首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For many plant species in eastern North America, short observed seed dispersal distances (ranging up to a few tens of meters) fail to explain rapid rates of invasion and migration. This discrepancy points to a substantial gap in our knowledge of the mechanisms by which seeds are dispersed long distances. We investigated the potential for white-tailed deer (Odocoileus virginianus Zimm.), the dominant large herbivore in much of eastern North America, to disperse seeds via endozoochory. This is the first comprehensive study of seed dispersal by white-tailed deer, despite a vast body of research on other aspects of their ecology. More than 70 plant species germinated from deer feces collected over a 1-year period in central New York State, USA. Viable seeds included native and alien herbs, shrubs, and trees, including several invasive introduced species, from the full range of habitat types in the local flora. A mean of >30 seeds germinated per fecal pellet group, and seeds were dispersed during all months of the year. A wide variety of presumed dispersal modes were represented (endo- and exozoochory, wind, ballistic, ant, and unassisted). The majority were species with small-seeded fruits having no obvious adaptations for dispersal, underscoring the difficulty of inferring dispersal ability from diaspore morphology. Due to their broad diet, wide-ranging movements, and relatively long gut retention times, white-tailed deer have tremendous potential for effecting long-distance seed dispersal via ingestion and defecation. We conclude that white-tailed deer represent a significant and previously unappreciated vector of seed dispersal across the North American landscape, probably contributing an important long-distance component to the seed shadows of hundreds of plant species, and providing a mechanism to help explain rapid rates of plant migration.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

2.
Seed dispersal constitutes a pivotal process in an increasingly fragmented world, promoting population connectivity, colonization and range shifts in plants. Unveiling how multiple frugivore species disperse seeds through fragmented landscapes, operating as mobile links, has remained elusive owing to methodological constraints for monitoring seed dispersal events. We combine for the first time DNA barcoding and DNA microsatellites to identify, respectively, the frugivore species and the source trees of animal‐dispersed seeds in forest and matrix of a fragmented landscape. We found a high functional complementarity among frugivores in terms of seed deposition at different habitats (forest vs. matrix), perches (isolated trees vs. electricity pylons) and matrix sectors (close vs. far from the forest edge), cross‐habitat seed fluxes, dispersal distances and canopy‐cover dependency. Seed rain at the landscape‐scale, from forest to distant matrix sectors, was characterized by turnovers in the contribution of frugivores and source‐tree habitats: open‐habitat frugivores replaced forest‐dependent frugivores, whereas matrix trees replaced forest trees. As a result of such turnovers, the magnitude of seed rain was evenly distributed between habitats and landscape sectors. We thus uncover key mechanisms behind “biodiversity–ecosystem function” relationships, in this case, the relationship between frugivore diversity and landscape‐scale seed dispersal. Our results reveal the importance of open‐habitat frugivores, isolated fruiting trees and anthropogenic perching sites (infrastructures) in generating seed dispersal events far from the remnant forest, highlighting their potential to drive regeneration dynamics through the matrix. This study helps to broaden the “mobile‐link” concept in seed dispersal studies by providing a comprehensive and integrative view of the way in which multiple frugivore species disseminate seeds through real‐world landscapes.  相似文献   

3.
Ingle NM 《Oecologia》2003,134(2):251-261
In the moist Neotropics, vertebrate frugivores have a much greater role in the dispersal of forest and successional woody plants than wind, and bats rather than birds play the dominant role in dispersing early successional species. I investigated whether these patterns also occurred in a Philippine montane rainforest and adjacent successional vegetation. I also asked whether seed mass was related to probability of dispersal between habitats. A greater number of woody species and stems in the forest produced vertebrate-dispersed seeds than wind-dispersed seeds. Although input of forest seeds into the successional area was dominated by vertebrate-dispersed seeds in terms of species richness, wind-dispersed seeds landed in densities 15 times higher. Frugivorous birds dispersed more forest seeds and species into the successional area than bats, and more successional seeds and species into the forest. As expected, seed input declined with distance from source habitat. Low input of forest seeds into the successional area at the farthest distance sampled, 40 m from forest edge, particularly for vertebrate-dispersed seeds, suggests very limited dispersal out of forest even into a habitat in which woody successional vegetation provides perches and fruit resources. For species of vertebrate-dispersed successional seeds, probability of dispersal into forest declined significantly with seed mass.  相似文献   

