首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interactions between taste and irritant sensations elicited by model ice wine solutions were investigated, including the use of U and Γ′ models for predicting the perceived intensity of these sensory interactions. Fifteen solutions of varying ethanol and sugar concentrations representative of commercial ice wine values were evaluated in two trials by a trained sensory panel (n = 12) for perceived sweetness, bitterness and heat intensities. Sweetness perception of lower sugar‐concentration level in ice wine model solution was affected by ethanol concentration. The sweetness intensities of the sugar and ethanol mixtures are higher than the sweetness intensities of sugar solutions. The Γ′ index indicates a slight synergy between ethanol and sugar on sweetness perception. The bitterness intensities elicited by ethanol–sugar mixtures are lower than those elicited by unmixed ethanol solutions. The Γ′ index indicates inhibition of ethanol and sugar perception on bitterness perception. Suppression of heat sensation was found in model base wine solutions across sugar and ethanol concentrations.  相似文献   

2.
Sensory integration in citric acid/sucrose mixtures   总被引:4,自引:3,他引:1  
The scale values of perceived sweetness, sourness and totaltaste intensity of unmixed sucrose, unmixed citric acid andseveral citric acid/sucrose mixtures were assessed, using afunctional measurement approach in combination with a two-stimulusprocedure. The data showed that the scale values obtained werelinear with perceived taste intensity. It was demonstrated thatcitric acid suppresses the sweetness of sucrose and that, inversely,sucrose suppresses the sourness of citric acid. However, thissuppressive effect was not symmetrical in the range of concentrationsused. While the degree of sweetness suppression depended onlyon the citric acid level, the degree of sourness suppressiondepended on the sucrose as well as on the citric acid concentration.With regard to the perceived total taste intensity of citricacid/sucrose mixtures, it was shown that the sum of sweetnessand sourness approximately equals the total taste intensity.The implications of the present findings for the analytic—syntheticcontroversy and for taste interaction theories are discussed.  相似文献   

3.
Bonnans  S.; Noble  A.C. 《Chemical senses》1993,18(3):273-283
Sweetness, sourness and fruitiness of 18 orange-flavored solutions,with three levels of citric acid (0.75, 1.5, 2.25 g/1) and threeequi-sweet levels of either sucrose (80, 100, 120 g/l) or aspartame(0.6, 0.7, 0.8 g/l), were evaluated by time–intensitymethodology. At these concentrations, a larger range in sournessintensity than in sweetness was produced, resulting in greatersuppression of sweetness by increasing acid levels than of sournessby increasing sweetener levels. Although aspartame samples hada longer duration of sweetness and fruitiness, sucrose and aspartamedid not interact differently with the sourness of citric acid.Fruitiness intensity and duration was enhanced by both sweetnessand sourness, but to a greater extent by sourness. Whether thisenhancement is attributable to a cognitive association of sweetnessor sourness with fruitiness or is due to the inability of thesubjects to separate sweet and sour tastes from orally perceivedfruity flavor cannot be concluded from this study.  相似文献   

4.
This study investigated the relationship between perception of an odour when smelled and the taste of a solution to which the odour is added as a flavorant. In Experiment 1 (E1) sweetness, sourness, liking and intensity ratings were obtained for 20 odours. Taste ratings were then obtained for sucrose solutions to which the odours had been added as flavorants. Certain odours were found to enhance tasted sweetness while others suppressed it. The degree to which an odour smelled sweet was the best predictor of the taste ratings. These findings were extended in Experiment 2 (E2), which included a second tastant, citric acid, and employed four odours from E1. The most sweet smelling odour, caramel, was found to suppress the sourness of citric acid and, as in E1, to enhance the sweetness of sucrose. Again, odours with low sweetness suppressed the sweetness of tasted sucrose. The study demonstrated that the effects of odours on taste perception are not limited to sweetness enhancement and apply to sour as well as sweet tastes. The overall pattern of results is consistent with an explanation of the taste properties of odours in terms of prior flavour-taste associations.  相似文献   

