首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Efficient plastid transformation has been achieved in Nicotiana tabacum using cloned plastid DNA of Solanum nigrum carrying mutations conferring spectinomycin and streptomycin resistance. The use of the incompletely homologous (homeologous) Solanum plastid DNA as donor resulted in a Nicotiana plastid transformation frequency comparable with that of other experiments where completely homologous plastid DNA was introduced. Physical mapping and nucleotide sequence analysis of the targeted plastid DNA region in the transformants demonstrated efficient site-specific integration of the 7.8-kb Solanum plastid DNA and the exclusion of the vector DNA. The integration of the cloned Solanum plastid DNA into the Nicotiana plastid genome involved multiple recombination events as revealed by the presence of discontinuous tracts of Solanum-specific sequences that were interspersed between Nicotiana-specific markers. Marked position effects resulted in very frequent cointegration of the nonselected peripheral donor markers located adjacent to the vector DNA. Data presented here on the efficiency and features of homeologous plastid DNA recombination are consistent with the existence of an active RecA-mediated, but a diminished mismatch, recombination/repair system in higher-plant plastids.  相似文献   

2.
Tomato plastid transformants were obtained using two vectors containing cloned plastid DNA of either Nicotiana tabacum or Solanum nigrum and including point mutations conferring resistance to spectinomycin and streptomycin. Transformants were recovered after PEG-mediated direct DNA uptake into protoplasts, followed by selection on spectinomycin-containing medium. Sixteen lines contained the point mutation, as confirmed by mapping restriction enzyme sites. One line obtained with each vector was analysed in more detail, in comparison with a spontaneous spectinomycin-resistant mutant. Integration of the cloned Solanum or Nicotiana plastid DNA, by multiple recombination events, into the tomato plastome was confirmed by sequence analysis of the targeted region of plastid DNA in the inverted repeat region. Maternal inheritance of spectinomycin and streptomycin resistances or sensitivity in seedlings also confirmed the transplastomic status of the two transformants. The results demonstrate the efficacy in tomato of a selection strategy which avoids the integration of a dominant bacterial antibiotic resistance gene.  相似文献   

3.
Summary Resistance to streptomycin and lincomycin in plant cell culture is used as a color marker: resistant cells are green whereas sensitive cells are white on the selective medium. Streptomycin and lincomycin at appropriate concentrations do not kill sensitive Nicotiana cells. The selective value of plastid ribosomal DNA mutations, conferring resistance to streptomycin and lincomycin, was investigated by growing heteroplastidic cells on a selective medium. The heteroplastidic cells were obtained by protoplast fusion, and contained a mixed population of streptomycin resistant plastids from the N. tabacum line Nt-SR1-Kan2, and lincomycin resistant plastids from the N. plumbaginifolia line Np-LR400-Hyg1. Clones derived from protoplast fusion were selected by kanamycin and hygromycin resistance, transgenic nuclear markers. Somatic hybrids were then grown on a selective streptomycin or lincomycin medium, or in the absence of either drug to a 50 to 100 mg size callus. Southern analysis of a polymorphic region of plastid DNA (ptDNA) revealed that somatic hybrids grown on streptomycin contained almost exclusively ptDNA from the streptomycin resistant parent, somatic hybrids grown on lincomycin contained almost exclusively ptDNA from the lincomycin resistant parent whereas somatic hybrids grown in the absence of either drug contained mixed parental plastids. Sensitive ptDNA was below detection level in most clones on selective medium, but could be recovered upon subsequent culture in the presence of the appropriate drug. The drugs streptomycin and lincomycin provide a powerful selection pressure that should facilitate recovery of plastid transformants.  相似文献   

