailed understanding of eco‐evolutionary dynamics.  相似文献   

3.
Natural populations are exposed to seasonal variation in environmental factors that simultaneously affect several demographic rates (survival, development and reproduction). The resulting covariation in these rates determines population dynamics, but accounting for its numerous biotic and abiotic drivers is a significant challenge. Here, we use a factor‐analytic approach to capture partially unobserved drivers of seasonal population dynamics. We use 40 years of individual‐based demography from yellow‐bellied marmots (Marmota flaviventer) to fit and project population models that account for seasonal demographic covariation using a latent variable. We show that this latent variable, by producing positive covariation among winter demographic rates, depicts a measure of environmental quality. Simultaneously, negative responses of winter survival and reproductive‐status change to declining environmental quality result in a higher risk of population quasi‐extinction, regardless of summer demography where recruitment takes place. We demonstrate how complex environmental processes can be summarized to understand population persistence in seasonal environments.  相似文献   

4.
Although numerous hypotheses exist to explain the overwhelming presence of sexual reproduction across the tree of life, we still cannot explain its prevalence when considering all inherent costs involved. The Red Queen hypothesis states that sex is maintained because it can create novel genotypes with a selective advantage. This occurs when the interactions between species induce frequent environmental change. Here, we investigate whether coevolution and eco‐evolutionary feedback dynamics in a predator‐prey system allows for indirect selection and maintenance of sexual reproduction in the predator. Combining models and chemostat experiments of a rotifer‐algae system we show a continuous feedback between population and trait change along with recurrent shifts from selection by predation and competition for a limited resource. We found that a high propensity for sex was indirectly selected and was maintained in rotifer populations within environments containing these eco‐evolutionary dynamics; whereas within environments under constant conditions, predators evolved rapidly to lower levels of sex. Thus, our results indicate that the influence of eco‐evolutionary feedback dynamics on the overall evolutionary change has been underestimated.  相似文献   

5.
There has been much recent research interest in the existence of a major axis of life‐history variation along a fast–slow continuum within almost all major taxonomic groups. Eco‐evolutionary models of density‐dependent selection provide a general explanation for such observations of interspecific variation in the "pace of life." One issue, however, is that some large‐bodied long‐lived “slow” species (e.g., trees and large fish) often show an explosive “fast” type of reproduction with many small offspring, and species with “fast” adult life stages can have comparatively “slow” offspring life stages (e.g., mayflies). We attempt to explain such life‐history evolution using the same eco‐evolutionary modeling approach but with two life stages, separating adult reproductive strategies from offspring survival strategies. When the population dynamics in the two life stages are closely linked and affect each other, density‐dependent selection occurs in parallel on both reproduction and survival, producing the usual one‐dimensional fast–slow continuum (e.g., houseflies to blue whales). However, strong density dependence at either the adult reproduction or offspring survival life stage creates quasi‐independent population dynamics, allowing fast‐type reproduction alongside slow‐type survival (e.g., trees and large fish), or the perhaps rarer slow‐type reproduction alongside fast‐type survival (e.g., mayflies—short‐lived adults producing few long‐lived offspring). Therefore, most types of species life histories in nature can potentially be explained via the eco‐evolutionary consequences of density‐dependent selection given the possible separation of demographic effects at different life stages.  相似文献   

6.
In the face of rapid anthropogenic environmental change, it is increasingly important to understand how ecological and evolutionary interactions affect the persistence of natural populations. Augmented gene flow has emerged as a potentially effective management strategy to counteract negative consequences of genetic drift and inbreeding depression in small and isolated populations. However, questions remain about the long‐term impacts of augmented gene flow and whether changes in individual and population fitness are reflected in ecosystem structure, potentiating eco‐evolutionary feedbacks. In this study, we used Trinidadian guppies (Poecilia reticulata) in experimental outdoor mesocosms to assess how populations with different recent evolutionary histories responded to a scenario of severe population size reduction followed by expansion in a high‐quality environment. We also investigated how variation in evolutionary history of the focal species affected ecosystem dynamics. We found that evolutionary history (i.e., gene flow vs. no gene flow) consistently predicted variation in individual growth. In addition, gene flow led to faster population growth in populations from one of the two drainages, but did not have measurable impacts on the ecosystem variables we measured: zooplankton density, algal growth, and decomposition rates. Our results suggest that benefits of gene flow may be long‐term and environment‐dependent. Although small in replication and duration, our study highlights the importance of eco‐evolutionary interactions in determining population persistence and sets the stage for future work in this area.  相似文献   