5.
Psychophysical judgments often depend on stimulus context. For example, sugar solutions are judged sweeter when a tasteless fruity aroma has been added. Response context also matters; adding a fruity aroma to sugar increases the rated sweetness when only sweetness is considered but not when fruitiness is judged as well. The interaction between stimulus context and response context has been explored more extensively in taste-odor mixtures than in taste-taste mixtures. To address this issue, subjects in the current study rated the sourness of citric acid mixed with quinine (bitter), sodium chloride (salty), and cyclamate (sweet) (stimulus context). In one condition, subjects rated sourness alone. In another, subjects rated both sourness and the other salient quality (bitterness, saltiness, or sweetness) (response context). Sourness ratings were most sensitive to response context for sour-salty mixtures (i.e., ratings of sourness alone exceeded ratings of sourness made simultaneously with saltiness) and least sensitive to context for the sour-sweet mixtures (sourness ratings made under the 2 conditions were essentially identical). Response-context effects for the sour-bitter mixture were nominally intermediate. The magnitudes of these context effects were related to judgments of qualitative similarity between citric acid and the other stimuli, consistent with prior findings. These types of context effects are relevant to the study of taste-taste mixture interactions and should provide insight into the perceptual similarities among the taste qualities.  相似文献   

6.
The effect of soluble starch (acid-modified starch) on taste intensity was investigated in human subjects. Different concentrations of sucrose (Suc), six sweeteners, NaCl, quinine-HCl (QHCl) and citric acid (Cit) were dissolved in either distilled water (DW; standard) or starch solution (test solution). The solutions were presented to naive subjects and each subject was requested to taste and compare the sweetness intensity between the standard and test solutions based on a scale ranging from +3 (enhanced) to -3 (inhibited). A greater sweetness intensity occurred with Suc at different concentration (0.1-1.0 M) dissolved in soluble starch (0.125% to 4.0%) than with Suc in DW. Similarly, five other different products of soluble starch at 0.25 and 4.0% resulted in enhancement of sweetness for 0.3 and 1.0 M Suc. With the sole exception of the taste of 0.3 M Suc, sweet enhancement did not occur with 0.43 M fructose, 0.82 M glucose, 0.82 M sorbitol, 0.0037 M aspartame, 0.0042 M saccharin-Na or 0.016 M cyclamate. Neither the saltiness of NaCl (0.01-0.3 M), the bitterness of QHCl (0.00003-0.001 M) nor the sourness of Cit (0.0003-0.01 M) were affected by the soluble starch. These results suggest that the taste enhancing effects of soluble starch on Suc sweetness might depend not only on the taste transduction mechanism, but also on the molecular interaction between Suc and soluble starch.  相似文献   

7.
While unfermented grape must contains approximately equal amounts of the two hexoses glucose and fructose, wine producers worldwide often have to contend with high residual fructose levels (>2 gl(-1)) that may account for undesirable sweetness in finished dry wine. Here, we investigate the fermentation kinetics of glucose and fructose and the influence of certain environmental parameters on hexose utilisation by wine yeast. Seventeen Saccharomyces cerevisiae strains, including commercial wine yeast strains, were evaluated in laboratory-scale wine fermentations using natural Colombard grape must that contained similar amounts of glucose and fructose (approximately 110 gl(-1) each). All strains showed preference for glucose, but to varying degrees. The discrepancy between glucose and fructose utilisation increased during the course of fermentation in a strain-dependent manner. We ranked the S. cerevisiae strains according to their rate of increase in GF discrepancy and we showed that this rate of increase is not correlated with the fermentation capacity of the strains. We also investigated the effect of ethanol and nitrogen addition on hexose utilisation during wine fermentation in both natural and synthetic grape must. Addition of ethanol had a stronger inhibitory effect on fructose than on glucose utilisation. Supplementation of must with assimilable nitrogen stimulated fructose utilisation more than glucose utilisation. These results show that the discrepancy between glucose and fructose utilisation during fermentation is not a fixed parameter but is dependent on the inherent properties of the yeast strain and on the external conditions.  相似文献   

8.
The total intensity, sweetness, and acidity of sucrose/citric acid mixtures were judged by two types of taste panel: experienced assessors, most of whom had had many years of experience in sensory evaluation; and novice assessors, none of whom had previously taken part in a taste experiment. In other respects the experimental conditions remained almost constant. There was good correspondence between the two panels, particularly for judgments of total intensity, indicating that novice and experienced assessors evaluate taste mixtures in the same way. However, there was also an indication that experience on sensory panels may attenuate taste suppression, the suppression of acidity by sweetness being less pronounced for the experienced panel than for the novice panel. The implications for mixture perception are noted.  相似文献   

