首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 426 毫秒
1.
Guanidine resistance (gr) mutations of foot-and-mouth disease virus were mapped by recombining pairs of temperature-sensitive mutants belonging to different subtypes. In each cross, one parent possessed a gr mutation. Recombinants were isolated by selection at the nonpermissive temperature and assayed for the ability to grow in the presence of guanidine. From the progeny of three crosses, four different types of recombinant were distinguished on the basis of protein composition and RNA fingerprint. The sequences of the RNase T1-resistant oligonucleotides were determined and located in the full-length sequence of foot-and-mouth disease virus. The resulting maps show that (i) each recombinant was generated by a single genetic crossover, and (ii) both of the gr mutations studied were located within an internal 2.9-kilobase region which spans the P34 gene. This supports our hypothesis that guanidine inhibits the growth of foot-and-mouth disease virus by acting on nonstructural polypeptide P34. Additional evidence was provided by RNA fingerprinting gr mutants. In two of four cases the gr mutation was associated with a change in an oligonucleotide located near the 3' end of the P34 gene; in one of these the nucleotide substitution was identified.  相似文献   

2.
In previous work in our laboratory, 12 guanidine-resistant (gr) mutants of poliovirus were selected from 12 separate stocks of plaque-purified guanidine-sensitive (gs) viruses (K. Anderson-Sillman, S. Bartal, and D. R. Tershak, J. Virol. 50:922-928, 1984). Peptide mapping of protein 2C and evaluation of virus growth at different temperatures enabled us to subdivide these mutants into several distinct groups (D. R. Tershak, Can. J. Microbiol. 31:1166-1168, 1985; Anderson-Sillman et al., J. Virol.). Studies by Pincus et al. indicate that two nucleotide changes in codon 179 of protein 2C leads to an Asn-to-Gly or Asn-to-Ala change and that these missense modifications account for guanidine resistance (S. E. Pincus, H. Rohl, and E. Wimmer, Virology 157:83-88, 1987; S. E. Pincus and E. Wimmer, J. Virol. 60:793-796, 1986). In the present report, we confirm their findings but also show that a single amino acid change of Phe to Tyr in residue 164 of protein 2C or a Met-to-Leu replacement in amino acid 187 coupled with mutations in codons 233 or 295 and 309 could confer guanidine resistance.  相似文献   

3.
Sequence analysis of the genomic RNA of interstrain guanidine-resistant and antibody-resistant variant recombinants of poliovirus type 1 mapped the resistance of mutants capable of growth in 2.0 mM guanidine hydrochloride to a region located 3' of nucleotide 4444. This region of the viral genome specifies the nonstructural protein 2C. The sequence of genomic RNA encoding 2C from six independently isolated mutants resistant to 2.0 mM guanidine was determined. All six isolates contained a mutation in 2C at the same position in all cases, resulting in two types of amino acid changes. Dependent mutants were examined and found to contain two amino acid changes each within 2C. Mutants resistant to 0.53 mM guanidine were isolated and found to lack the mutations seen in variants resistant to 2.0 mM guanidine. A comparison of the amino acid sequences of the 2C proteins of poliovirus, foot-and-mouth disease virus, rhinovirus types 2 and 14, and encephalomyocarditis virus revealed a strong homology over regions totaling 115 residues. All of the mutations observed in guanidine-selected mutants were contained within this region. The amino acid region containing the mutations observed in poliovirus mutants resistant to 2.0 mM guanidine was compared with the homologous region in the other picornaviruses; a strong correlation was found between the amino acid present at this position and the sensitivity of the virus to 2.0 mM guanidine.  相似文献   

4.
We have isolated mutants sensitive to methyl methanesulfonate (MMS) in Saccharomyces cerevisiae. Alleles of rad1, rad4, rad52, rad55 and rad57 were found amoung these mms mutants. Twenty-nine of the mms mutants which complement the existing radiation-sensitive (rad and rev) mutants belong to 22 new complementation groups. Mutants from five complementation groups are sensitive only to MMS. Mutants of 11 complementation groups are sensitive to UV or X rays in addition to MMS, mutants of six complementation groups are sensitive to all three agents. The cross-sensitivities of these mms mutants to UV and X rays are discussed in terms of their possible involvement in DNA repair. Sporulation is reduced or absent in homozygous diploids of mms mutants from nine complementation groups.  相似文献   