4.
Dispersal limitation between habitat fragments is a known driver of landscape-scale biodiversity loss. In Europe, agricultural intensification during the twentieth century resulted in losses of both grassland habitat and traditional grassland seed dispersal vectors such as livestock. During the same period, populations of large wild herbivores have increased in the landscape. Usually studied in woodland ecosystems, these animals are found to disperse seeds from grasslands and other open habitats. We studied endozoochorous seed dispersal by roe deer (Capreolus capreolus) in fragmented grasslands and grassland remnants, comparing dispersed subcommunities of plant species to those in the established vegetation and the seed bank. A total of 652 seedlings of 67 species emerged from 219 samples of roe deer dung. This included many grassland species, and several local grassland specialists. Dispersal had potentially different effects on diversity at different spatial scales. Almost all sites received seeds of species not observed in the vegetation or seed bank at that site, suggesting that local diversity might not be dispersal limited. This pattern was less evident at the landscape scale, where fewer new species were introduced. Nonetheless, long-distance dispersal by large wild herbivores might still provide connectivity between fragmented habitats within a landscape in the areas in which they are active. Finally, as only a subset of the available species were found to disperse in space as well as time, the danger of future biodiversity loss might still exist in many isolated grassland habitats.  相似文献   

5.
The risk of spreading of alien species to protected forest habitats through recreational horse-back riding was experimentally investigated at Oulanka National Park, north-eastern Finland during 2002–2005. Levels of disturbance, horse manure and seed rain of dwarf shrubs were manipulated in genuine boreal forest habitat. Specifically we asked (i) whether the seeds of alien species can be dispersed to natural forests by horse manure and (ii) whether disturbance in soils and vegetation increases the density of alien species and decrease the density of native species. Manure addition introduced seeds of graminoid and forb species, which were absent elsewhere in the study area. Establishment of the alien species was further enhanced by the disturbance treatment. Germination of natural shrub species was enhanced by disturbance treatment, whereas manure addition had little impact on the native shrubs. The results indicate that alien species may be introduced to natural forests through recreational horse riding, if horses are fed by hay that contains germinable seeds. Soil disturbance enhances the germination of seeds. In practice, the risk of alien species to the biodiversity of natural forests may be relatively small due to the lack of continuous disturbance in these habitats. Instead, the greatest risk is caused by the possibility of alien species to spread via trails to neighbouring, extremely sensitive open habitats.  相似文献   

6.
In habitats where disturbance is frequent, seed banks are important for the regeneration of vegetation. Sand dune systems are dynamic habitats in which sand movement provides intermittent disturbance. As succession proceeds from bare sand to forest, the disturbance decreases. At Indiana Dunes National Lakeshore, we examined the seed banks of three habitat types across a successional gradient: foredunes, secondary dunes, and oak savanna. There were differences among the types of species that germinated from each of the habitats. The mean seed bank density increased across the successional gradient by habitat, from 376 to 433 to 968 seeds m−2, but with foredune and secondary dune seed bank densities being significantly lower than the savanna seed bank density. The number of seeds germinated was significantly correlated with soil organic carbon, demonstrating for this primary successional sequence that seed density increases with stage and age. The seed bank had much lower species richness than that of the aboveground vegetation across all habitats. Among sites within a habitat type, the similarity of species germinated from the seed banks was very low, illustrating the variability of the seed bank even in similar habitat types. These results suggest that restoration of these habitats cannot rely on seed banks alone.  相似文献   

7.
 以分布在云南西双版纳地区的大型先锋草本植物小果野芭蕉(Musa acuminata)为研究材料,研究其种子初次散布过程和不同时空尺度上种子被 捕食格局。小果野芭蕉的成熟果实有75%在夜间被取食和传播,在白天消失的果实则占25%。蝙蝠是其最主要的种子传播者,鸟类在其种子传播 过程中也起到一定的作用。人工摆放种子试验结果显示小果野芭蕉种子的主要转移者是小型啮齿类(鼠类)和蚁类:在开放处理下3 d后转移率为 86%,排除蚁类(鼠类可进入)处理下种子转移率为69%以及排除鼠类(蚂蚁可进入)处理下种子被转移率为56%。季节、地点和生境均显著影响人工 摆放种子被转移强度:雨季显著高于旱季(p<0.001), 野芭蕉生境显著高于与其相连的自然森林和荒地(p<0.001),在人为干扰较少的补蚌自然 保护区显著低于西双版纳热带植物园和新山,而后两者之间并无显著差异(p>0.05)。同时,地点和生境以及季节、地点和生境都有显著的交互 作用。与相邻的森林和荒地相比,野芭蕉群落中种子被鼠类捕食的强度最大且受蚁类二次转移的比例最少,森林和荒地中种子被鼠类捕食的强 度相对较小且蚁类对种子的二次转移比例较高,从而更好地帮助种子逃避鼠类捕食。因此,依赖于食果动物(主要是蝙蝠, 也包括鸟类)的初次 散布是小果野芭蕉种子逃避捕食的关键。  相似文献   

