首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
In temperate rainforests on Chiloé Island in southern Chile (42°S), most canopy trees bear fleshy, avian‐dispersed propagules, whereas emergent tree species have dry, wind‐borne propagules. In the present study, the following hypothesis was tested: regardless of species, fleshy propagules are deposited in greater numbers in canopy gaps and in forest margins and hence have a more heterogeneous seed shadow than wind‐dispersed propagules. To test this hypothesis, the seed rains of these two types of propagules were compared in the following forest habitats: (i) tree‐fall gaps (edges and centre); (ii) forest margins with adjacent pastures; and (iii) under closed canopy (forest interior). Seed collectors (30‐cm diameter) were placed in two (15 and 100 ha) remnant forest patches (n = 60–100 seed collectors per patch) distributed in the four habitats. Seeds were retrieved monthly from each collector during two reproductive seasons (1996, 1997). In both years, the seed rain was numerically dominated by two species with dry propagules (Laureliopsis philippiana and Nothofagus nitida) and three species with fleshy fruits (Drimys winteri, Amomyrtus luma, and Amomyrtus meli). The seed shadows of the two species with dry, wind‐dispersed seeds differed markedly. Seeds of L. philippiana were deposited predominantly in canopy openings, whereas N. nitida seeds fell almost entirely in the forest interior. The fleshy‐fruited species, Drimys and Amomyrtus spp., had similar seed deposition patterns in the various habitats studied, but the between‐year differences in seed rain were greater in Drimys winteri than in Amomyrtus spp. Although no more than 10% of fleshy‐fruited propagules reached the margins of the patch, approximately 7% of these were carried there by birds. Every year, canopy gaps (pooling data from edges and centres) concentrated approximately 60% of the total seed rain of both propagule types in both forest patches. Forest margins received less than 20% of the total seed rain, which was largely dominated by fleshy‐fruited species. Seed shadows were a species‐specific attribute rather than a trait associated with propagule type and dispersal mode.  相似文献   

2.
Forest restoration in urban areas often occurs in isolation from remnant forest, limiting the chances for recolonization by native species. Plants with bird‐dispersed seeds can be particularly vulnerable to dispersal limitation and regeneration can be further impeded by non‐native seed predators. We used a factorial experiment to investigate broadcast seeding as a method to reintroduce trees with large seeds and fleshy fruits into early successional forests. We assessed rates of seed and fruit loss, germination and seedling establishment in three seed treatments: (1) caging to exclude introduced mammalian seed predators; (2) removal of fleshy fruit pericarp; and (3) placing seeds in nutritionally enriched clay balls. Across all species (Beilschmiedia tawa, Elaeocarpus dentatus, and Litsea calicaris) seeds and fruits accessible to mammalian predators suffered significantly greater loss (58%) than those protected by cages (4%). However, seed and fruit loss in the presence of predators was reduced to only 35% across all species by the treatment combining the removal of fruit flesh and clay ball application to seeds. Establishment of B. tawa seedlings after 1 year was significantly enhanced by the clay ball treatment (12% of seeds sown vs. 6% without clay balls). Very low establishment rates were recorded for E. dentatus and L. calicaris. Broadcast seeding was found to be a viable method of improving regeneration of large‐seeded late successional trees and may be a cost‐effective alternative to planting saplings. Seedling establishment can be improved with fruit flesh removal and clay ball treatments, especially in the presence of mammalian seed predators.  相似文献   

3.
Frugivorous bats can be attracted with essential oils from ripe chiropterochoric fruit. We evaluated the efficiency of these oils to attract bats in degraded areas within the Atlantic Rain Forest, particularly pasture and agricultural land. We hypothesized that induction units (IUs), each containing a rubber septum impregnated with oil, would have more bat activity than their respective control units (CUs; without the oil). To test this hypothesis we monitored bat flight activity with night‐vision infrared visors in eight IU and CU from August 2006 to July 2007. We also verified the probability of arrival of chiropterochoric seeds by analyzing the diet of bats captured in a neighboring forest area. Our initial hypothesis that units with odor would lead to greater bat activity was confirmed. Results indicated a rich community of fruit‐eating bats, and dietary analysis revealed a huge potential for dispersion of a vast amount of seeds from different plant species at the IU. Although our study does not reveal with certainty which bat species are attracted to the oil, the flying patterns coincide with those described for the foraging behavior of fruit‐eating phyllostomids. Furthermore, the fact that the bats spend more time flying around the odor source compared to flying time around CU suggest an increase in seed rain. Taken together, these results suggest that the use of essential oils from chiropterochoric fruits induces a qualitative and quantitative increase in seed dispersal in areas that otherwise would not be frequently visited by frugivorous bats.  相似文献   