4.
The use of a nonlethal selection scheme, most often using the aadA gene that confers resistance to spectinomycin and streptomycin, has been considered critical for recovery of plastid transformation events. In this study, the plastid-lethal markers, glyphosate or phosphinothricin herbicides, were used to develop a selection scheme for plastids that circumvents the need for integration of an antibiotic resistance marker. The effect of selective agents on tobacco (Nicotiana tabacum) mesophyll chloroplasts was first examined by transmission electron microscopy. We found that at concentrations typically used for selection of nuclear transformants, herbicides caused rapid disintegration of plastid membranes, whereas antibiotics had no apparent effect. To overcome this apparent herbicide lethality to plastids, a "transformation segregation" scheme was developed that used two independent transformation vectors for a cotransformation approach and two different selective agents in a phased selection scheme. One transformation vector carried an antibiotic resistance (aadA) marker used for early nonlethal selection, and the other transformation vector carried the herbicide (CP4 or bar) resistance marker for use in a subsequent lethal selection phase. Because the two markers were carried on separate plasmids and were targeted to different locations on the plastid genome, we reasoned that segregation of the two markers in some transplastomic lines could occur. We report here a plastid cotransformation frequency of 50% to 64%, with a high frequency (20%) of these giving rise to transformation segregants containing exclusively the initially nonselected herbicide resistance marker. Our studies indicate a high degree of persistence of unselected transforming DNA, providing useful insights into plastid chromosome dynamics.  相似文献   

5.
Stable transformation of petunia plastids   总被引:11,自引:0,他引:11  
Plastid transformation results in stably expressed foreign genes, which for most Angiosperms are largely excluded from sperm cells, thereby greatly reducing the risk of foreign gene spread through pollen. Prior to this work, fertile plastid transformants were restricted to tobacco, tomato and Lesquerella . Application of plastid engineering in the important floriculture industry requires the development of stable plastid transformation in a major ornamental plant species such as Petunia hybrida. Here we describe the successful isolation of fertile and stable plastid transformants in a commercial cultivar of P. hybrida (var. Pink Wave). Plastid targeting regions from tobacco were used to integrate aad A and gusA between the acc D and rbc L genes of P. hybrida plastid DNA following particle bombardment of leaves. For three spectinomycin and streptomycin resistant lines, DNA blot analysis confirmed transgene integration into plastid DNA and homoplasmy. Maternal inheritance and homoplasmy resulted in 100 transmission of spectinomycin resistance to progeny after selfing. Plastid transformants expressed the gusA gene uniformly within leaves and to comparable levels in all three lines. Insertion of trait genes in place of gusA coding sequences enables immediate applications of our plastid transformation vector. Establishment of plastid transformation in P. hybrida facilitates a safe and reliable use of this important ornamental plant for research and plant biotechnology.These two authors contributed equally to this work.  相似文献   

6.
We investigated the size of flanking DNA incorporated into the tobacco plastid genome alongside a selectable antibiotic resistance mutation. The results showed that integration of a long uninterrupted region of homologous DNA, rather than of small fragments as previously thought, is the more likely event in plastid transformation of land plants. Transforming plasmid pJS75 contains a 6.2-kb DNA fragment from the inverted repeat region of the tobacco plastid genome. A spectinomycin resistance mutation is encoded in the gene of the 16S rRNA and, 3.2 kb away, a streptomycin resistance mutation is encoded in exon II of the ribosomal protein gene rps12. Transplastomic lines were obtained after introduction of pJS75 DNA into leaf cells by the biolistic process and selection for the spectinomycin resistance marker. Homologous replacement of resident wild-type sequences resulted in integration of all, or almost all, of the 6.2-kb plastid DNA sequence from pJS75. Plasmid pJS75, which contains engineered cloning sites between two selectable markers, can be used as a plastid insertion vector.  相似文献   

7.
A wide-ranging examination of plastid (pt)DNA sequence homologies within higher plant nuclear genomes (promiscuous DNA) was undertaken. Digestion with methylation-sensitive restriction enzymes and Southern analysis was used to distinguish plastid and nuclear DNA in order to assess the extent of variability of promiscuous sequences within and between plant species. Some species, such as Gossypium hirsutum (cotton), Nicotiana tabacum (tobacco), and Chenopodium quinoa, showed homogenity of these sequences, while intraspecific sequence variation was observed among different cultivars of Pisum sativum (pea), Hordeum vulgare (barley), and Triticum aestivum (wheat). Hypervariability of plastid sequence homologies was identified in the nuclear genomes of Spinacea oleracea (spinach) and Beta vulgaris (beet), in which individual plants were shown to possess a unique spectrum of nuclear sequences with ptDNA homology. This hypervariability apparently extended to somatic variation in B. vulgaris. No sequences with ptDNA homology were identified by this method in the nuclear genome of Arabidopsis thaliana.   相似文献   