7.
Some symbiotic taxa may have evolved to track changes in the level and quality of food resources provided by the host to increase reproduction and dispersal. As a consequence, some ectosymbionts synchronize their reproduction and activity with particular stages of their host's living cycle. In this article we examined temporal patterns of variation in prevalence and abundance of feather mites living on pre‐migratory barn swallows Hirundo rustica. Feather mites in the lineages Pterolichoidea and Analgoidea are the most common arthropod ectosymbionts living at the expenses of feather oil. We investigated whether the seasonal variations in levels of several measures of physiological condition associated with host migration were related to changes in prevalence and abundance of mites. The results suggest that the variation in prevalence of feather mites, and thus probably the mode of acquisition and dispersal of these symbionts, is linked to an increase in host sociality before migration. Physiological dynamics of hosts after the breeding season point at two clearly identifiable periods: a post‐breeding period when physiological condition remains stationary or decreases, and a pre‐migratory period characterized by a rapid increase in several measures of physiological condition. Mite population dynamics were synchronized with migratory disposition during the period of highest host gregariousness. These synchronized processes occurred in both study years, although dynamics of migratory disposition and mite prevalence and abundance differ somewhat between years for adult and juvenile hosts. Mite population increase before host migration may be a response to a higher quantity of food provided by the host, namely oil from the urpoygial gland which is stimulated by hormones. Therefore, mites might have evolved to adjust their reproduction to the time when they have more chance of dispersal through horizontal transmission. In addition, body mass of juvenile and adult hosts were positively related with mite abundance in both years after allowing for several influencing factors. Body mass variation may reflect adequately fitness of host or their current physiological state, for instance, differences in the secretion of lipids on feathers or a more adequate microclimate to these symbionts.  相似文献   

8.
Dries Bonte  Maxime Dahirel 《Oikos》2017,126(4):472-479
The study of tradeoffs among major life history components (age at maturity, lifespan and reproduction) allowed the development of a quantitative framework to understand how environmental variation shapes patterns of biodiversity among and within species. Because every environment is inherently spatially structured, and in most cases temporally variable, individuals need to move within and among habitats to maximize fitness. Dispersal is often assumed to be tightly integrated into life histories through genetic correlations with other vital traits. This assumption is particularly strong within the context of a fast‐slow continuum of life‐history variation. Such a framework is to date used to explain many aspects of population and community dynamics. Evidence for a consistent and context‐independent integration of dispersal in life histories is, however, weak. We therefore advocate the explicit integration of dispersal into life history theory as a principal axis of variation influencing fitness, that is free to evolve, independently of other life history traits. We synthesize theoretical and empirical evidence on the central role of dispersal and its evolutionary dynamics on the spatial distribution of ecological strategies and its impact on population spread, invasions and coexistence. By applying an optimality framework we show that the inclusion of dispersal as an independent dimension of life histories might substantially change our view on evolutionary trajectories in spatially structured environments. Because changes in the spatial configuration of habitats affect the costs of movement and dispersal, adaptations to reduce these costs will increase phenotypic divergence among and within populations. We outline how this phenotypic heterogeneity is anticipated to further impact population and community dynamics.  相似文献   