4.
Most tropical plants produce fleshy fruits that are dispersed primarily by vertebrate frugivores. Behavioral disparities among vertebrate seed dispersers could influence patterns of seed distribution and thus forest structure. This study investigated the relative importance of arboreal seed dispersers and seed predators on the initial stage of forest organization–seed deposition. We asked the following questions: (1) To what degree do arboreal seed dispersers influence the species richness and abundance of the seed rain? and (2) Based on the plant species and strata of the forest for which they provide dispersal services, do arboreal seed dispersers represent similar or distinct functional groups? To answer these questions, seed rain was sampled for 12 months in the Dja Reserve, Cameroon. Seed traps representing five percent of the crown area were erected below the canopies of 90 trees belonging to nine focal tree species: 3 dispersed by monkeys, 3 dispersed by large frugivorous birds, and 3 wind‐dispersed species. Seeds disseminated by arboreal seed dispersers accounted for ca 12 percent of the seeds and 68 percent of the seed species identified in seed traps. Monkeys dispersed more than twice the number of seed species than large frugivorous birds, but birds dispersed more individual seeds. We identified two distinct functional dispersal groups, one composed of large frugivorous birds and one composed of monkeys, drop dispersers, and seed predators. These groups dispersed plants found in different canopy strata and exhibited low overlap in the seed species they disseminated. We conclude it is unlikely that seed dispersal services provided by monkeys could be compensated for by frugivorous birds in the event of their extirpation from Afrotropical forests.  相似文献   

5.
Tropical forests are seriously threatened by fragmentation and habitat loss. The impact of fragment size and forest configuration on the composition of seed rain is insufficiently studied. For the present study, seed rain composition of small and large forest fragments (8–388 ha) was assessed in order to identify variations in seed abundance, species richness, seed size and dispersal mode. Seed rain was documented during a 1‐year period in three large and four small Atlantic Forest fragments that are isolated by a sugarcane matrix. Total seed rain included 20,518 seeds of 149 species of trees, shrubs, palms, lianas and herbs. Most species and seeds were animal‐dispersed. A significant difference in the proportion of seeds and species within different categories of seed size was found between small and large fragments. Small fragments received significantly more very small‐sized seeds (<0.3 cm) and less large‐seeded species (>1.5 cm) that were generally very rare, with only one species in small and eight in large fragments. We found a negative correlation between the inflow of small‐sized seeds and the percentage of forest cover. Species richness was lower in small than in large fragments, but the difference was not very pronounced. Given our results, we propose changing plant species pools through logging, tree mortality and a high inflow of pioneer species and lianas, especially in small forest fragments and areas with low forest cover. Connecting forest fragments through corridors and reforestation with local large‐seeded tree species may facilitate the maintenance of species diversity.  相似文献   

6.
棕果蝠取食对两种榕树种子萌发行为的影响   总被引:1,自引:0,他引:1  
在实验室利用聚果榕(Fieus racemosa)和对叶榕(Fieus hispida)成熟的果实饲喂笼养棕果蝠(Rousettus leschenaulti),比较了不同处理的3组种子的萌发行为:(1)棕果蝠粪便中的种子;(2)被吐出的果渣中的种子;(3)成熟果实中的种子(对照)。棕果蝠取食行为显著影响了两种榕树种子的萌发过程,3种不同处理的种子萌发过程及最终萌发率(GP)之间都存在显著的差异。聚果榕种子经过棕果蝠消化道后GP显著降低,而对叶榕种子的GP显著提高。棕果蝠粪便中的聚果榕种子萌发开始(GS)和最短萌发时间(Tmin)均比对照种子延迟了2d,但其粪便中的对叶榕种子G5比对照种子提前了1d,Tmin提前了2d;与之相似,前者种子萌发比果实中种子提前2d达到萌发总量的50%(T50),但后者没有改变T50。不同种榕果果渣中的种子萌发行为也有重大差异:聚果榕果渣中种子的Tmin和T50均比对照种子延迟1d,GS没发生改变;而对叶榕果渣中种子的Tmin比对照种子提前了3d,GS提前1d,T50没有改变。棕果蝠取食两种榕果后在飞行过程中排泄,进而有效的散布种子;而且通过消化明显改变了种子萌发行为,使种子萌发类型更为多样,增加了种子在不同时空条件下萌发的可能性。  相似文献   

