首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
水稻的耐淹性状及其Sub1基因   总被引:2,自引:0,他引:2  
熊怀阳  李阳生 《遗传》2010,32(9):886-893
近4年来, 水稻(Oryza sativa L.)耐淹性状及其分子机理的研究取得了长足的进展。水稻植株的耐淹性状主要由Submergence-1 (Sub1) 基因控制。Sub1通过调节乙烯和赤霉素介导的反应, 抑制淹水期间的伸长生长和减缓碳水化合物消耗来控制耐淹性状。文章介绍了水稻应对淹涝胁迫的两种策略, 影响耐淹性状的主要生理因素, Sub1基因定位以及它控制耐淹性状的机理; 阐述了Sub1基因在我国杂交水稻生产方面的应用前景。  相似文献   

2.
淹涝胁迫对鹅掌楸属植物叶片部分生理指标的影响   总被引:11,自引:1,他引:10  
研究了淹涝胁迫对不同种源鹅掌楸[Liriodendron chinense(Hemsl.)Sarg.]和杂种鹅掌楸(L.chinense xL.tulipifera)幼苗部分生理指标的影响。结果表明:在淹水处理24h后,杂种鹅掌楸幼苗叶片的净光合速率变化不明显,鹅掌楸幼苗叶片的净光合速率则有一定程度的下降;在淹水处理48h后,净光合速率均大幅度下降。在淹涝胁迫下及胁迫解除后,幼苗叶片叶绿素含量持续缓慢下降;而脯氨酸含量总体上呈现上升的趋势;与鹅掌楸相比,杂种鹅掌楸幼苗的超氧化物歧化酶(SOD)和过氧化物酶(POD)活性变化不明显,但SOD活性最高,POD活性最低。结果表明,杂种鹅掌楸具有较强的耐淹涝胁迫的能力。  相似文献   

3.
以‘博辣红牛’辣椒为材料,研究外源Ca~(2+)连续喷施不同天数对淹水胁迫下辣椒幼苗农艺性状和生理指标的影响,探讨Ca~(2+)对辣椒淹水胁迫伤害的缓解作用和适宜的喷施处理天数。结果显示:(1)辣椒幼苗生物量、壮苗指数、叶绿素、根系活力、脯氨酸、可溶性糖以及CAT和SOD活性随施Ca~(2+)天数的增加呈先升高后下降的趋势,MDA含量随施Ca~(2+)天数的增加呈先下降后上升的趋势。(2)施Ca~(2+)1d(T1d)处理对辣椒淹水胁迫伤害无明显缓解作用,连续施Ca~(2+)3d(T3d)和6d(T6d)处理的缓解效果不断增强,至连续施Ca~(2+)9d(T9d)时缓解效果达到最佳,随后连续施Ca~(2+)12d(T12d)和20d(T20d)处理的缓解效果又逐渐减弱,但仍显著优于T1d处理。研究表明,外源Ca~(2+)可以诱导增加淹水胁迫下辣椒幼苗渗透调节物质含量,上调抗氧化酶活性,降低叶绿素的降解,大幅提高根系活力,从而缓解淹水胁迫所造成的各种伤害,增强其忍耐淹水胁迫能力,并以连续施钙9d对淹水胁迫的缓解效果最佳。  相似文献   

