首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Systems biology uses systems of mathematical rules and formulas to study complex biological phenomena. In cancer research there are three distinct threads in systems biology research: modeling biology or biophysics with the goal of establishing plausibility or obtaining insights, modeling based on statistics, bioinformatics, and reverse engineering with the goal of better characterizing the system, and modeling with the goal of clinical predictions. Using illustrative examples we discuss these threads in the context of cancer research.  相似文献   

2.
This study explores the conceptual history of systems biology and its impact on philosophical and scientific conceptions of reductionism, antireductionism and emergence. Development of systems biology at the beginning of 21st century transformed biological science. Systems biology is a new holistic approach or strategy how to research biological organisms, developed through three phases. The first phase was completed when molecular biology transformed into systems molecular biology. Prior to the second phase, convergence between applied general systems theory and nonlinear dynamics took place, hence allowing the formation of systems mathematical biology. The second phase happened when systems molecular biology and systems mathematical biology, together, were applied for analysis of biological data. Finally, after successful application in science, medicine and biotechnology, the process of the formation of modern systems biology was completed.Systems and molecular reductionist views on organisms were completely opposed to each other. Implications of systems and molecular biology on reductionist–antireductionist debate were quite different. The analysis of reductionism, antireductionism and emergence issues, in the era of systems biology, revealed the hierarchy between methodological, epistemological and ontological antireductionism. Primarily, methodological antireductionism followed from the systems biology. Only after, epistemological and ontological antireductionism could be supported.  相似文献   

3.
系统生物学是研究一个生物系统中所有组成成分(基因、mRNA、蛋白质等)的构成与组分之间相互关系的学科,近年来,系统生物学作为后基因组学时代研究的一个重要内容,已广泛深入到生命科学和医药学的各个领域。而作为中国传统医学而言,似乎与之相去甚远,然而当我们对这两个新老学科基础理论进行比较时,我们发现:传统中国医药与现代系统生物学研究理论的殊途同归。有鉴于此,本文论述了系统生物学和中医学的思想起源、相互联系,基于系统生物学的发展、研究思路和方法,阐述了生物学由还原论的研究方法过渡到系统论的研究方法,强调对生命现象从系统和整体的层次进行研究和把握,对传统中医学研究方法的变革起到了推动作用,最后对系统生物学在中医药学未来发展进行了评价。  相似文献   

4.
Systems biology in drug discovery   总被引:15,自引:0,他引:15  
The hope of the rapid translation of 'genes to drugs' has foundered on the reality that disease biology is complex, and that drug development must be driven by insights into biological responses. Systems biology aims to describe and to understand the operation of complex biological systems and ultimately to develop predictive models of human disease. Although meaningful molecular level models of human cell and tissue function are a distant goal, systems biology efforts are already influencing drug discovery. Large-scale gene, protein and metabolite measurements ('omics') dramatically accelerate hypothesis generation and testing in disease models. Computer simulations integrating knowledge of organ and system-level responses help prioritize targets and design clinical trials. Automation of complex primary human cell-based assay systems designed to capture emergent properties can now integrate a broad range of disease-relevant human biology into the drug discovery process, informing target and compound validation, lead optimization, and clinical indication selection. These systems biology approaches promise to improve decision making in pharmaceutical development.  相似文献   

5.
Systems healthcare is a holistic approach to health premised on systems biology and medicine. The approach integrates data from molecules, cells, organs, the individual, families, communities, and the natural and man-made environment. Both extrinsic and intrinsic influences constantly challenge the biological networks associated with wellness. Such influences may dysregulate networks and allow pathobiology to evolve, resulting in early clinical presentation that requires astute assessment and timely intervention for successful mitigation. Herein, we describe the components of relevant biological systems and the nature of progression from at-risk to manifest disease. We illustrate the systems approach by examining two relevant clinical examples: Alzheimer’s and cardiovascular diseases. The implications of systems healthcare management are examined through the lens of economics, ethics, policy and the law. Finally, we propose the need to develop new educational paradigms to enhance the training of the health professional in an era of systems medicine.  相似文献   