7.
Abstract Although pigeons from the genus Ducula are considered among the best avian dispersers of large seeds in Asia and the Pacific, little has been documented on their role. The early fate of dispersed and undispersed seeds of the large‐seeded tree Myristica hypargyraea A. Gray was studied in order to understand the advantage of seed dispersal by the Pacific Pigeon, Ducula pacifica Gmelin in Tonga. Frequency of visits by frugivores to fruiting trees and dispersal distance of seeds were measured. Pre‐dispersal vertebrate seed predation was assessed, then post‐dispersal predation was measured over 160 days. Overall, pre‐dispersal seed predation by parrots was low but variable among trees sampled. Most seeds (54.7%) in the study area were estimated to be dispersed by D. pacifica; 79.7% of those ingested were expelled directly beneath conspecific fruiting crowns, 20% were dispersed locally and < 0.3% were dispersed more than 300 m into a different forest type. Flying foxes (Pteropus tonganus Quoy and Gaimard) dispersed very few seeds (0.7%) and all were dropped below fruiting crowns. Between 4% and 39% of dispersed and undispersed seeds were still viable, or had established seedlings after 160 days. Most seeds had been removed or killed by rats, and seed survival was highest for locally dispersed seeds (approx. 20 m from source trees and within the M. hypargyraea forest). Although D. pacifica was the only frugivore observed to disperse seeds into this higher zone of survival, overall they did not confer a great advantage to seed survival since significant numbers of seeds/seedlings also persisted under fruiting crowns (27% under crowns compared with 39% locally dispersed). Nevertheless, D. pacifica was the only vector by which seeds were regularly moved within the M. hypargyraea forest and over longer distances, and hence, D. pacifica still plays a significant role in the regeneration of M. hypargyraea.  相似文献   

8.
Studies were conducted at the La Selva Biological Station in Costa Rica and in a greenhouse in California to determine the factors accounting for the nonrandom distribution of the riparian fig tree Ficus insipida Willd. along streams in the La Selva Biological Reserve and adjacent deforested lands. We also evaluated the potential seed dispersers of this tree relative to the role of the fruit‐eating fish Brycon guatemalensis that previously was proposed to be an important disperser of F. insipida seeds in this system. At La Selva, we recorded the fig‐foraging activities of vertebrates at fruiting F. insipida trees, surveyed for the presence or absence of F. insipida along streams of different sizes, and determined the fate of fig seedlings transplanted in different riparian habitats. In the greenhouse, we measured seed germination and seedling survival and growth under different light and soil pH conditions mimicking natural conditions. The findings provided evidence that (1) the tree occurs along the larger streams running through forest habitat and only along smaller streams with relatively high light availability; (2) bats (Artibeus spp.) and fish are the major dispersers of F. insipida seeds; (3) the seedlings are subject to mortality not only from low light conditions but also from treefalls, frequent flooding, and bank erosion; and (4) high light levels and near neutral soil pH result in relatively better seed germination, faster growth, and higher survival rates of seedlings. Overall, our results suggest that this fig tree is dispersed mainly by bats and fish and is more establishment‐limited than disperser‐limited in its local distribution in the La Selva rain forest habitat.  相似文献   

9.
Despite considerable inter- and intraindividual variation in fruit and seed size in many plant species, researchers have given little attention to the relevance of the traits for primate fruit choice within a food plant species and its implications for tree regeneration. We studied feeding behavior and selectivity of olive baboons (Papio anubis) in the African locust bean (Parkia biglobosa, Mimosaceae), via direct observations of habituated groups and indirect evidence from leftovers of pods after feeding events. Olive baboons acted as both seed predators and dispersers for Parkia biglobosa. They fed on and destroyed unripe seeds, and swallowed intact ripe seeds when consuming mature fruit pulp. Predation rate was high, and only 10% of the seeds were dispersed. Predation and dispersal of seeds is linked to seed number and size. Digestible unripe seeds accounted for 10% of the unripe fruit mass, while indigestible ripe seeds made up 28% of the mature fruit mass. With these constraints, olive baboons increased food gain per fruit by selecting unripe pods containing a high number of large and heavy seeds. Consequently, only pods with fewer and smaller seeds remained for maturation. Thereafter, baboons fed on mature pods containing the smallest seeds, and exploited pods with more seeds to a greater extent than those with fewer seeds. Thus, fruits with small seeds and an intermediate seed number contributed the most to dispersal by baboons.  相似文献   