9.
Differences in the sweet‐blocking efficacy of 2‐(4‐methoxyphenoxy) propanoic acid (PMP) for different sweeteners (sucrose and aspartame) and for various exposure areas of the mouth were found. Twenty participants rated sweetener solutions with and without PMP for sweetness, sourness, saltiness, bitterness and umami for stimulation of anterior tongue, posterior tongue and whole‐mouth areas. For sweetness ratings, suppression was significant for all stimulation areas. In the presence of PMP, stimulation of the posterior tongue yielded significantly higher sweetness ratings than stimulation of the anterior tongue for aspartame but not for sucrose. Sourness and bitterness ratings were significantly higher for anterior tongue than posterior tongue stimulations for aspartame but not for sucrose. The increases in sourness ratings in the presence of PMP were likely because of the sour taste PMP has at the concentration used. Results imply a difference between the front and the back of the tongue in the mechanisms involved in the perception of sweetness.  相似文献   

10.
THE TASTES OF ARTIFICIAL SWEETENERS AND THEIR MIXTURES   总被引:1,自引:1,他引:0  
0s scaled the taste intensity (bitterness, sweetness) of artificialsweeteners, mixtures of artificial sweeteners, and glucose.Sweetness of glucose conformed to a power function, whereasneither sweetness of artificial sweeteners nor their bitternessdid. The total taste intensity of mixtures was often lower thanthe taste intensities of the components, suggesting suppression,although in many instances the suppressive effects disappearedat high concentrations.  相似文献   

11.
Sowalsky  RA; Noble  AC 《Chemical senses》1998,23(3):343-349
The separate effects of concentration, pH and anion species on intensity of sourness and astringency of organic acids were evaluated. Judges rated sourness and astringency intensity of lactic, malic, tartaric and citric acid solutions at three levels of constant pH varying in normality and at three levels of constant concentration varying in pH. To assess the comparative sourness and astringency of the organic acid anions of study, binary acid solutions matched in pH and titratable acidity were also rated. As pH was decreased in equinormal solutions, both sourness and astringency increased significantly (P < 0.001). By contrast, as the normality of the equi-pH solutions was increased, only sourness demonstrated significant increases (P < 0.001) while astringency remained constant or decreased slightly. At the lowest normality tested, all solutions were more astringent than sour (P < 0.05). Although lactic acid was found to be significantly more sour than citric acid (P < 0.05), no other sourness or astringency differences among the organic acid anions were noted. This study demonstrates for the first time that astringency elicited by acids is a function of pH and not concentration or anion species, and confirms that sourness is independently influenced by concentration, pH and anion species of the acid.   相似文献   

12.
The effect of cooling the tongue on the perceived intensity of taste   总被引:4,自引:2,他引:2  
Two experiments were performed (i) to measure the effect ofcooling on the perceived intensity of taste, and (ii) to determinewhether the temperature of the tongue or the temperature ofthe solution was primarily responsible for the changes in perceivedintensity that were observed. The first experiment revealedthat cooling both the tongue and the taste solutions from 36to either 28 or 20°C produced measurable reductions in theperceived intensity of the sweetness of sucrose and the bitternessof caffeine. The saltiness of NaCl and the sourness of citricacid were unaffected by cooling. The second experiment demonstratedthat the temperature of the tongue was the critical factor forproducing the effects on sweetness and bitterness. The latterfinding implies that some of the inconsistencies in the literatureon taste–temperature interactions might have been avoidedif the temperature of the tongue had been routinely controlled.In addition, the importance of lingual temperature suggeststhat thermal effects on taste intensity may often be due tochanges in the sensitivity of the gustatory transduction processrather than to changes in the molecular properties of the tastesolutions.  相似文献   