4.
淹水胁迫下北美鹅掌楸无性系生理生化响应差异   总被引:1,自引:0,他引:1  
北美鹅掌楸(Liriodendron tulipifera)是优良用材和绿化树种,但极不耐涝,阻碍了其广泛应用。本研究以前期试验筛选出的3个耐淹无性系(T4、T27和T37)和3个不耐淹无性系(S5、S9和S20)为实验材料,开展温室盆栽模拟淹水胁迫实验,通过比较丙二醛(MDA)含量、相对电导率(EL)、叶绿素含量,以及酶活性等生理生化指标的差异,探索不同无性系对淹水胁迫的响应和抗性差异。结果显示:北美鹅掌楸对淹水胁迫反应敏感,淹水4d时,耐淹无性系和敏感无性系均呈现下部老叶黄花,上部嫩叶、顶芽萎蔫现象,叶绿素含量减少,MDA、EL显著增加,超氧化物歧化酶(SOD)和过氧化物酶(POD)等酶活性极显著增加。淹水6 d后,敏感无性系受到的胁迫伤害进一步加剧,叶片萎蔫脱落,MDA、EL持续增加,叶绿素含量极显著降低,SOD和POD总体呈下降趋势;而耐淹无性系顶芽缓慢恢复,在叶片脱落后幼叶展开,叶绿素含量下降幅度较小,MDA和EL缓慢下降,SOD和POD持续升高,淹水20 d左右近水面的茎端形成不定根和大量膨大皮孔。研究表明:耐淹型北美鹅掌楸可通过形成不定根和肥大的皮孔、保持较高的抗氧化酶活性等方式增强其抗涝能力;EL、叶绿素含量、SOD活性可作为北美鹅掌楸耐淹无性系中期选育指标。  相似文献   

5.
长江下游不同类型水稻分蘖期耐淹能力比较   总被引:2,自引:0,他引:2  
在分蘖期对长江下游稻作区主栽的9个水稻品种进行大田模拟没顶淹涝处理,研究淹涝胁迫对水稻植株农艺性状、生理指标和产量性状的影响,比较分析了常规粳稻、杂交籼稻和杂交粳稻对淹水胁迫环境适应性的差异.结果表明:淹水胁迫4d后,水稻株高及顶部全展3片叶长均比对照有不同程度的增加,伸长程度为杂交粳稻>杂交籼稻>常规粳稻.杂交粳稻的茎蘖数、绿叶数和地上部干质量损失率分别为18.0%、41.4%、13.2%,显著小于常规粳稻;杂交籼稻则介于杂交粳稻和常规粳稻之间,且整株死亡率显著低于常规粳稻.常规粳稻叶片中丙二醛(MDA)含量比对照增加1.91 μmol·g-1 FM,超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性明显降低;杂交粳稻和杂交籼稻MDA含量分别降低2.32和2.10 μmol·g-1 FM,SOD和CAT活性显著提高.不同类型品种的减产程度差异显著,常规粳稻的产量损失率达到38.5%,显著高于杂交粳稻和杂交籼稻,杂交粳稻产量损失率仅为4.1%.长江下游水稻分蘖期的耐淹涝能力为杂交粳稻强于杂交籼稻,常规粳稻的耐淹能力最低.  相似文献   

6.
水稻耐淹涝性状的遗传分析和SSR标记的研究   总被引:5,自引:0,他引:5  
陈永华  赵森  柳俊  严钦泉  肖国樱 《遗传》2006,28(12):1562-1566
淹涝胁迫对水稻生产造成了严重影响, 发掘可应用于耐淹涝辅助选择的分子标记(MAS), 将有助于水稻耐淹涝性状的遗传改良。应用耐淹涝材料FR13A和淹涝敏感材料IR39595-503-2-1-2为亲本做正反交获得F1和F2代群体。对正反交的F1群体的耐淹涝性状进行遗传分析, 发现正反交的F1代群体在耐淹涝性状上没有显著差异, 说明耐淹涝性状是核基因控制。从两次淹涝处理中F2代群体的分离情况来看, 来源于FR13A的耐淹特性表现出数量-质量性状遗传的特点。当淹涝胁迫压力比较轻时表现为数量性状遗传, 具有微效多基因的作用。当淹涝胁迫压力增大时, 表现为主效基因控制的质量性状。在SSR分析中, 187对SSR引物中有73对引物在两亲本间有明显的差异, 差异率为39%。用这73对差异引物, 对F2群体进行多态筛选, 结果筛选到一个与耐淹涝性状连锁的标记RM219, 验证了耐淹涝性状确实由主效基因Sub1控制, 因此, RM219在水稻耐淹涝育种中具有利用价值。  相似文献   