9.
Dispersal (i.e. movement from a natal or breeding site to another breeding site) is a central process in ecology and evolution as it affects the eco‐evolutionary dynamics of spatially structured populations. Dispersal evolution is regulated by the balance between costs and benefits, which is influenced by the individual phenotype (i.e. phenotype‐dependent dispersal) and environmental factors (i.e. condition‐dependent dispersal). Even though these processes have been extensively studied in species with simple life cycles, our knowledge about these mechanisms in organisms displaying complex life cycles remains fragmentary. In fact, little is specifically known about how the interplay between individual and environmental factors may lead to alternative dispersal strategies that, in turn, lead to the coexistence of contrasted site fidelity phenotypes. In this paper, we examined breeding dispersal in a pond‐breeding amphibian, the great crested newt Triturus cristatus, within usual walking distances for a newt. We took advantage of recent developments in multi‐event capture–recapture models and used capture–recapture data (946 newts marked) collected in a spatially structured population occupying a large pond network (73 ponds). We showed a high rate of breeding site infidelity (i.e. pond use) and the coexistence of two dispersal phenotypes, namely, a highly pond faithful phenotype and a dispersing phenotype. Individuals that were site faithful at time t – 1 were therefore more likely to remain site faithful at time t. Our results also demonstrated that the probability that individuals belong to one or the other dispersal phenotypes depended on environmental and individual factors. In particular, we highlighted the existence of a dispersal syndrome implying a covariation pattern among dispersal behavior, body size, and survival. Our work opens new research prospects in the evolution of dispersal in organisms displaying complex life cycles and raises interesting questions about the evolutionary pathways that contribute to the diversification of movement strategies in the wild.  相似文献   

10.
Dispersal is a key trait responsible for the spread of individuals and genes among local populations, thereby generating eco‐evolutionary interactions. Especially in heterogeneous metapopulations, a tight coupling between dispersal, population dynamics and the evolution of local adaptation is expected. In this respect, dispersal should counteract ecological specialization by redistributing locally selected phenotypes (i.e. migration load). Habitat choice following an informed dispersal decision, however, can facilitate the evolution of ecological specialization. How such informed decisions influence metapopulation size and variability is yet to be determined. By means of individual‐based modelling, we demonstrate that informed decisions about both departure and settlement decouple the evolution of dispersal and that of generalism, selecting for highly dispersive specialists. Choice at settlement is based on information from the entire dispersal range, and therefore decouples dispersal from ecological specialization more effectively than choice at departure, which is only based on local information. Additionally, habitat choice at departure and settlement reduces local and metapopulation variability because of the maintenance of ecological specialization at all levels of dispersal propensity. Our study illustrates the important role of habitat choice for dynamics of spatially structured populations and thus emphasizes the importance of considering that dispersal is often informed.  相似文献   

11.
Costs associated with reproduction are widely known to play a role in the evolution of reproductive tactics with consequences to population and eco‐evolutionary dynamics. Evaluating these costs as they pertain to species in the wild remains an important goal of evolutionary ecology. Individual heterogeneity, including differences in individual quality (i.e., among‐individual differences in traits associated with survival and reproduction) or state, and variation in environmental and social conditions can modulate the costs of reproduction; however, few studies have considered effects of these factors simultaneously. Taking advantage of a detailed, long‐term dataset for a population of feral horses (Sable Island, Nova Scotia, Canada), we address the question of how intrinsic (quality, age), environmental (winter severity, location), and social conditions (group size, composition, sex ratio, density) influence the costs of reproduction on subsequent reproduction. Individual quality was measured using a multivariate analysis on a combination of four static and dynamic traits expected to depict heterogeneity in individual performance. Female quality and age interacted with reproductive status of the previous year to determine current reproductive effort, while no effect of social or environmental covariates was found. High‐quality females showed higher probabilities of giving birth and weaning their foal regardless of their reproductive status the previous year, while those of lower quality showed lower probabilities of producing foals in successive years. Middle‐aged (prime) females had the highest probability of giving birth when they had not reproduced the year before, but no such relationship with age was found among females that had reproduced the previous year, indicating that prime‐aged females bear higher costs of reproduction. We show that individual quality and age were key factors modulating the costs of reproduction in a capital breeder but that environmental or social conditions were not, highlighting the importance of considering multiple factors when studying costs of reproduction.  相似文献   