8.
Plastid transformation is an attractive technology for obtaining crop plants with new useful characteristics and for fundamental researches of plastid functioning and nuclear-plastid interaction. The aim of our experiments was to obtain plants with Lycium barbarum nucleus and transformed Nicotiana tabacum plastids. Plastome of previously engineered transplastomic tobacco plants contains reporter uidA gene and selective aadA gene that confers resistance to antibiotics spectinomycin and streptomycin. Asymmetric somatic hybridization was performed for transferring transformed tobacco plastids from transplastomic tobacco plants into recipient L. barbarum wild type plants. Hybrid L. barbarum plants containing transformed tobacco plastome with active aadA and uidA genes were obtained as a result of the experiments. The work shows the possibility of obtaining transplastomic plants by transferring the transformed plastids to remote species by using somatic hybridization technology. The developed technique is especially effective for obtaining transplastomic plants that have low regeneration and transformation ability.  相似文献   

9.
10.
Insecticidal protein gene CrylA (c) from Bacillus thuringiensis (Bt toxin gene) was placed under the control of psbA5'- and 3'- regulatory regions of rice (Oryza sativa L. ) chloroplast to construct Bt expression cassette, which was ligated with selectable marker aadA cassette and homology regions of tobacco ( Nicotiana tabacum L. ) chloroplast genome to generate transformation vector pTRS8. Leaves of tobacco plant cv. NC89 were transformed with particle bombardment method, plastid transformants were selected by their resistance to 500 mg/L of spectinomycin. Some transplastomic plants were toxic to the third-instar larvae of Helicoverpa zea, and the growth of the survived insects was remarkably inhibited. Genetic and molecular analyses of T1 and T2 progenies of plants with highly efficient insect resistance showed that Bt toxin gene had been inherited in progenies, and spectinomycin resistance was inherited maternally.  相似文献   

11.
Removal of antibiotic resistance genes from transgenic tobacco plastids   总被引:24,自引:0,他引:24  
Iamtham S  Day A 《Nature biotechnology》2000,18(11):1172-1176
Removal of antibiotic resistance genes from genetically modified (GM) crops removes the risk of their transfer to the environment or gut microbes. Integration of foreign genes into plastid DNA enhances containment in crops that inherit their plastids maternally. Efficient plastid transformation requires the aadA marker gene, which confers resistance to the antibiotics spectinomycin and streptomycin. We have exploited plastid DNA recombination and cytoplasmic sorting to remove aadA from transplastomic tobacco plants. A 4.9 kbp insert, composed of aadA flanked by bar and uidA genes, was integrated into plastid DNA and selected to remove wild-type plastid genomes. The bar gene confers tolerance to the herbicide glufosinate despite being GC-rich. Excision of aadA and uidA mediated by two 174 bp direct repeats generated aadA-free T(0) transplastomic plants containing the bar gene. Removal of aadA and bar by three 418 bp direct repeats allowed the isolation of marker-free T(2) plants containing a plastid-located uidA reporter gene.  相似文献   

12.
Plastid transformation in higher plants is accomplished through a gradual process, during which all the 300-10,000 plastid genome copies are uniformly altered. Antibiotic resistance genes incorporated in the plastid genome facilitate maintenance of transplastomes during this process. Given the high number of plastid genome copies in a cell, transformation unavoidably yields chimeric tissues, which requires the identification of transplastomic cells in order to regenerate plants. In the chimeric tissue, however, antibiotic resistance is not cell autonomous: transplastomic and wild-type sectors both have a resistant phenotype because of phenotypic masking by the transgenic cells. We report a system of marker genes for plastid transformation, termed FLARE-S, which is obtained by translationally fusing aminoglycoside 3"-adenyltransferase with the Aequorea victoria green fluorescent protein. 3"-adenyltransferase (FLARE-S) confers resistance to both spectinomycin and streptomycin. The utility of FLARE-S is shown by tracking segregation of individual transformed and wild-type plastids in tobacco and rice plants after bombardment with FLARE-S vector DNA and selection for spectinomycin and streptomycin resistance, respectively. This method facilitates the extension of plastid transformation to nongreen plastids in embryogenic cells of cereal crops.  相似文献   