5.
Virions from Newcastle disease virus mutants in four temperature-sensitive RNA+ groups were grown in embryonated hen eggs at the permissive temperature, purified, and then analyzed for biological properties at both the permissive and nonpermissive temperatures. At the permissive temperature, virions of mutants in groups B, C, and BC (11 mutants) were all lower in specific (per milligram of protein) hemagglutination, neuraminidase, and hemolysis activities compared with the wild type. These deficiencies were related to decreased amounts of hemagglutinin-neuraminidase glycoprotein in the virions. Activities of these mutant virions at both the permissive and nonpermissive temperatures were similar, indicating that hemagglutinin-neuraminidase synthesized at the permissive temperature was not temperature sensitive in function. The three group D mutants displayed a different pattern. At the permissive temperature, they had wild-type hemagglutination and neuraminidase activities but were deficient compared with the wild type in hemolysis. Again, functions were similar at both temperatures. Most of the B, C, and BC mutants had specific infectivities similar to that of the wild type despite lower hemagglutination, neuraminidase, and hemolysis functions. However, the D mutants were all less infectious. This evidence is consistent with a shared hemagglutinin-neuraminidase defect in the B, C, and BC mutants and a defect in either the F glycoprotein or the M protein in the D mutants.  相似文献   

6.
D Shortle  A K Meeker 《Proteins》1986,1(1):81-89
Eleven mutant forms of staphylococcal nuclease with one or more defined amino acid substitutions have been analyzed by solvent denaturation by using intrinsic fluorescence to follow the denaturation reaction. On the basis of patterns observed in the value of m--the rate of change of log Kapp (the apparent equilibrium constant between the native and denatured states) with denaturant concentration--these proteins can be grouped into two classes. For class I mutants, the value of m with guanidine hydrochloride is less than the wild-type value and is either constant or increases slightly with increasing denaturant; the value of m with urea is also less than wild type but shows a marked increase with increasing denaturant concentration, often approaching but never exceeding the wild-type value. For class II mutants, m is constant and is greater than wild type in both denaturants, with the increase being consistently larger in guanidine hydrochloride than in urea. When double or triple mutants are constructed from members of the same mutant class, the change in m is usually the sum of the changes produced by each mutation in isolation. One plausible explanation for these altered patterns of denaturation is that chain-chain or chain-solvent interactions in the denatured state have been modified--interactions which appear to involve hydrophobic groups.  相似文献   

7.
The presence of collagenase in Kupffer cells of the rat liver   总被引:2,自引:0,他引:2  
Non-chromosomal petites can be produced in Saccharomycescerevisiae by treatment with guanidine hydrochloride, a protein denaturing agent. Its efficiency in inducing petite mutants is comparable to the action of ethidium bromide. The high frequency of petite mutants observed is due to an induction effect rather than to a selection of preexisting mutants. Induction of petites by guanidine hydrochloride occurs even in non growing conditions, indicating that even parental cells are transformed in petites. Transformation depends upon the physiological properties of the cells, since repressed cells, cultivated in the presence of glucose, are more easily transformed than cells cultivated in ethanol.  相似文献   

8.
MRL-1237, [1-(4-fluorophenyl)-2-(4-imino-1,4-dihydropyridin-1-yl) methylbenzimidazole hydrochloride], is a potent and selective inhibitor of the replication of enteroviruses. To reveal the target molecule of MRL-1237 in viral replication, we selected spontaneous MRL-1237-resistant poliovirus mutants. Of 15 MRL-1237-resistant mutants obtained, 14 were cross-resistant to guanidine hydrochloride (mrgr), while 1 was susceptible (mrgs). Sequence analysis of the 2C region revealed that the 14 mrgr mutants contained a single nucleotide substitution that altered an amino acid residue from Phe-164 to Tyr. The mrgs mutant, on the other hand, contained a substitution of Ile-120 to Val. Through the construction of a cDNA-derived mutant, we confirmed that the single mutation at Phe-164 was really responsible for the reduced susceptibility to MRL-1237. MRL-1237 inhibited poliovirus-specific RNA synthesis in HeLa cells infected with a wild strain but not with an F164Y mutant. We furthermore examined the effect of mutations of the 2C region on the drug sensitivity of cDNA-derived guanidine-resistant and -dependent mutants. Two guanidine-resistant mutants were cross-resistant to MRL-1237 but remained susceptible to another benzimidazole, enviroxime. Either MRL-1237 or guanidine stimulated the viral replication of two guanidine-dependent mutants, but enviroxime did not. These results indicate that MRL-1237, like guanidine, targets the 2C protein of poliovirus for its antiviral effect.  相似文献   