13.
An assessment of binary mixture interactions for nine sweeteners   总被引:1,自引:1,他引:0  
Binary mixtures of acesulfame K, aspartame, sodium cyclamate,fructose, glucose, stevioside, sodium saccharin, sucrose andxylitol were assessed using factorial mixture designs. A simpleadditive model was used to generate predictions for the sweetnessof the mixtures and these predicted responses were comparedto the observed sweetness ratings of the mixtures. It was foundthat the mixtures tended to exhibit superadditivity at low concentrations,additivity at intermediate concentrations and subadditivityat high concentrations. Synergistic and suppressive effectsin the mixtures were evaluated by comparing mixture responsesto the sweetness ratings of ‘self-mixtures’. Self-mixturedata were generated by treating a mixture of a substance withitself as if it were a mixture of two different substances.Synergism was defined as a mixture response that was greaterthan the sweetness of the component self-mixtures, and suppressionwas defined as a mixture response that was less than the sweetnessof the component self-mixtures. Of the 31 binary mixtures studied,18 showed synergism, two showed suppression and 11 did not differsignificantly from their components. It is hypothesized thatmultiple sweetness receptors or release from bitter suppressionmay account for the synergistic effects.  相似文献   

14.
Saccharomyces cerevisiae ATCC 39859 was immobilized onto small cubes of wood to produce ethanol and very enriched fructose syrup from glucose/fructose mixtures through the selective fermentation of glucose. A maximum ethanol productivity of 21.9 g/l-h was attained from a feed containing 9.7% (w/v) glucose and 9.9% (w/v) fructose. An ethanol concentration, glucose conversion and fructose yield of 29.6 g/l, 62% and 99% were obtained, respectively. This resulted in a final fructose/glucose ratio of 2.7. At lower ethanol productivity levels the fructose/glucose ratio increases, as does the ethanol concentration in the effluent. The addition of 30 mg/l oleic acid to the medium increased the ethanol productivity and its concentration by 13% at a dilution rate of 0.74 h?1.  相似文献   

15.
AIMS: The objective of this study was to determine the effect of increasing juice soluble solids above 40 degrees Brix on wine yeast's ability to grow and ferment the juice, with particular focus on acetic acid production, titratable acidity (TA) changes and the maximum amount of sugar consumed by the yeast. METHODS AND RESULTS: Riesling Icewine juices at 40, 42, 44 and 46 degrees Brix were inoculated with K1- V116 at 0.5 g 1(-1) and fermented at 17 degrees C until sugar consumption ceased. Increasing soluble solids showed strong negative linear correlations with yeast growth, sugar consumption and ethanol production (r = -0.999, -0.997 and 0.984, P < 0.001, respectively). Acetic acid, glycerol and TA production normalized to sugar consumed showed strong positive correlations to the initial juice concentration (r = 0.992, 0.963, and 0.937, P < 0.001 respectively) but no correlation was found for ethanol production. The acetic acid produced as a function of sugar consumed was positively correlated to the glycerol produced (r = 0.970, P < 0.001). The final TA of the wines ranged between 11.8 and 13.7 g 1(-1) tartaric acid, increasing by 2.3-3 g 1(-1) over the starting juice. The increase in TA was positively correlated to the increase in acetic acid produced after normalizing the data to the amount of sugar consumed (r =0.975, P < 0.001). The acid equivalents resulting from the increase in acetic acid accounted for 80-100% of the TA increase when converted to units of tartaric acid. In the final Icewines, acetic acid represented 19-20% of wine TA. CONCLUSIONS: Increasing Icewine juice concentration from 40 to 46 degrees Brix increases the proportion of yeast sugar metabolism towards glycerol and acetic acid production to cope with the increased osmotic stress by decreasing yeast growth, sugar consumption rate, the total amount of sugar consumed and the total amount of ethanol produced. The high proportional contribution of acetic acid to titratable acidity in Riesling Icewine may affect acidity perception. SIGNIFICANCE AND IMPACT OF THE STUDY: We have determined that 10% v/v ethanol would not be achievable with initial juice concentrations above 42 degrees Brix and that Riesling Icewine juice above 52.5 degrees Brix would be theoretically unfermentable. The high proportional contribution of acetic acid to TA may be an important factor in the organoleptic balance of these Icewines.  相似文献   

16.
17.
Perceptual Properties of Benzoic Acid Derivatives   总被引:1,自引:1,他引:0  
Peleg  H.; Noble  A.C. 《Chemical senses》1995,20(4):393-400
Sensory properties of equimolar concentrations of benzoic acidderivatives were examined using time-intensity procedures. Significantdifferences in maximum intensities (P < 0.005) were foundfor astringency, bitterness, prickling, sourness and sweetness.Although these compounds differed only in the number and positionof the hydroxy groups, they exhibited quite different profiles.Gentisic acid had the highest sourness and bitterness maximumintensity, salicylic and gentisic acids were highest in astringency,and m-hydroxybenzoic acid was the sweetest sample. Benzoic acidhad the highest intensity of prickling feeling which lasted20 s longer than salicylic acid and 40 s longer than the othersamples which elicited lowest intensity of prickling sensation.Chem. Senses 20: 393–400, 1995.  相似文献   