13.
To develop a model system for studies of homologous recombination in plants, transgenic Nicotiana tabacum and Nicotiana plumbaginifolia lines were generated harbouring a single target T-DNA containing the negative selective codA gene encoding cytosine deaminase (CD) and the β-glucuronidase (GUS) gene. Subsequently, the target lines were transformed with a replacement-type T-DNA vector in which the CD gene and the GUS promoter had been replaced with a kanamycin-resistance gene. For both Nicotiana species kanamycin-resistant lines were selected which had lost the CD gene and the GUS activity. One tobacco line was the result of a precise gene targeting event. However, most other lines were selected due to a chromosomal deletion of the target locus. The deletion frequency of the target locus varied between target lines, and could be present in up to 20% of the calli which were grown from leaf protoplasts. T-DNA transfer was not required for induction of the deletions, indicating that the target loci were unstable. A few lines were obtained in which the target locus had been deleted partially. Sequence analysis of the junctions revealed deletion of DNA sequences between microhomologies. We conclude that T-DNAs, which are stable during plant development as well as in transmission to the offspring, may become unstable during propagation in callus tissue. The relationships between callus culture, genetic instability and the process of T-DNA integration and deletion in the plant genome are discussed.  相似文献   

14.
A number of Solanum nigrum mutants resistant to the antibiotics spectinomycin, streptomycin and lincomycin have been isolated from regenerating leaf strips after mutagenesis with nitroso-methylurea. Selection of streptomycin- and spectinomycin-resistant mutants has been described earlier. Lincomycin-resistant mutants show resistance to higher levels of the antibiotic than used in the initial selection, and in the most resistant mutant (Ll7A1) maternal inheritance of the trait was demonstrated. The lincomycin-resistant mutant L17A1 and a streptomycin plus spectinomycin resistant double mutant (StSpl) were chosen for detailed molecular characterisation. Regions of the plastid DNA, within the genes encoding 16S and 23S rRNA and rps12 (3′) were sequenced. For spectinomycin and lincomycin resistance, base changes identical to those in similar Nicotiana mutants were identified. Streptomycin resistance is associated with an A → C change at codon 87 of rps 12 (converting a lysine into a glutamine), three codons upstream from a mutation earlier reported for Nicotiana. This site has not previously been implicated in streptomycin resistance mutations of higher plants, but has been found in Escherichia coli. The value of these mutants for studies on plastid genetics is discussed.  相似文献   

15.
Plastid transformation in Arabidopsis thaliana   总被引:33,自引:0,他引:33  
Plastid transformation is reported in Arabidopsis thaliana following biolistic delivery of transforming DNA into leaf cells. Transforming plasmid pGS31A carries a spectinomycin resistance (aadA) gene flanked by plastid DNA sequences to target its insertion between trnV and the rps12/7 operon. Integration of aadA by two homologous recombination events via the flanking ptDNA sequences and selective amplification of the transplastomes on spectinomycin medium yielded resistant cell lines and regenerated plants in which the plastid genome copies have been uniformly altered. The efficiency of plastid transformation was low: 2 in 201 bombarded leaf samples. None of the 98 plants regenerated from the two lines were fertile. Received: 13 February 1998 / Revision received: 24 April 1998 / Accepted: 5 June 1998  相似文献   