9.
Six different pyruvate decarboxylase mutants of Saccharomyces cerevisiae were isolated. They belong to two unlinked complementation groups. Evidence is presented that one group is affected in a structural gene. The fact that five of the six mutants had residual pyruvate decarboxylase activity provided the opportunity for an intensive physiological characterization. It was shown that the loss of enzyme activity in vitro is reflected in a lower fermentation rate, an increased pyruvate secretion, and slower growth on a 2% glucose medium. The different effects of antimycin A on leaky mutants grown on ethanol versus the same mutants grown on glucose support the view that glucose induces some of the glycolytic enzymes, especially pyruvate decarboxylase.  相似文献   

10.
Pyruvate dehydrogenase complex mutants of Aspergillus nidulans were obtained by ultraviolet treatment and enrichment procedures. Among 160 glycolytic mutants, 86 pyruvate dehydrogenase complex mutants (including some temperature-sensitive mutants) were found. In addition to genes pdhA and pdhB, which are described in previous studies, a third gene, pdhC, controlling the function of the enzyme complex, was identified. The three genes were not linked and were mapped in the following linkage groups: pdhA in group I, pdhB in group V, and pdhC in group VIII, where it was the first marker on the left arm.  相似文献   

11.
Temperature-sensitive mutants of herpes simplex virus type 1 belonging to four DNA- complementation groups exhibited two distinct patterns of viral DNA synthesis after shift-up to the nonpermissive temperature. In cultures infected with mutants belonging to complementation groups A, C, and D, little or no viral DNA was synthesized after shift-up. In cultures infected with a mutant in complementation group B, nearly normal amounts of viral DNA were synthesized after shift-up.  相似文献   

12.
Hydrogen exchange kinetics were measured on the native states of wild type staphylococcal nuclease and four mutants with values of mGuHCl (defined as dDeltaG/d[guanidine hydrochloride]) ranging from 0.8 to 1.4 of the wild type value. Residues within the five-strand beta-barrel of wild type and E75A and D77A, two mutants with reduced values of m GuHCl, were significantly more protected from exchange than expected on the basis of global stability as measured by fluorescence. In contrast, mutants V23A and M26G with elevated values of mGuHCl approach a flat profile of more or less constant protection independent of position in the structure. Differences in exchange protection between the C-terminus and the beta-barrel region correlate with mGuHCl, suggesting that a residual barrel-like structure becomes more highly populated in the denatured states of m- mutants and less populated in m+ mutants. Variations in the population of such a molten globule-like structure would account for the large changes in solvent accessible surface area of the denatured state thought to underlie m value effects.  相似文献   

13.
Four rotavirus SA11 temperature-sensitive (ts) mutants and seven rotavirus RRV ts mutants, isolated at the National Institutes of Health (NIH) and not genetically characterized, were assigned to reassortment groups by pairwise crosses with the SA11 mutant group prototypes isolated and characterized at Baylor College of Medicine (BCM). Among the NIH mutants, three of the RRV mutants and all four SA11 mutants contained mutations in single reassortment groups, and four RRV mutants contained mutations in multiple groups. One NIH mutant [RRVtsK(2)] identified the previously undefined 11th reassortment group (K) expected for rotavirus. Three NIH single mutant RRV viruses, RRVtsD(7), RRVtsJ(5), and RRVtsK(2), were in reassortment groups not previously mapped to genome segments. These mutants were mapped using classical genetic methods, including backcrosses to demonstrate reversion or suppression in reassortants with incongruent genotype and temperature phenotype. Once located to specific genome segments by genetic means, the mutations responsible for the ts phenotype were identified by sequencing. The reassortment group K mutant RRVtsK(2) maps to genome segment 9 and has a Thr280Ileu mutation in the capsid surface glycoprotein VP7. The group D mutant RRVtsD(7) maps to segment 5 and has a Leu140Val mutation in the nonstructural interferon (IFN) antagonist protein NSP1. The group J mutant RRVtsJ(5) maps to segment 11 and has an Ala182Gly mutation affecting only the NSP5 open reading frame. Rotavirus ts mutation groups are now mapped to 9 of the 11 rotavirus genome segments. Possible segment locations of the two remaining unmapped ts mutant groups are discussed.  相似文献   