6.
The emergence of systems biology is bringing forth a new set of challenges for advancing science and technology. Defining ways of studying biological systems on a global level, integrating large and disparate data types, and dealing with the infrastructural changes necessary to carry out systems biology, are just a few of the extraordinary tasks of this growing discipline. Despite these challenges, the impact of systems biology will be far-reaching, and significant progress has already been made. Moving forward, the issue of how to use systems biology to improve the health of individuals must be a priority. It is becoming increasingly apparent that the field of systems biology and one of its important disciplines, proteomics, will have a major role in creating a predictive, preventative, and personalized approach to medicine. In this review, we define systems biology, discuss the current capabilities of proteomics and highlight some of the necessary milestones for moving systems biology and proteomics into mainstream health care.  相似文献   

7.
Xue Q  Miller-Jensen K 《BMB reports》2012,45(4):213-220
Viruses have evolved to manipulate the host cell machinery for virus propagation, in part by interfering with the host cellular signaling network. Molecular studies of individual pathways have uncovered many viral host-protein targets; however, it is difficult to predict how viral perturbations will affect the signaling network as a whole. Systems biology approaches rely on multivariate, context-dependent measurements and computational analysis to elucidate how viral infection alters host cell signaling at a network level. Here we describe recent advances in systems analyses of signaling networks in both viral and non-viral biological contexts. These approaches have the potential to uncover virus- mediated changes to host signaling networks, suggest new therapeutic strategies, and assess how cell-to-cell variability affects host responses to infection. We argue that systems approaches will both improve understanding of how individual virus-host protein interactions fit into the progression of viral pathogenesis and help to identify novel therapeutic targets.  相似文献   

8.
9.
This paper discusses the concept of circular causality in “biological relativity” (Noble, Interface Focus. 2, 56-64, 2012) in the context of integrative and multi-scale systems approaches to biology. It also discusses the relationship between systems biology and traditional medicine (sometimes called scholarly medical traditions) mainly from East Asia and India. Systems biology helps illuminate circular processes identified in traditional medicine, while the systems concept of attractors in complex systems will also be important in analysing dynamic balance in the body processes that traditional medicine is concerned with. Ways of nudging disordered processes towards good attractors through the use of traditional medicines can lead to the development of new ways not only of curing disease but also of its prevention. Examples are given of cost-effective multi-component remedies that use integrative ideas derived from traditional medicine.  相似文献   

10.
Systems biology is a rapidly expanding field of research and is applied in a number of biological disciplines. In animal sciences, omics approaches are increasingly used, yielding vast amounts of data, but systems biology approaches to extract understanding from these data of biological processes and animal traits are not yet frequently used. This paper aims to explain what systems biology is and which areas of animal sciences could benefit from systems biology approaches. Systems biology aims to understand whole biological systems working as a unit, rather than investigating their individual components. Therefore, systems biology can be considered a holistic approach, as opposed to reductionism. The recently developed 'omics' technologies enable biological sciences to characterize the molecular components of life with ever increasing speed, yielding vast amounts of data. However, biological functions do not follow from the simple addition of the properties of system components, but rather arise from the dynamic interactions of these components. Systems biology combines statistics, bioinformatics and mathematical modeling to integrate and analyze large amounts of data in order to extract a better understanding of the biology from these huge data sets and to predict the behavior of biological systems. A 'system' approach and mathematical modeling in biological sciences are not new in itself, as they were used in biochemistry, physiology and genetics long before the name systems biology was coined. However, the present combination of mass biological data and of computational and modeling tools is unprecedented and truly represents a major paradigm shift in biology. Significant advances have been made using systems biology approaches, especially in the field of bacterial and eukaryotic cells and in human medicine. Similarly, progress is being made with 'system approaches' in animal sciences, providing exciting opportunities to predict and modulate animal traits.  相似文献   