10.
Recent studies of new world parrots repeatedly document, with few exceptions, that parrots are wasteful and destructive predispersal seed predators that are unlikely to contribute towards pollination and seed dispersal. Few detailed studies, however, have assessed the contribution of African parrots to forest ecology by quantifying the potential net benefit of seed and flower predation by parrots for most tree species in their diet. Due to the incidence of pollen on the heads of Meyer’s Parrots when feeding on Leguminosae flowers and the dispersal of viable seeds to the ground during seed predation, we compared destruction rates, when feeding on pods, fruits and flowers, with dispersal rates of viable seeds to the ground and frequency of head contact with reproductive apparatus to estimate net benefit from Meyer’s Parrot feeding activity. Meyer’s Parrots were not implicated in endo‐ or epizoochory, but they dropped uneaten fruit pulp and seeds to the ground during feeding bouts, thus providing ripe, undamaged seeds to secondary seed dispersers. This link with forest recruitment was weak, as all tree species utilized by Meyer’s Parrots either had more significant primary dispersal agents or were primarily wind‐dispersed. In most cases, the negative effect of seed predation outweighed any positive effects in terms of dispersal, whereby almost three times more seeds were consumed or destroyed than were dispersed to the ground. Significantly, only Sclerocarya birrea caffra recorded marginal net dispersal benefit from utilization by Meyer’s Parrots. Due to low relative resource abundance and high destruction rate, feeding activity on Berchemia discolor may be significant enough to influence its spatial distribution and abundance. Utilization of flowers of Kigelia africana and Adansonia digitata by parrots likely had a significant negative impact on pollination. Feeding on Acacia nigrescens flowers, however, was potentially advantageous to their pollination. We conclude that Poicephalus parrots are net consumers of ripe, undamaged seeds and flowers, thus having an overall negative impact on forest recruitment in subtropical Africa.  相似文献   

11.
The spatial arrangement of plants is a key determinant of pollination services in natural ecosystems. Despite this, plant arrangements are rarely considered an important characteristic of revegetated communities and this may be limiting successful pollination dynamics in these re‐created systems. We assessed if aggregated South Australian Blue Gum (Eucalyptus leucoxylon, F. Muell) had greater pollination success than more dispersed trees by measuring fruit set, seed production and germination in a revegetated eucalypt woodland. The proportion of buds that developed into fruit (fruit set) was similar between aggregated (five flowering Blue Gum within 30 m) and dispersed (no flowering Blue Gum within 30 m) trees (<14%). Aggregated and dispersed trees produced a similar number of seeds per fruit in 2015, when fewer trees flowered and those that flowered produced fewer flowers (ca 8 seeds/fruit). In 2016, when flowering was more abundant, aggregated trees produced more seeds per fruit than dispersed trees (12 seeds/fruit compared to 4 seeds/fruit). Despite differences in seed number, there was no difference in the quality of seed produced, indicating outcrossed pollen was received by both aggregated and dispersed trees. Although outcrossing was likely, this did not prevent pollination limitation, with the addition of outcrossed pollen increasing fruit and seed set for trees in both arrangements. Consequently, we propose that planting individuals of the same species (conspecifics) in clumps, rather than intermixing species, can increase seed set in revegetated eucalypts, particularly in good flowering years. However, aggregated plantings will be most effective if the needs and foraging behaviour of pollinators are also considered, to attract and sustain pollinators in revegetated systems, thereby minimizing the risk of pollination limitation.  相似文献   