16.
17.
Plastid transformation, originally developed in tobacco (Nicotiana tabacum), has recently been extended to a number of crop species enabling in vivo probing of plastid function and biotechnological applications. In this article we report new plastid vectors that enable insertion of transgenes in the inverted repeat region of the plastome between the trnV and 3'rps12 or trnI and trnA genes. Efficient recovery of transplastomic clones is ensured by selection for spectinomycin (aadA) or kanamycin (neo) resistance genes. Expression of marker genes can be verified using commercial antibodies that detect the accumulation of neomycin phosphotranseferase II, the neo gene product, or the C-terminal c-myc tag of aminoglycoside-3'-adenylytransferase, encoded by the aadA gene. Aminoglycoside-3'-adenylytransferase, the spectinomycin inactivating enzyme, is translationally fused with green fluorescent protein in two vectors so that transplastomic clones can be selected by spectinomycin resistance and visually identified by fluorescence in ultraviolet light. The marker genes in the new vectors are flanked by target sites for Cre or Int, the P1 and phiC31 phage site-specific recombinases. When uniform transformation of all plastid genomes is obtained, the marker genes can be excised by Cre or Int expressed from a nuclear gene. Choice of expression signals for the gene of interest, complications caused by the presence of plastid DNA sequences recognized by Cre, and loss of transgenes by homologous recombination via duplicated sequences are also discussed to facilitate a rational choice from among the existing vectors and to aid with new target-specific vector designs.  相似文献   

18.
Bioballistic transformation of carrot Daucus carota L. callus cultures with a plasmid containing the aadA (aminoglycoside 3'-adenyltransferase) gene and subsequent selection oftransformants on a selective medium containing spectinomycin (100-500 mg/l) yielded ten callus lines resistant to this antibiotic. PCR analysis did not detect exogenous DNA in the genomes of spectinomycin-resistant calluses. Resistance proved to be due to spontaneous mutations that occurred in two different regions of the chloroplast rrn16 gene, which codes for the 16S rRNA. Six lines displayed the G > T or G > C transverions in position 1012 of the rrn16 gene, and three lines had the A > G transition in position 1138 of the gene. Chloroplast mutations arising during passages of callus cultures in the presence of spectinomycin were described in D. carota for the first time. The cause of spectinomycin resistance was not identified in one line. The mutations observed in the D. carota plastid genome occurred in the region that is involved in the formation of a double-stranded region at the 3' end of the 16S rRNA and coincided in positions with the nucleotide substitutions found in spectinomycin-resistant plants of tobacco Nicotiana tabacum L. and bladderpod Lesquerella fendleri L.  相似文献   

19.
When Agrobacterium was used to transform Nicotiana plumbaginifolia protoplasts and Arabidopsis thaliana roots and seedlings, a large number of plants were found in which not only the T-region defined by the border repeat sequences but the entire binary vector was integrated, as determined by both PCR and Southern analysis techniques. N. plumbaginifolia protoplast co-cultivation experiments yielded 3 out of 5 transformants with collinear sequence past the left border. In Arabidopsis root transformation experiments, 33% (6/18) of the transformants had T-DNA which exceeded the left border repeat. Vacuum infiltration of Arabidopsis seedlings produced even a greater percentage of transformants with sequences outside the left border repeat (62%, 39/63). The long transfer DNA cosegregated with the T-region encoded hygromycin resistance in the T2 progeny eliminating the possibility that long transfer DNA was of extrachromosomal or Agrobacterium origin. The high frequency of long transfer after vacuum infiltration of A. thaliana needs to be considered when analyzing T-DNA tagged mutants.  相似文献   

20.
Protoplasts, because they lack the wall of a typical higher plant cell, offer unique opportunities for experimental manipulation of their organellar constituents. Here, we report on modification of the organellar content of Nicotiana tabacum protoplasts by microfusion-induced transfer of defined numbers of chloroplasts into albino recipient cells. A single chloroplast is found to be sufficient for establishing a new plastid population in the progeny of the recipient cell. The frequency of green or variegated regenerants is shown to be genotype dependent. It can be drastically increased by using selection pressure for the transferred organelle. We also report on transient expression of plastid specific reporter gene constructs in plastids after PEG-mediated direct gene transfer into Nicotiana plumbaginifolia protoplasts. The expression is shown to be localized in the plastids by determining gene expression in isolated chloroplasts under conditins which completely remove cytoplasmic enzyme activity derived from a nuclear reporter gene construct. These data demonstrate for the first time that functional DNA, introduced into the cytoplasm by direct gene transfer, enters the organellar compartment and is expressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号