11.
Systems biology views and studies the biological systems in the context of complex interactions between their building blocks and processes. Given its multi-level complexity, metabolic syndrome (MetS) makes a strong case for adopting the systems biology approach. Despite many MetS traits being highly heritable, it is becoming evident that the genetic contribution to these traits is mediated via gene–gene and gene–environment interactions across several spatial and temporal scales, and that some of these traits such as lipotoxicity may even be a product of long-term dynamic changes of the underlying genetic and molecular networks. This presents several conceptual as well as methodological challenges and may demand a paradigm shift in how we study the undeniably strong genetic component of complex diseases such as MetS. The argument is made here that for adopting systems biology approaches to MetS an integrative framework is needed which glues the biological processes of MetS with specific physiological mechanisms and principles and that lipotoxicity is one such framework. The metabolic phenotypes, molecular and genetic networks can be modeled within the context of such integrative framework and the underlying physiology.  相似文献   

12.
A high profile context in which physics and biology meet today is in the new field of systems biology. Systems biology is a fascinating subject for sociological investigation because the demands of interdisciplinary collaboration have brought epistemological issues and debates front and centre in discussions amongst systems biologists in conference settings, in publications, and in laboratory coffee rooms. One could argue that systems biologists are conducting their own philosophy of science. This paper explores the epistemic aspirations of the field by drawing on interviews with scientists working in systems biology, attendance at systems biology conferences and workshops, and visits to systems biology laboratories. It examines the discourses of systems biologists, looking at how they position their work in relation to previous types of biological inquiry, particularly molecular biology. For example, they raise the issue of reductionism to distinguish systems biology from molecular biology. This comparison with molecular biology leads to discussions about the goals and aspirations of systems biology, including epistemic commitments to quantification, rigor and predictability. Some systems biologists aspire to make biology more similar to physics and engineering by making living systems calculable, modelable and ultimately predictable-a research programme that is perhaps taken to its most extreme form in systems biology's sister discipline: synthetic biology. Other systems biologists, however, do not think that the standards of the physical sciences are the standards by which we should measure the achievements of systems biology, and doubt whether such standards will ever be applicable to 'dirty, unruly living systems'. This paper explores these epistemic tensions and reflects on their sociological dimensions and their consequences for future work in the life sciences.  相似文献   

13.
系统生物学——生命科学的新领域   总被引:14,自引:0,他引:14  
系统生物学是继基因组学、蛋白质组学之后一门新兴的生物学交叉学科,代表21世纪生物学的未来.最近,系统生物学研究机构纷纷成立.在研究上,了解一个复杂的生物系统需要整合实验和计算方法.基因组学和蛋白质组学中的高通量方法为系统生物学发展提供了大量的数据.计算生物学通过数据处理、模型构建和理论分析,成为系统生物学发展的一个必不可缺、强有力的工具.在应用上,系统生物学代表新一代医药开发和疾病防治的方向.  相似文献   

14.
Fundamental issues in systems biology   总被引:7,自引:0,他引:7  
In the context of scientists' reflections on genomics, we examine some fundamental issues in the emerging postgenomic discipline of systems biology. Systems biology is best understood as consisting of two streams. One, which we shall call 'pragmatic systems biology', emphasises large-scale molecular interactions; the other, which we shall refer to as 'systems-theoretic biology', emphasises system principles. Both are committed to mathematical modelling, and both lack a clear account of what biological systems are. We discuss the underlying issues in identifying systems and how causality operates at different levels of organisation. We suggest that resolving such basic problems is a key task for successful systems biology, and that philosophers could contribute to its realisation. We conclude with an argument for more sociologically informed collaboration between scientists and philosophers.  相似文献   

15.
Systems Biology has a mission that puts it at odds with traditional paradigms of physics and molecular biology, such as the simplicity requested by Occam’s razor and minimum energy/maximal efficiency. By referring to biochemical experiments on control and regulation, and on flux balancing in yeast, we show that these paradigms are inapt. Systems Biology does not quite converge with biology either: Although it certainly requires accurate ‘stamp collecting’, it discovers quantitative laws. Systems Biology is a science of its own, discovering own fundamental principles, some of which we identify here.  相似文献   