7.
拔节期淹涝胁迫对水稻形态和产量构成因素的影响   总被引:6,自引:0,他引:6  
以常规稻湘早籼45为供试材料,在拔节期设计不同淹水深度(2/3淹和全淹)及淹水持续时间(3、5、7和9 d)的淹涝胁迫试验,分析不同淹涝胁迫处理对水稻绿叶数、卷叶长度、叶鞘长度、高位分蘖等形态因子以及产量构成因子的影响。结果表明:不同淹水深度处理,绿叶数与淹水持续时间呈负相关,且2/3淹较全淹更明显;全淹处理,茎变化明显;2/3淹处理,叶变化明显;高位分蘖率与淹水持续时间呈正相关;卷叶长度变化,在2/3淹时,与淹水持续时间呈负相关,全淹时,两者呈正相关;叶鞘的变化,不同处理之间差异不大,均表现为伸长生长。不同淹涝胁迫处理对产量构成因子的影响均表现为空壳率高、穗结实粒数低和千粒重低,2/3淹持续9 d处理的影响最大,结实粒数最低,仅有34粒。探讨了不同淹涝胁迫环境,水稻茎、叶等形态特征变化的适应机制和可能原因。研究结果可为长江中下游地区水稻洪涝灾害防灾减灾以及抗灾品种选育提供科学依据。  相似文献   

8.
以3个不同品系的铁皮石斛幼苗为材料,分别于叶面喷施不同浓度的亚硒酸钠溶液处理,并结合人工控温生长条件下的低温胁迫试验,探讨外源硒对铁皮石斛幼苗耐冷性和恢复生长能力的影响作用及其与有关抗氧化生理指标间的关系。结果表明:(1)耐冷性表现较强的品系其幼苗在低温胁迫下的叶绿素、MDA及脯氨酸含量变化幅度相对小于耐冷性较弱的品系。(2)适量浓度(0.05~0.10mg.L-1)外源硒处理对低温胁迫下铁皮石斛幼苗叶绿素降解具有缓解效应,可降低MDA含量,增加脯氨酸含量,同时显著提高GSH-AsA循环活性,从而提高铁皮石斛幼苗的耐冷性,但过高浓度的外源硒处理(>0.20mg.L-1)则效果相反。(3)低温胁迫解除后,0.10mg.L-1的外源硒处理能引起铁皮石斛‘ZD-1’幼苗中AsA含量显著下降并促进其GSH合成积累,有效提升铁皮石斛幼苗在恢复生长期的综合抗氧化防御能力。  相似文献   

9.
以大豆"垦丰14"为试验材料,采用盆栽方法研究叶面喷施烯效唑对淹水胁迫下大豆叶片光合速率、内禀特性、荧光参数以及表型的影响,探讨烯效唑作为植物生长调节剂对逆境的缓解效应。结果表明:始花期(R1期)淹水显著降低了鼓粒期(R6期)大豆的最大净光合速率(P_(nmax)),但对叶绿素含量(Chl)、最大电子传递速率(J_(max))、本征光能吸收截面(σ_(ik))、捕光色素分子处于激发态的最小平均寿命(τmin)等参数无显著影响;喷施烯效唑显著提高大豆叶片叶绿素含量,增加叶片有效光能吸收截面(σ'_(ik)),降低捕光色素分子处于激发态的最小平均寿命,使得捕光色素分子更多处于基态;而且应用烯效唑可增加淹水胁迫下大豆叶片电子利用效率、最大净光合速率以及电子传递速率,并分别较淹水处理高35.3%、79.0%和39.2%;淹水胁迫会降低PSⅡ的潜在光化学效率Fv/Fo以及PSⅡ最大光化学效率Fv/Fm,喷施烯效唑可提高光化学效率;淹水和烯效唑处理均会降低株高、叶面积以及数字生物量,喷施烯效唑可以提高大豆叶片色调值以及归一化植被指数,改善淹水胁迫下大豆的生长状况。综上所述,烯效唑可以有效缓解淹水对大豆的不利影响,提高其耐涝性。  相似文献   