12.
Seed Rain and Seed Limitation in a Planted Gallery Forest in Brazil   总被引:1,自引:0,他引:1  
With seeds collected monthly during one year from 53 1‐m2 seed traps, we investigated the seed rain and seed limitation in a gallery forest planted in 1994 in SE Brazil. Contrasting animal‐ (zoochorous) and wind‐dispersed (anemochorous) plants we investigated (1) which aspects of the composition and structure of the vegetation influence the abundance and species richness of the seed rain; (2) if such influences differ between zoochorous and anemochorous seeds; (3) if the abundance and richness of the seed rain sampled under zoochorous and nonzoochorous plant species differ; and (4) if seed limitation (given by the proportion of sites to which seeds were not dispersed) differs between zoochorous and anemochorous plant species, and also between species that have been planted and those that further colonized the area (colonists). Seed rain was intense and dominated by anemochorous species. The overall seed rain was not influenced by the vegetation parameters we analyzed (canopy height and cover, plant size, abundance, and richness) or by the plant species above the seed trap. The abundance and richness of zoochorous seeds in a given spot was influenced by the abundance and richness of zoochorous plants in its immediate vicinity. Seed limitation was higher for anemochorous than zoochorous species and higher for planted than for colonist species. We concluded with recommendations for the initial establishment of a planted forest, including the homogeneous distribution of zoochorous plants to permit a spatially homogeneous zoochorous seedfall, which will likely enhance the chances of survival and successful establishment of seeds.  相似文献   

13.
Previous tests with essential oils from ripe chiropterochoric fruits suggested they can be used to attract and capture fruit-eating bats inside forest remnants. Here we evaluated the efficiency of these oils to attract frugivorous bats to open areas. We performed field tests with artificial fruits impregnated with essential oils of the genera Piper or Ficus that were attached to two groups of mist-nets set 50 m outside the border of a forest remnant. One group of artificial fruits received the corresponding oil isolated through hydrodistillation and the other received water only. Fruits with oils attracted significantly more fruit-eating bats, especially Artibeus lituratus that regularly crosses open habitats to reach other forest remnants. The highly significant attraction of A. lituratus by the oil of Piper was unexpected, since this bat is a specialist on Ficus fruits. We hypothesize that in habitats with no fruit available it is possible to attract frugivorous bats with the odor of several ripe fruit species. Furthermore, we verified that almost half of the individuals captured defecated seeds, indicating that the oils also attract recently fed bats, even when their preferred food is available nearby. This technique potentially may increase seed rain at specific locations, being particularly promising to restoration projects.  相似文献   

14.
The influence of fruit ingestion by the bat, Sturnira lilium, on germination of the seeds of the tree Solanum riparium was studied in a secondary rain forest in northwestern Argentina. Bat frequencies in disturbed areas were analyzed by mist net captures. Germination rates were determined for seeds collected from trees and bat feces. S. lilium was the most abundant fruit bat in the study area. Fruit digestion and the passage of seeds through the intestine did not significantly affect germination in S. riparium. In this case the fruit bats, therefore, probably provide only seed dispersal.  相似文献   

15.
Aim To enhance our understanding of the evolutionary interactions between seed‐dispersal syndromes, life‐forms, seed size, and habitat characteristics by studying their association with the regional‐scale distributions of subtropical rain‐forest plants in the context of climatic gradients. Location South‐east Queensland, subtropical eastern Australia (152° E, 26° S). Methods We classified 250 rain‐forest sites into six floristic site‐groups based on their woody plant composition. The resulting classification was strongly associated with variation in rainfall. The distribution of species across the floristic site‐groups was used to assign 568 species to seven habitat classes (one class for ‘widespread’ species, with all other species classified according to the site‐group within which they were most frequent). Species were also classified for three other categorical life‐history factors: three dispersal syndromes based on diaspore morphology (fleshy, wind‐assisted, and unadorned); four life‐forms (trees, shrubs and small trees, tall climbers, and short and shrubby climbers); and four seed‐diameter classes (< 3 mm, ≥ 3 and < 4.5 mm, ≥ 4.5 and < 7 mm, and ≥ 7 mm). We used a basic comparative approach augmented by simple phylogenetically constrained comparisons to assess association between dispersal syndrome, seed size, life‐form, and habitat class. Results Across the rain forests of south‐east Queensland, the proportion of species with fleshy diaspores or of large stature increases with rainfall. High‐rainfall sites also have larger average seed sizes, but the difference in average seed size between high‐ and low‐rainfall sites is small compared with variation within sites. Among species, those with fleshy fruit tend to have larger seeds and to favour high‐rainfall sites. Very few small trees produce diaspores adapted for wind‐assisted dispersal. On average, species with unadorned diaspores have smaller seeds than those with fleshy diaspores. However, within sites, species with unadorned and fleshy diaspores have similar average seed sizes, and some species with unadorned diaspores from high‐rainfall habitats have extremely large seeds. Main conclusions Commonly observed associations between fleshy fruit, larger plants, larger seeds, and productive habitats are apparent within the rain‐forest flora of south‐east Queensland. However, these associations are generally weak and involve complex interactions. For example, the strong tendency for species with fleshy fruit to have larger seeds than those with unadorned diaspores concealed a significant group of species from wetter forests that produce extremely large seeds and unadorned diaspores. The most widespread species in this study tend to be large plants (particularly robust lianes) and to produce fleshy fruit, but they tend not to have relatively large seeds. The association between large seeds, large plants, fleshy fruit and productive habitats is discussed as part of an evolutionary strategy favouring fitness in populations close to carrying capacity. We review some problems with focusing on establishment chances per seed as the driver towards association between large seeds, large plants and productive rain‐forest habitats (the difficult‐establishment hypothesis). Instead we suggest that production of large, short‐lived seeds by long‐lived plants in temporally stable, closed habitats may reflect the limited evolutionary potential for strategies enhancing colonization (e.g. producing large numbers of dormant seeds), thus allowing the establishment benefits of large seeds greater selective influence (the slow‐replacement hypothesis). The association of fleshy fruit with large seeds probably reflects the difficulty of dispersing large seeds by other means (the difficult‐dispersal hypothesis).  相似文献   