18.
At several intervals following exposure to gymnemic acid, subjectsjudged the sweetness, bitterness, saltiness, and sourness ofsimple taste stimuli. The experiment was expressly designedto test Kennedy and Halpern's (1980) biphasic model for theaction of gymnemic acid. The model predicts selective suppressionof sweet taste immediately following exposure to gymnemic acidbut nonselective disruption of tastes with the passage of time.The data show dramatic reductions in sweet taste which recoverwith time but no reductions in bitterness, saltiness, or sournessat any time following exposure to any of a wide range of gymnemicacid concentrations.  相似文献   

19.
It is generally assumed that the mutual, but asymmetric, suppression of the components in binary taste mixtures is an invariant property of the human psychophysical response to such mixtures. However, taste intensities have been shown to vary as a function of individual differences in sensitivity, indexed by the perceived bitterness of 6-n-propylthiouracil (PROP). To determine if these variations in taste perception influence taste mixture interactions, groups of PROP super-, medium- and non-tasters assessed four binary taste mixtures: sweet-bitter [sucrose/quinine hydrochloride (QHCl)], sweet-sour (sucrose/citric acid), salty-bitter (NaCl/QHCl) and salty-sour (NaCl/citric acid). In each experiment, subjects received factorial combinations of four levels of each of two tastants and rated individual taste intensities and overall mixture intensity. For each taste quality, super-tasters typically gave higher ratings than either medium- or non-tasters, who tended not to differ. There were also group differences in the interactions of the mixtures' components. Super-tasters rated the overall intensity of the mixtures, most likely reflecting integration of the taste components, as greater than medium- and non-tasters, who again showed few differences. In sweet-bitter mixtures, non-tasters failed to show the suppression of sweetness intensity by the highest QHCl concentration that was evident in super- and medium-tasters. These data show that the perception of both tastes and binary taste mixture interactions varies as a function of PROP taster status, but that this may only be evident when three taster groups are clearly distinguished from one another.  相似文献   

20.
The purpose of this study was to determine the degree to which the sodium salt of +/-2-(4-methoxyphenoxy)propanoic acid (Na-PMP) reduced sweet intensity ratings of 15 sweeteners in mixtures. Na-PMP has been approved for use in confectionary/frostings, soft candy and snack products in the USA at concentrations up to 150 p.p.m. A trained panel evaluated the effect of Na-PMP on the intensity of the following 15 sweeteners: three sugars (fructose, glucose, sucrose), three terpenoid glycosides (monoammonium glycyrrhizinate, rebaudioside-A, stevioside), two dipeptide derivatives (alitame, aspartame), two N-sulfonylamides (acesulfame-K, sodium saccharin), two polyhydric alcohols (mannitol, sorbitol), 1 dihydrochalcone (neohesperidin dihydrochalcone), one protein (thaumatin) and one sulfamate (sodium cyclamate). Sweeteners were tested at concentrations isosweet with 2.5, 5, 7.5 and 10% sucrose in mixtures with two levels of Na-PMP: 250 and 500 p.p.m. In addition, the 15 sweeteners were tested either immediately or 30 s after a pre-rinse with 500 p.p.m. Na-PMP. In mixtures, Na-PMP at both the 250 and 500 p.p.m. levels significantly blocked sweetness intensity for 12 of the 15 sweeteners. However, when Na-PMP was mixed with three of the 15 sweeteners (monoammonium glycyrrhizinate, neohesperidin dihydrochalcone and thaumatin), there was little reduction in sweetness intensity. Pre-rinsing with Na-PMP both inhibited and enhanced sweetness with the greatest enhancements found for monoammonium glycyrrhizinate, neohesperidin dihydrochalcone and thaumatin, which were not suppressed by Na-PMP in mixtures. The mixture data suggest that Na-PMP is a selective competitive inhibitor of sweet taste. The finding that pre-treatment can produce enhancement may be due to sensitization of sweetener receptors by Na-PMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号