10.
采用逆转录聚合酶链式反应(RT-PCR)及蛋白免疫印迹杂交(Western Blot)技术,研究0.5 mmol/L亚精胺浸种的黄瓜幼苗在淹水胁迫下,根热激蛋白70基因(HSP70)mRNA和蛋白质的表达量的变化。结果表明:淹水胁迫使黄瓜根HSP70的mRNA和蛋白的表达呈现先上升后下降的趋势,在淹水4 h时,HSP70的mRNA和蛋白表达量均极显著高于未淹水处理; 亚精胺浸种的黄瓜根HSP70的mRNA和蛋白的表达量在24 h内呈一直上升的趋势,在淹水24 h时,HSP70的mRNA和蛋白表达量均极显著高于未淹水处理。淹涝胁迫下,亚精胺浸种的黄瓜根HSP70的mRNA和蛋白表达量在淹水12 h和24 h时极显著高于蒸馏水浸种。外源亚精胺能诱导淹涝胁迫下黄瓜幼苗根HSP70 mRNA和蛋白质的表达量的增加,缓解淹涝胁迫对黄瓜造成的伤害。  相似文献   

11.
Survival of rice (Oryza sativa) upon an extreme rise of the water level depends on rapid stem elongation, which is mediated by ethylene. A genomic clone (OS-ACS5) encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, which catalyzes a regulatory step in ethylene biosynthesis, has been isolated from cv IR36, a lowland rice variety. Expression was induced upon short- and long-term submergence in cv IR36 and in cv Plai Ngam, a Thai deepwater rice variety. Under hypoxic conditions, abscisic acid and gibberellin had a reciprocal opposite effect on the activity of OS-ACS5. Gibberellin up-regulated and abscisic acid down-regulated OS-ACS5 mRNA accumulation. Growth experiments indicated that lowland rice responded to submergence with a burst of growth early on, but lacked the ability to sustain elongation growth. Sustained growth, characteristic for deepwater rice, was correlated with a prolonged induction of OS-ACS5. In addition, a more pronounced capacity to convert ACC to ethylene, a limited ACC conjugation, and a high level of endogenous gibberellin(20) were characteristic for the deepwater variety. An elevated level of OS-ACS5 messenger was found in cv IR36 plants treated with exogenous ACC. This observation was concomitant with an increase in the capacity of converting ACC to ethylene and in elongation growth, and resulted in prolonged survival. In conclusion, OS-ACS5 is involved in the rapid elongation growth of deepwater rice by contributing to the initial and long-term increase in ethylene levels. Our data also suggest that ACC limits survival of submerged lowland rice seedlings.  相似文献   

12.
A rapid decrease of the plant hormone ABA under submergence is thought to be a prerequisite for the enhanced elongation of submerged shoots of rice (Oryza sativa L.). Here, we report that the level of phaseic acid (PA), an oxidized form of ABA, increased with decreasing ABA level during submergence. The oxidation of ABA to PA is catalyzed by ABA 8'-hydroxylase, which is possibly encoded by three genes (OsABA8ox1, -2 and -3) in rice. The ABA 8'-hydroxylase activity was confirmed in microsomes from yeast expressing OsABA8ox1. OsABA8ox1-green fluorescent protein (GFP) fusion protein in onion cells was localized to the endoplasmic reticulum. The mRNA level of OsABA8ox1, but not the mRNA levels of other OsABA8ox genes, increased dramatically within 1 h after submergence. On the other hand, the mRNA levels of genes involved in ABA biosynthesis (OsZEP and OsNCEDs) decreased after 1-2 h of submergence. Treatment of aerobic seedlings with ethylene and its precursor, 1-aminocyclopropane-1-carboxylate (ACC), rapidly induced the expression of OsABA8ox1, but the ethylene treatment did not strongly affect the expression of ABA biosynthetic genes. Moreover, pre-treatment with 1-methylcyclopropene (1-MCP), a potent inhibitor of ethylene action, partially suppressed induction of OsABA8ox1 expression under submergence. The ABA level was found to be negatively correlated with OsABA8ox1 expression under ACC or 1-MCP treatment. Together, these results indicate that the rapid decrease in ABA levels in submerged rice shoots is controlled partly by ethylene-induced expression of OsABA8ox1 and partly by ethylene-independent suppression of genes involved in the biosynthesis of ABA.  相似文献   