16.
The high degree of isolation of forest “islands” relative to “continental” forested areas creates a naturally fragmented landscape in the savanna ecosystem. Because fragmentation can affect the intensity and quality of biological interactions (e.g., seed dispersal) we examined the abundance and species richness of seed rain produced by birds and bats in three different parts of forest islands (center, edge, and exterior) located at the Estación Biológica del Beni, Bolivia. Despite the fact that we found higher species density of seeds in the seed rain at the center of forest islands, when comparing species richness corrected for observed differences in density, species richness was higher at the edge of islands. The three parts of the islands did not differ in total number of seeds. Three genera (Byrsonima, Ficus, and Piper) contributed the most seeds to the seed rain. We found differences in the abundance of dispersed seeds probably because of the variation related with the disturbance line, where the savanna matrix interacts with the forest islands. Carollia perspicillata, Carollia brevicauda, and Sturnira lilium were the bats that contributed most to seed dispersal within forest islands, and Schistochlamys melanopis and Tyranneutes stolzmanni were the most important birds. The movement of seeds produced by bats and birds within forest islands of the savanna is crucial to assure the continuity of ecological process and dynamics of these forest islands.  相似文献   

17.
Abstract Measuring the fate of seeds between seed production and seedling establishment is critical in understanding mechanisms of recruitment limitation of plants. We examined seed fates to better understand the recruitment dynamics of four resprouting shrubs from two families (Fabaceae and Epacridaceae) in temperate grassy woodlands. We tested whether: (i) pre‐dispersal seed predation affected seed rain; (ii) post‐dispersal seed predation limited seed bank accumulation; (iii) the size of the seed bank was related to seed size; and (iv) viable seeds accumulated in the soil after seed rain. There was a distinct difference in seed production per plant between plant families with the legumes producing significantly more seeds per individual than the epacrids. Seed viability ranged from 43% to 81% and all viable had seed or fruit coat dormancy broken by heat or scarification. Pre‐dispersal predation by Lepidopteran larvae removed a large proportion of seed from the legume seed rain but not the epacrids. Four species of ants (Notoncus ectatomoides, Pheidole sp., Rhytidoponera tasmaniensis and Iridomyrmex purpureus) were major post‐dispersal seed removers. Overall, a greater percentage of Hardenbergia (38%) and Pultenaea (59%) seeds were removed than the fleshy fruits of Lissanthe (14%) or Melichrus (0%). Seed bank sizes were small (<15 seeds m?2) relative to the seed rain and no significant accumulation of seed in the soil was detected. Lack of accumulation was attributed to seed predation as seed decay was considered unlikely and no seed germination was observed in our study sites. Our study suggests that seed predation is a key factor contributing to seed‐limited recruitment in grassy woodland shrubs by reducing the number of seeds stored in the soil.  相似文献   