8.
Broad-scale reciprocity in an avian seed dispersal mutualism   总被引:1,自引:0,他引:1  
Aim Coevolved relationships between individual species of birds and plants rarely occur in seed dispersal mutualisms. This study evaluates whether reciprocal relationships may occur between assemblages of bird and plant species. Location Vancouver Island, British Columbia, Canada (48°50′‐N, 125°22′‐W). Methods The distribution and fruiting phenologies of seven shrub species were compared to seasonal changes in habitat selection and seed dispersal by six fruit‐eating bird species. Results Shrub species inhabiting forest understorey habitat had earlier fruiting phenologies than shrub species inhabiting forest edge habitat along lake and bog margins. Birds showed a parallel pattern in habitat selection, being more abundant in the forest understorey early in the fruiting season, and more abundant in the forest edge later in the season. Rates of seed deposition covaried with avian habitat selection, in such a way that birds directed seed dispersal into habitats preferred by shrubs. Conclusions These results depict a broad‐scale pattern in the abundance of birds and fruits indicative of reciprocal interactions. Seasonal changes in seed dispersal to each habitat appear to reinforce the relationship between shrub habitat affinities and fruiting phenologies. Phenological differences between habitats may also reinforce seasonal changes in avian habitat selection. Therefore, although reciprocal interactions between pairs of bird and plant species are rare, broad‐scale reciprocal relationships may occur between assemblages of bird and plant species.  相似文献   

9.
Free-ranging large herbivores can influence vegetation dynamics through seed dispersal within and among habitats. We investigated the content of germinable seeds in the dung (endozoochory) of red deer (Cervus elaphus L.), the most ubiquitous wild ungulate throughout the European Alps, and compared the results with the species composition of the vegetation type in which the dung was dropped. The study was conducted in the subalpine zone of the Swiss National Park and included the three most important vegetation types for red deer: (i) intensively grazed short-grass vegetation, (ii) less intensively grazed tall-grass vegetation, and (iii) adjacent conifer forest understory vegetation. Seeds of 47 species, mostly from small-seeded herbaceous species, were recorded in dung samples with three species accounting for 65% of germinated seeds. Our results confirmed the hypotheses that (H1) small-seeded species were more likely to occur in red deer dung than larger-seeded species, though seed size was unrelated to seed density, (H2) red deer dung contained mostly seeds from short-grass vegetation, with seed species composition in dung collected from any vegetation type being most similar to species composition of relevés from short-grass vegetation, and (H3) seeds were less likely to be dispersed between vegetation types than within vegetation types, with dung dropped in short-grass vegetation having a different species composition and containing over twice as many seeds as dung dropped in the other two vegetation types. These results collectively support the hypothesis that red deer endozoochory contributes to maintaining short-grass vegetation, the favoured grazing sites of hinds in the Swiss National Park, by increasing propagule pressure of seeds from herbaceous forage species adapted to endozoochory relative to other species and especially those from later stages of secondary succession.  相似文献   

10.
生境片段化伴随的面积效应和边缘效应, 可改变分散贮食动物的竞争强度、觅食行为以及隐蔽条件, 影响种子捕食和扩散模式。阐明生境片段化对多物种种子捕食和扩散的影响, 对理解片段化生境中的植物更新和生物多样性维持十分重要。该研究在浙江省千岛湖地区的岛屿和大陆上开展了针对6种壳斗科植物的种子捕食和扩散实验, 分析了物种、分散贮食动物相对多度、种子产量、岛屿大小和边缘效应如何共同影响种子命运和种子扩散距离。主要结果: (1)种子命运和扩散距离在物种间存在显著差异; (2)大陆比岛屿有更长的种子留存时间, 小岛种子留存时间最短, 岛屿内部比岛屿边缘有更长的种子留存时间; (3)物种和岛屿大小对种子原地取食率存在交互作用, 白栎(Quercus fabri)种子在大岛上有更高的原地取食率; (4)种子在小岛上有最高的扩散率, 分散贮食动物相对多度对种子扩散后贮藏率有负效应。表明在千岛湖地区, 生境片段化改变了种子捕食和扩散模式, 且面积效应对不同物种的种子捕食和扩散模式产生了不同作用, 从而影响森林群落更新和生物多样性维持。  相似文献   