12.
Eco‐evolutionary dynamics are now recognized to be highly relevant for population and community dynamics. However, the impact of evolutionary dynamics on spatial patterns, such as the occurrence of classical metapopulation dynamics, is less well appreciated. Here, we analyse the evolutionary consequences of spatial network connectivity and topology for dispersal strategies and quantify the eco‐evolutionary feedback in terms of altered classical metapopulation dynamics. We find that network properties, such as topology and connectivity, lead to predictable spatio‐temporal correlations in fitness expectations. These spatio‐temporally stable fitness patterns heavily impact evolutionarily stable dispersal strategies and lead to eco‐evolutionary feedbacks on landscape level metrics, such as the number of occupied patches, the number of extinctions and recolonizations as well as metapopulation extinction risk and genetic structure. Our model predicts that classical metapopulation dynamics are more likely to occur in dendritic networks, and especially in riverine systems, compared to other types of landscape configurations. As it remains debated whether classical metapopulation dynamics are likely to occur in nature at all, our work provides an important conceptual advance for understanding the occurrence of classical metapopulation dynamics which has implications for conservation and management of spatially structured populations.  相似文献   

13.
Aims To better understand how demographic processes shape the range dynamics of woody plants (in this case, Proteaceae), we introduce a likelihood framework for fitting process‐based models of range dynamics to spatial abundance data. Location The fire‐prone Fynbos biome (Cape Floristic Region, South Africa). Methods Our process‐based models have a spatially explicit demographic submodel (describing dispersal, reproduction, mortality and local extinction) as well as an observation submodel (describing imperfect detection of individuals), and are constrained by species‐specific predictions of habitat distribution models and process‐based models for seed dispersal by wind. Free model parameters were varied to find parameter sets with the highest likelihood. After testing this approach with simulated data, we applied it to eight Proteaceae species that differ in breeding system (monoecy versus dioecy) and adult fire survival. We assess the importance of Allee effects and negative density dependence for range dynamics, by using the Akaike information criterion to select between alternative models fitted for the same species. Results The best model for all dioecious study species included Allee effects, whereas this was true for only one of four monoecious species. As expected, sprouters (in which adults survive fire) were estimated to have lower rates of reproduction and catastrophic population extinction than related non‐sprouters. Overcompensatory population dynamics seem important for three of four non‐sprouters. We also found good quantitative agreement between independent data and most estimates of reproduction, carrying capacity and extinction probability. Main conclusions This study shows that process‐based models can quantitatively describe how large‐scale abundance distributions arise from the movement and interaction of individuals. It stresses links between the life history, demography and range dynamics of Proteaceae: dioecious species seem more susceptible to Allee effects which reduce migration ability and increase local extinction risk, and sprouters seem to have high persistence of established populations, but their low reproduction limits habitat colonization and migration.  相似文献   

14.
Recent studies have established the ecological and evolutionary importance of animal personalities. Individual differences in movement and space‐use, fundamental to many personality traits (e.g. activity, boldness and exploratory behaviour) have been documented across many species and contexts, for instance personality‐dependent dispersal syndromes. Yet, insights from the concurrently developing movement ecology paradigm are rarely considered and recent evidence for other personality‐dependent movements and space‐use lack a general unifying framework. We propose a conceptual framework for personality‐dependent spatial ecology. We link expectations derived from the movement ecology paradigm with behavioural reaction‐norms to offer specific predictions on the interactions between environmental factors, such as resource distribution or landscape structure, and intrinsic behavioural variation. We consider how environmental heterogeneity and individual consistency in movements that carry‐over across spatial scales can lead to personality‐dependent: (1) foraging search performance; (2) habitat preference; (3) home range utilization patterns; (4) social network structure and (5) emergence of assortative population structure with spatial clusters of personalities. We support our conceptual model with spatially explicit simulations of behavioural variation in space‐use, demonstrating the emergence of complex population‐level patterns from differences in simple individual‐level behaviours. Consideration of consistent individual variation in space‐use will facilitate mechanistic understanding of processes that drive social, spatial, ecological and evolutionary dynamics in heterogeneous environments.  相似文献   