13.
14.
Rumex palustris responds to total submergence by increasing the elongation rate of young petioles. This favours survival by shortening the duration of submergence. Underwater elongation is stimulated by ethylene entrapped within the plant by surrounding water. However, abnormally fast extension rates were found to be maintained even when leaf tips emerged above the floodwater. This fast post-submergence growth was linked to a promotion of ethylene production that is presumed to compensate for losses brought about by ventilation. Three sources of ACC contributed to post-submergence ethylene production in R. palustris: (i) ACC that had accumulated in the roots during submergence and was transported in xylem sap to the shoot when stomata re-opened and transpiration resumed, (ii) ACC that had accumulated in the shoot during the preceding period of submergence and (iii) ACC produced de novo in the shoot following de-submergence. This new production of ethylene was associated with increased expression of an ACC synthase gene (RP-ACS1) and an ACC oxidase gene (RP-ACO1), increased ACC synthase activity and a doubling of ACC oxidase activity, measured in vitro. Out of seven species of Rumex examined, a de-submergence upsurge in ethylene production was seen only in shoots of those that had the ability to elongate fast when submerged.  相似文献   

15.
Plant responses to abiotic stresses are coordinated by arrays of growth and developmental programs.Gibberellic acid(CA) and abscisic acid(ABA) play critical roles in the developmental programs and environmental responses,respectively,through complex signaling and metabolism networks.However,crosstalk between the two phytohormones in stress responses remains largely unknown.In this study,we report that CIBBERELLIN-INSENSITIVE DWARF 1(GID1),a soluble receptor for GA,regulates stomatal development and patterning in rice(Oryza sativa L.).The gid1 mutant showed impaired biosynthesis of endogenous ABA under drought stress conditions,but it exhibited enhanced sensitivity to exogenous ABA.Scanning electron microscope and infrared thermal image analysis indicated an increase in the stomatal conductance in the gid1 mutant under drought conditions.Interestingly,the gid1 mutant had increased levels of chlorophyll and carbohydrates under submergence conditions,and showed enhanced reactive oxygen species(ROS)-scavenging ability and submergence tolerance compared with the wild-type.Further analyses suggested that the function of GID1 in submergence responses is partially dependent on ABA,and GA signaling by GID1 is involved in submergence tolerance by modulating carbohydrate consumption.Taken together,these findings suggest GID1 plays distinct roles in stomatal response and submergence tolerance through both the ABA and GA signaling pathways in rice.  相似文献   

16.
Nonstructural carbohydrate (NSC) accumulation in submergence tolerant rice cultivars (cv) was studied in six Indica rice [Oryza sativa (L.)] cv under control and simulated submerged conditions. Tolerant cultivars accumulated greater contents of NSC compared to the susceptible cultivars. Starch and total NSC content showed significant positive association with survival percentage. On the other hand, elongation due to submergence was significantly a negative association with survival. The CO2 photosynthetic rate, chlorophyll content, maximum photochemical efficiency of PS II (Fv/Fm), and activities of Rubisco were not significantly different between tolerant and susceptible cv under control condition. The ADP glucose pyrophosphorylase (AGPPase) activity was significantly higher in the tolerant cv and was a positive association with starch/NSC, whereas Fructose 1,6-diphosphatase (FDPase) activity was significantly higher in susceptible cv compared to tolerant cv and was a negative association with starch/NSC. Greater activities of AGPPase along with lower activities of FDPase might facilitate greater accumulation of NSC in tolerant rice cultivars.  相似文献   