14.
Pig kidney fructose-1,6-bisphosphatase is a homotetrameric enzyme which does not contain tryptophan. In a previous report the guanidine hydrochloride-induced unfolding of the enzyme has been described as a multistate process [Reyes, A. M., Ludwig, H. C., Ya?ez, A. J., Rodriguez, P. H and Slebe, J. C. (2003) Biochemistry 42, 6956-6964]. To monitor spectroscopically the unfolding transitions, four mutants were constructed containing a single tryptophan residue either near the C1-C2 or the C1-C4 intersubunit interface of the tetramer. The mutants were shown to retain essentially all of the structural and kinetic properties of the enzyme isolated from pig kidney. The enzymatic activity, intrinsic fluorescence, size-exclusion chromatographic profiles and 1-anilinonaphthalene-8-sulfonate binding by the mutants were studied under unfolding equilibrium conditions. The unfolding profiles were multisteps, and formation of hydrophobic structures was detected. The enzymatic activity of wild-type and mutant FBPases as a function of guanidine hydrochloride concentration showed an initial enhancement (maximum approximately 30%) followed by a biphasic decay. The activity and fluorescence results indicate that these transitions involve conformational changes in the fructose-1,6-bisphosphate and AMP domains. The representation of intrinsic fluorescence data as a 'phase diagram' reveals the existence of five intermediates, including two catalytically active intermediates that have not been previously described, and provides the first spectroscopic evidence for the formation of dimers. The intrinsic fluorescence unfolding profiles indicate that the dimers are formed by selective disruption of the C1-C2 interface.  相似文献   

15.
The equilibrium and kinetic behavior of the guanidine hydrochloride (Gdn-HCl) induced unfolding/refolding of four bovine pancreatic trypsin inhibitor (BPTI) mutants was examined by using ultraviolet difference spectroscopy. In three of the mutants, we replaced the buried 30-51 disulfide bond with alanine at position 51 and valine (Val30/Ala51), alanine (Ala30/Ala51), or threonine (Thr30/Ala51) at position 30. For the fourth mutant, the solvent-exposed 14-38 disulfide was substituted by a pair of alanines (Ala14/Ala38). All mutants retained the 5-55 disulfide. Experiments were performed under oxidizing conditions; thus, both the unfolded and folded forms retained two native disulfide bonds. Equilibrium experiments demonstrated that all four mutants were destabilized relative to wild-type BPTI. However, the stability of the 30-51 mutants increased with the hydrophobicity of the residue substituted at position 30. Kinetic experiments showed that all four mutants contained two minor slow refolding phases with characteristics of proline isomerization. The specific behavior of the phases depended on the location of the disulfide bonds. The major unfolding/refolding phase for each of the 30-51 mutants was more than an order of magnitude slower than for Ala14/Ala38 or for BPTI in which the 14-38 disulfide bond was specifically reduced and blocked with iodoacetamide [Jullien, M., & Baldwin, R. L. (1981) J. Mol. Biol. 145, 265-280]. Since this effect is independent of the stability of the protein, it is consistent with a model in which the proper docking of the interior residues of the protein is the rate-limiting step in the folding of these mutants.  相似文献   

16.
G Ju  M Birrer  S Udem    B R Bloom 《Journal of virology》1980,33(3):1004-1012
Human lymphoblastoid cell lines persistently infected with measles virus release a heterogeneous population of virions. At least 80% of the infectious particles were temperature sensitive for plaque formation at 39 degrees C. Plaque-purified temperature-sensitive mutants from four persistently infected human lymphoblastoid cell lines were shown to be heterogeneous with respect to efficiency of plating at 31 and 39 degrees C, as well as to antigen and RNA production at 39 degrees C. The heterogeneity was confirmed by complementation analysis in which 21 temperature-sensitive isolates were found to represent at least four of the five previously described complementation groups of measles virus. Two isolates complemented four reference temperature-sensitive mutants. These isolates either represent new complementation groups or are members of the fifth complementation group, group E. The majority of isolates were found to have multiple mutations, and group B mutants (RNA-) predominated. Two temperature-sensitive isolates were able to interfere with production of parental measles virus at both permissive and nonpermissive temperatures.  相似文献   