18.
Hong Kong is an extreme example of tropical landscape degradation, with no substantial remnants of the original forest cover and a highly impoverished disperser fauna. Seed availability is a potential limiting factor in vegetation recovery in such landscapes. To assess the quantity and quality of the seed rain of woody taxa, seed traps were placed in the major upland vegetation types: fire-maintained grassland, shrubland, and secondary forest. Within the grassland site, traps were placed under isolated trees, isolated male and female shrubs of Eurya chinensis, and in the open. Seeds were collected every 2 weeks for 2 years. The seed rain was highest under female shrubs in grassland (6455 seeds m−2 year−1), where it was almost entirely confined to their fruiting period. Next highest were isolated trees (890 seeds), followed by male isolated shrubs (611 seeds), shrubland (558 seeds), forest (129 seeds) and open grassland (47 seeds). The number of seed taxa was highest in shrubland (59), followed by isolated trees (42), forest (42), female isolated shrubs (28), male isolated shrubs (15), and open grassland (9). The seed rain differed in species composition between the forest, shrubland, and grassland sites, while the differences within the grassland site were largely in terms of quantity. Birds (particularly bulbuls, Pycnonotus spp.) are known or inferred to be the major dispersal agents for 85% of the seed taxa trapped, 99% of the total number of seeds trapped, and 99.8% of the seeds trapped in the grassland site. Few taxa and of the total seeds were dispersed by wind and no seed taxa were definitely dispersed by fruit bats. The results suggest that even in the most degraded landscape the seed rain is adequate for the development of woody vegetation cover, but that human intervention will be needed for the restoration of plant diversity.  相似文献   

19.
Hiroki Sato 《Biotropica》2012,44(4):479-488
In the Ankarafantsika tropical dry forest (northwestern Madagascar), the common brown lemur (Eulemur fulvus fulvus) is the largest frugivore and probably the sole disperser of large‐seeded plants (seed diameter > 10 mm). To investigate seed dispersal by this primate, I recorded the feeding activities of a troop; also conducted fecal analyses, germination trials on defecated seeds, and a vegetation survey over 1 yr (beginning Dec 2006). Brown lemurs mostly consumed fruit (68%). The fruit of Vitex beraviensis was the most exploited resource (21% of total feeding time). Among dung samples, 1126 contained intact seeds of 70 plant species, with a median of six seeds and two species per sample. These data indicate that the brown lemur population dispersed approximately 9854 seeds/km2/d. Although the number of annually defecated seeds was overwhelmingly the largest in Grewia triflora, many of the small seeds were often clumped in dung piles. In contrast, large seeds of V. beraviensis occurred in the largest number of dung samples. The rate and time of seed germination in V. beraviensis were improved by passage through brown lemur guts. Therefore, V. beraviensis may readily establish seedlings in sites of brown lemur fecal deposition. Vitex beraviensis and brown lemurs are probably involved in a strong mutualism. Twenty‐three large‐seeded plants were probably dependent on brown lemurs for seed dispersal and some of these species were common trees in the forest. Maintenance of these key plant–animal interactions will probably contribute to the conservation of species diversity and intact regeneration of the Ankarafantsika forest.  相似文献   

20.
Ellen Andresen 《Biotropica》1999,31(1):145-158
Primary seed dispersal by two species of monkeys and the effects of rodents and dung beetles on the fate of dispersed seeds are described for a rain forest in southeastern Perú. During the six-month study period (June–November 1992) spider monkeys (Ateles paniscus) dispersed the seeds of 71 plant species, whereas howler monkeys (Alouatta seniculus) dispersed seeds of 14 species. Spider and howler monkeys also differed greatly in their ranging behavior and defecation patterns, and as a consequence, produced different seed rain patterns. Monkey defecations were visited by 27 species of dung beetles (Scarabaeidae). Dung beetles buried 41 percent of the seeds in the dung, but the number of seeds buried varied greatly, according to seed size. Removal rates of unburied seeds by rodents varied between 63–97 percent after 30 d for 8 plant species. The presence of fecal material increased the percentage of seeds removed by seed predators, but this effect became insignificant with time. Although seed predators found some seeds buried in dung balls (mimicking burial by dung beetles), depth of burial significantly affected the fate of these seeds. Less than 35 percent of Brosimum lactescens seeds buried inside dung balls at a depth of 1 cm remained undiscovered by rodents, whereas at least 75 percent of the seeds escaped rodent detection at a depth of 3 cm and 96 percent escaped at 5 cm. Both dung beetles and rodents greatly affected the fate of seeds dispersed by monkeys. It is thus important to consider postdispersal factors affecting the fate of seeds when assessing the effectiveness of frugivores as seed dispersers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号