15.
Many species show migratory behaviour in response to seasonal changes in environmental conditions. A peculiar, yet widespread phenomenon is partial migration, when a single population consists of both migratory and non‐migratory individuals. There are still many open questions regarding the stability and evolutionary significance of such populations. For passerines the inheritance of migratory activity is best described by the threshold model of quantitative genetics. Such a model has not yet been employed in theoretical studies, in which stability of partially migratory populations is usually linked to group differences in survival or reproduction. Here we develop a parsimonious model featuring a conditional genetic threshold for passerine migratory behaviour under which stable partial migration can be observed, and we explore the resulting selection landscape. Our model results show a cline in migratory behaviour across the landscape, from fully migratory populations to fully residential populations, with a fairly wide zone of partially migratory populations, which is stable in both time and space under a wide range of parameter settings. Temporal stability of the zone is linked with the yearly variance in both migration survival and resident winter survival. In contrast to other theoretical studies, we show that density dependence in winter survival is not essential for observing partially migratory populations. In addition, we observe that selection on the genetic threshold value occurs mainly at the borders of the zone of partial migration. This result suggests that fully migratory and fully residential populations in areas far from the zone of partial migration can harbour genetic diversity that allows the appearance of the alternative phenotype under (a wide range of) different conditions.  相似文献   

16.
This paper advances an hypothesis that the primary adaptive driver of seasonal migration is maintenance of site fidelity to familiar breeding locations. We argue that seasonal migration is therefore principally an adaptation for geographic persistence when confronted with seasonality – analogous to hibernation, freeze tolerance, or other organismal adaptations to cyclically fluctuating environments. These ideas stand in contrast to traditional views that bird migration evolved as an adaptive dispersal strategy for exploiting new breeding areas and avoiding competitors. Our synthesis is supported by a large body of research on avian breeding biology that demonstrates the reproductive benefits of breeding‐site fidelity. Conceptualizing migration as an adaptation for persistence places new emphasis on understanding the evolutionary trade‐offs between migratory behaviour and other adaptations to fluctuating environments both within and across species. Seasonality‐induced departures from breeding areas, coupled with the reproductive benefits of maintaining breeding‐site fidelity, also provide a mechanism for explaining the evolution of migration that is agnostic to the geographic origin of migratory lineages (i.e. temperate or tropical). Thus, our framework reconciles much of the conflict in previous research on the historical biogeography of migratory species. Although migratory behaviour and geographic range change fluidly and rapidly in many populations, we argue that the loss of plasticity for migration via canalization is an overlooked aspect of the evolutionary dynamics of migration and helps explain the idiosyncratic distributions and migratory routes of long‐distance migrants. Our synthesis, which revolves around the insight that migratory organisms travel long distances simply to stay in the same place, provides a necessary evolutionary context for understanding historical biogeographic patterns in migratory lineages as well as the ecological dynamics of migratory connectivity between breeding and non‐breeding locations.  相似文献   

17.
Despite considerable interest in temporal and spatial variation of phenotypic selection, very few methods allow quantifying this variation while correctly accounting for the error variance of each individual estimate. Furthermore, the available methods do not estimate the autocorrelation of phenotypic selection, which is a major determinant of eco‐evolutionary dynamics in changing environments. We introduce a new method for measuring variable phenotypic selection using random regression. We rely on model selection to assess the support for stabilizing selection, and for a moving optimum that may include a trend plus (possibly autocorrelated) fluctuations. The environmental sensitivity of selection also can be estimated by including an environmental covariate. After testing our method on extensive simulations, we apply it to breeding time in a great tit population in the Netherlands. Our analysis finds support for an optimum that is well predicted by spring temperature, and occurs about 33 days before a peak in food biomass, consistent with what is known from the biology of this species. We also detect autocorrelated fluctuations in the optimum, beyond those caused by temperature and the food peak. Because our approach directly estimates parameters that appear in theoretical models, it should be particularly useful for predicting eco‐evolutionary responses to environmental change.  相似文献   