17.
Seven hyper-stable multiple mutants have been constructed in staphylococcal nuclease by various combinations of eight different stabilizing single mutants. The stabilities of these multiple mutants determined by guanidine hydrochloride denaturation were 3.4 to 5.6 kcal/mol higher than that of the wild-type. Their thermal denaturation midpoint temperatures were 12.6 to 22.9 deg. C higher than that of the wild-type. These are among the greatest increases in protein stability and thermal denaturation midpoint temperature relative to the wild-type yet attained. There has been great interest in understanding how proteins found in thermophilic organisms are stabilized. One frequently cited theory is that the packing of hydrophobic side-chains is improved in the cores of proteins isolated from thermophiles when compared to proteins from mesophiles. The crystal structures of four single and five multiple stabilizing mutants of staphylococcal nuclease were solved to high resolution. No large overall structural change was found, with most changes localized around the sites of mutation. Rearrangements were observed in the packing of side-chains in the major hydrophobic core, although none of the mutations was in the core. It is surprising that detailed structural analysis showed that packing had improved, with the volume of the mutant protein's hydrophobic cores decreasing as protein stability increased. Further, the number of van der Waals interactions in the entire protein showed an experimentally significant increase correlated with increasing stability. These results indicate that optimization of packing follows as a natural consequence of increased protein thermostability and that good packing is not necessarily the proximate cause of high stability. Another popular theory is that thermostable proteins have more electrostatic and hydrogen bonding interactions and these are responsible for the high stabilities. The mutants here show that increased numbers of electrostatic and hydrogen bonding interactions are not obligatory for large increases in protein stability.  相似文献   

18.
The effect of protein conformations on the reaction rate of Ellman's reagent, 5,5-dithiobis (2-nitrobenzoic acid) (DTNB) with sulfhydryl (SH) groups of proteins was examined. The stopped-flow method was applied to follow the reaction of DTNB with SH group of two proteins, bovine serum albumin (BSA) and ovalbumin (OVA), at various concentrations of guanidine hydrochloride and urea. The rates for both the proteins were faster in guanidine than in urea. The rate sharply depended on the protein conformations, which were monitored by changes of helix contents on the basis of the circular dichroism measurements. The reaction rate of DTNB with SH groups of BSA was maximal around 2 M guanidine and 5 M urea. On the other hand, the reaction rate of DTNB with OVA was maximal at 3.5 M guanidine, while it gradually increased with an increase in the urea concentration. The amount of reactive SH group participating in the reaction with DTNB was also estimated by the absorbance change at 412 nm. The magnitudes of absorbance change for the reaction with free SH groups of OVA at low concentrations of the denaturants were appreciably smaller than those for BSA with one free SH group. Most of the four SH groups of OVA might react with DTNB above 5 M guanidine, although only a part of them did even at 9 M urea.  相似文献   

19.
Identification of ten genes that control ribosome formation in yeast   总被引:46,自引:0,他引:46  
Summary Twenty-three temperature-sensitive mutants of Saccharomyces cerevisiae, all of which undergo a rapid cessation of net RNA accumulation following a shift from the permissive (23°) to the restrictive temperature (36°), have been characterized. Genetic studies demonstrate that these mutants belong to ten different complementation groups and that, in most cases, their properties are the result of a single, recessive mutation in a nuclear gene. Although the mutants were isolated for heat sensitivity, mutants from 2 of the complementation groups are cold sensitive (at 13°) as well. The mutants continue to synthesize protein, including an enzyme, alkaline phosphatase, for two to four hours following a shift from 23° to 36°, suggesting that they are capable of messenger RNA synthesis and the translation of messenger RNA with fidelity at the restrictive temperature. The small amount of RNA that is synthesized in these mutants at the restrictive temperature has been examined on sucrose gradients and by acrylmide gel electrophoresis; in addition, the RNA components in polyribosomes have been fractionated by a new technique that separates messenger RNA from ribosomal RNA. As a result of these analyses we conclude that these mutants are strongly inhibited in the accumulation of 5S, 7S, 17S, and 25S RNA components but are only slight if at all inhibited in the synthesis of messenger RNA and 4S RNA. The results reported here define ten genes, designated rna 2 through rna 11, that play an essential role in the formation or maturation of ribosomes in yeast.  相似文献   

20.
Guanidine-resistant defective interfering particles of poliovirus.   总被引:2,自引:2,他引:0       下载免费PDF全文
A mixture containing standard poliovirus and D3 particles (mutants with deletions in the capsid locus) was serially passaged in the presence of guanidine. Within five growth cycles, the standard virus was guanidine resistant, but the D3 particles were guanidine sensitive, even after 21 passages with the inhibitor. By passage 40 with guanidine, D3 particles were eliminated, and a new deletion mutant (DX) appeared in the virus population. D3 particles contained a 15% deletion, and DX particles contained a 6% deletion in the capsid locus. Although neither mutant induced the synthesis of NCVP1a or a complete complement of capsid proteins after infection, cells infected with DX particles produced two novel proteins, which had molecular weights of approximately 68,000 and 25,000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号