17.
We investigated the effect of partial submergence on internode elongation in a Bangladesh variety of floating or deep water rice (Oryza sativa L., cv. Habiganj Aman II). In plants which were at least 21 days old, 7 days of submergence led to a 3- to 5-fold increase in internodal length. During submergence, the ethylene concentration in the internodes increased from about 0.02 to 1 microliters per liter. Treatment of nonsubmerged plants with ethylene also stimulated internode elongation. When ethylene synthesis in partially submerged plants was blocked with aminooxyacetic acid and aminoethoxyvinylglycine, internode elongation was inhibited. This growth inhibition was reversed when ethylene biosynthesis was restored with 1-aminocyclopropane-1-carboxylic acid (ACC). Radio-labeling studies showed that ethylene in floating rice was synthesized from methionine via ACC. Internodal tissue from submerged plants had a much higher capacity to form ethylene than did internodal tissue from nonsubmerged plants. This increase in ethylene synthesis appeared to be due to enhanced ACC formation rather than to increased conversion of ACC to ethylene. Our results indicate that ethylene produced during submergence is required for the stimulation of growth in submerged floating rice plants.  相似文献   

18.
19.
We examined the gibberellin (GA) and ethylene regulation of submergence-induced elongation in seedlings of the submergence-tolerant lowland rice (Oryza sativa L.) cvs Senia and Bomba. Elongation was enhanced after germination to facilitate water escape and reach air. We found that submergence-induced elongation depends on GA because it was counteracted by paclobutrazol (an inhibitor of GA biosynthesis), an effect that was negated by GA3. Moreover, in the cv Senia, submergence increased the content of active GA1 and its immediate precursors (GA53, GA19 and GA20) by enhancing expression of several GA biosynthesis genes (OsGA20ox1 and -2, and OsGA3ox2), but not by decreasing expression of several OsGA2ox (GA inactivating genes). Senia seedlings, in contrast to Bomba seedlings, did not elongate in response to ethylene or 1-aminocyclopropane-1-carboxylic-acid (ACC; an ethylene precursor) application, and submergence-induced elongation was not reduced in the presence of 1-methylcyclopropene (1-MCP; an ethylene perception inhibitor). Ethylene emanation was similar in Senia seedlings grown in air and in submerged-grown seedlings following de-submergence, while it increased in Bomba. The expression of ethylene biosynthesis genes (OsACS1, -2 and -3, and OsACO1) was not affected in Senia, but expression of OsACS5 was rapidly enhanced in Bomba upon submergence. Our results support the conclusion that submergence elongation enhancement of lowland rice is due to alteration of GA metabolism leading to an increase in active GA (GA1) content. Interestingly, in the cv Senia, in contrast to cv Bomba, this was triggered through an ethylene-independent mechanism.  相似文献   

20.
Genes/QTLs affecting flood tolerance in rice   总被引:8,自引:1,他引:7  
The adaptation of deepwater rice to flooding is attributed to two mechanisms, submergence tolerance and plant elongation. Using a QTL mapping study with replicated phenotyping under two contrasting (water qualities) submergence treatments and AFLP markers, we were able to identify several genes/QTLs that control plant elongation and submergence tolerance in a recombinant inbred rice population. Our results indicate that segregation of rice plants in their responses to different flooding stress conditions is largely due to the differential expression of a few key elongation and submergence tolerance genes. The most important gene was QIne1 mapped near sd-1 on chromosome 1. The Jalmagna (the deepwater parent) allele at this locus had a very large effect on internal elongation and contributed significantly to submergence tolerance under flooding. The second locus was a major gene, sub1(t), mapped to chromosome 9, which contributed to submergence tolerance only. The third one was a QTL, QIne4, mapped to chromosome 4. The IR74 (non-elongating parent) allele at this locus had a large effect for internal elongation. An additional locus that interacted strongly with both QIne1 and QIne4 appeared near RG403 on chromosome 5, suggesting a complex epistatic relationship among the three loci. Several QTLs with relatively small effects on plant elongation and submergence tolerance were also identified. The genetic aspects of these flooding tolerance QTLs with respect to patterns of differential expression of elongation and submergence tolerance genes under flooding are discussed. Received: 13 December 1999 / Accepted: 14 March 2000<@head-com-p1a.lf>Communicated by G. Wenzel  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号