16.
系统生物学对医学的影响   总被引:1,自引:0,他引:1  
系统生物学是21世纪最前沿的科学之一,它是随着生命科学飞速发展而产生的一门新兴生物学分支[1],它综合数学、信息科学和生物学的各种工具来阐明和理解大量的数据所包含的生物医学意义,从而使人们能够从整体上理解生物医学系统并精确、量化地预测生物医学系统的行为。随着系统生物学的发展及其理论的突破,将在疾病诊治、新药开发、预防医学方面发挥重要的作用,有助于弥补传统医学缺陷并促进其发展。  相似文献   

17.
Hood L  Flores M 《New biotechnology》2012,29(6):613-624
Systems biology and the digital revolution are together transforming healthcare to a proactive P4 medicine that is predictive, preventive, personalized and participatory. Systems biology - holistic, global and integrative in approach - has given rise to systems medicine, a systems approach to health and disease. Systems medicine promises to (1) provide deep insights into disease mechanisms, (2) make blood a diagnostic window for viewing health and disease for the individual, (3) stratify complex diseases into their distinct subtypes for a impedance match against proper drugs, (4) provide new approaches to drug target discovery and (5) generate metrics for assessing wellness. P4 medicine, the clinical face of systems medicine, has two major objectives: to quantify wellness and to demystify disease. Patients and consumers will be a major driver in the realization of P4 medicine through their participation in medically oriented social networks directed at improving their own healthcare. P4 medicine has striking implications for society - including the ability to turn around the ever-escalating costs of healthcare. The challenge in bringing P4 medicine to patients and consumers is twofold: first, inventing the strategies and technologies that will enable P4 medicine and second, dealing with the impact of P4 medicine on society - including key ethical, social, legal, regulatory, and economic issues. Managing the societal problems will pose the most significant challenges. Strategic partnerships of a variety of types will be necessary to bring P4 medicine to patients.  相似文献   

18.
One of the most common observations in cell death assays is that not all cells die at the same time, or at the same treatment dose. Here, using the perspective of the systems biology of apoptosis and the context of cancer treatment, we discuss possible sources of this cell-to-cell variability as well as its implications for quantitative measurements and computational models of cell death. Many different factors, both within and outside of the apoptosis signaling networks, have been correlated with the variable responses to various death-inducing treatments. Systems biology models offer us the opportunity to take a more synoptic view of the cell death process to identify multifactorial determinants of the cell death decision. Finally, with an eye toward ‘systems pharmacology'', we discuss how leveraging this new understanding should help us develop combination treatment strategies to compel cancer cells toward apoptosis by manipulating either the biochemical state of cancer cells or the dynamics of signal transduction.  相似文献   

19.
流式细胞术是一种采用激光束激发单行流动的细胞,对它的散射光和携带的荧光进行探测,从而完成细胞分析和分选的技术。以流式细胞术为核心技术,流式细胞仪集光学、电子学、生物学、免疫学等多门学科和技术于一体,能够高效分析微小颗粒(如细胞,细菌)的先进科技设备。它对社会产生了深远的影响,成为了科学研究的必要工具。最近几年,流式细胞仪取得了长足进步。为了深入的了解它,本文从流式细胞仪的工作原理和技术指标,在临床医学、生物学、生殖学和制药学中的应用,以及它的世界格局、仪器功能的最新进展三方面,进行了简明、扼要的论述。展望未来:功能专业化、自动化,体积小型化,多色多参数分析能力提高和分析分选速度更快成为流式细胞仪发展的趋势。  相似文献   

20.
Systems modeling is emerging as a valuable tool in therapeutics. This is seen by the increasing use of clinically relevant computational models and a rise in systems biology companies working with the pharmaceutical industry. Systems models have helped understand the effects of pharmacological intervention at receptor, intracellular and intercellular communication stages of cell signaling. For instance, angiogenesis models at the ligand-receptor interaction level have suggested explanations for the failure of therapies for cardiovascular disease. Intracellular models of myeloma signaling have been used to explore alternative drug targets and treatment schedules. Finally, modeling has suggested novel approaches to treating disorders of intercellular communication, such as diabetes. Systems modeling can thus fill an important niche in therapeutics by making drug discovery a faster and more systematic process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号