18.
In migratory birds, traits such as orientation and distance are known to have a strong genetic background, and they often exhibit considerable within‐population variation. How this variation relates to evolutionary responses to ongoing selection is unknown because the underlying mechanisms that translate environmental changes into population genetic changes are unclear. We show that within‐population genetic structure in southern German blackcaps (Sylvia atricapilla) is related to individual differences in migratory behavior. Our 3‐year study revealed a positive correlation between individual migratory origins, denoted via isotope (δ2H) values, and genetic distances. Genetic diversity and admixture differed not only across a recently established migratory polymorphism with NW‐ and SW‐migrating birds but also across δ2H clusters within the same migratory route. Our results suggest assortment based on individual migratory origins which would facilitate evolutionary responses. We scrutinized arrival times and microhabitat choice as potential mechanisms mediating between individual variation in migratory behavior and assortment. We found significant support that microhabitat choice, rather than timing of arrival, is associated with individual variation in migratory origins. Moreover, examining genetic diversity across the migratory divide, we found migrants following the NW route to be genetically more distinct from each other compared with migrants following the traditional SW route. Our study suggests that migratory behavior shapes population genetic structure in blackcaps not only across the migratory divide but also on an individual level independent of the divide. Thus, within‐population variation in migratory behavior might play an important role in translating environmental change into genetic change.  相似文献   

19.
Although partial migration, a phenomenon in which some individuals in a population conduct seasonal migrations while others remain resident, is common among animals, its importance in facilitating biological invasions has not been demonstrated. To illustrate how partial migration might facilitate invasions in spatially complex habitats, we developed an individual‐based model of common carp Cyprinus carpio in systems of lakes and winterkill‐prone marshes in the Upper Mississippi River Basin (UMRB). Our model predicted that common carp are unable to become invasive in lakes of the UMRB unless they conduct partial migrations into winterkill‐prone marshes in which recruitment rates are high in the absence of native predators that forage on carp eggs and larvae. Despite low dispersal rates of juveniles and higher mortality rates of migrants, partial migration was adaptive across a wide range of migration rates and winterkill frequencies. Partial migration rates as low as 10% and winterkill occurrence as infrequent as once in 20 years were sufficient to cause invasiveness because of carp's reproductive potential and longevity. Consistent with the results of our model, empirical data showed that lake connectivity to winterkill‐prone marshes was an important driver of carp abundance within the study region. Our results demonstrate that biological invasions may be driven by a small, migratory contingent of a population that exploits more beneficial reproductive habitats.  相似文献   

20.
Knowledge of the ecological and evolutionary causes of dispersal can be crucial in understanding the behaviour of spatially structured populations, and predicting how species respond to environmental change. Despite the focus of much theoretical research, simplistic assumptions regarding the dispersal process are still made. Dispersal is usually regarded as an unconditional process although in many cases fitness gains of dispersal are dependent on environmental factors and individual state. Condition-dependent dispersal strategies will often be superior to unconditional, fixed strategies. In addition, dispersal is often collapsed into a single parameter, despite it being a process composed of three interdependent stages: emigration, inter-patch movement and immigration, each of which may display different condition dependencies. Empirical studies have investigated correlates of these stages, emigration in particular, providing evidence for the prevalence of conditional dispersal strategies. Ill-defined use of the term 'dispersal', for movement across many different spatial scales, further hinders making general conclusions and relating movement correlates to consequences at the population level. Logistical difficulties preclude a detailed study of dispersal for many species, however incorporating unrealistic dispersal assumptions in spatial population models may yield inaccurate and costly predictions. Further studies are necessary to explore the importance of incorporating specific condition-dependent dispersal strategies for evolutionary and population dynamic predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号