11.
We studied the characteristics of seeds within faeces, an important aspect of endozoochorous seed dispersal, in Japanese macaques Macaca fuscata inhabiting Kinkazan Island, northern Japan. We intermittently collected faecal samples from 1999 to 2009 (N = 1294) and examined the rate of seed occurrence, species/life-form composition, number of seeds, and their intact rate. Seeds were found within faecal samples during every month, but their characteristics changed monthly: the rate of seed occurrence and the number of plant species within faecal samples were greater in summer and fall, and the intact rate and number of intact seeds observed within single faecal samples were also higher during these seasons than spring and winter. These results suggest that Japanese macaques on Kinkazan act as seed dispersers in summer and fall and that they disperse intact seeds into wider areas within the forest through defecation. During the study period, we observed seeds from a total of 35 plant species from 22 families in our samples. In addition to those of woody plants, we also observed seeds from as many as 12 herbaceous plants, for which sympatric sika deer (Cervus nippon) have historically been considered the sole seed dispersal agents. The intact rate of seeds was significantly negatively correlated with the seeds’ mean cubic diameter, and this relationship was strengthened for non-fleshy fruits. We also conducted regional comparisons of the characteristics of defecated seeds in order to address whether regional variations in the diet of the macaques affect their efficacy as seed dispersers, both in terms of quantity and quality. Macaques living in the natural habitats of Kinkazan and Yakushima dispersed more seeds of tall tree species than do macaques inhabiting the human-altered areas of in Shimokita and Kashima. The number of plant species represented within single faecal samples also varied geographically, being greater in Yakushima. This pattern likely resulted from Yakushima's warm temperate climate, as the other three study sites occur in the cool temperate region. Our results suggest that the composition of seeds dispersed by Japanese macaques is not rigid, but is determined instead by the vegetation found in a given habitat.  相似文献   

12.
Anthropogenic habitat disturbance has potential consequences for ant communities. However, there is limited information on the effects of ant responses on associated ecological processes such as seed dispersal. We investigated the effect of disturbance on the abundance, richness, and composition of ant communities and the resulting seed‐dispersal services for a herbaceous myrmecochore, Corydalis giraldii (Papaveraceae), in an undisturbed habitat (forest understory), moderately disturbed habitat (abandoned arable field), and highly disturbed habitat (road verge) on Qinling Mountains, China. In total, we recorded 13 ant species, and five out of these were observed to transport seeds. The community composition of dispersers was significantly different amongst habitats. The richness of the dispersers did not differ among the habitats, but their total abundance varied significantly across habitats and was 21% lower in the road verge than in the abandoned arable fields. The major seed‐dispersing ant species in both the forest understory and the abandoned arable field were large‐bodied (Myrmica sp. and Formica fusca, respectively), whereas the major seed‐dispersing ants found in the road verge were the small‐bodied Lasius alienus. This difference resulted in lower seed removal rates and dispersal distances in the road verge than in the other two habitats. The different dispersal patterns were attributed primarily to differences in dispersing ant abundance and identity, most likely in response to habitats with different degree of anthropogenic disturbance. The possible influence of disturbance on the ecological specialization of ant‐seed dispersal interaction is also discussed.  相似文献   

13.
The contribution of large-herbivore epizoochory to the transfer of seeds within and between areas is thought to be significant. But often seeds of ubiquitous species are dispersed, which may enhance ruderalization processes. In order to study the dispersal of target species by sheep, we employed a community-based grazing approach followed by intra- and inter-area sheep transfers (maximum transfer distance 3 km). In case of inter-area transfers, well-developed target communities of an open inland sand ecosystem are used as “source”, linked to less-developed sand habitats (“sink”) via sheep. Also other factors determining which species become dispersed under field conditions were tested: seed surface structure, seed mass, plant seed-releasing height and animal behaviour. Finally the influence of animal movement on seed detachment and the actual arrival of seeds within a “sink” were studied.

Sheep transfers resulted in the dispersal of 56 seed species, dominated by Red List (seven species) and other target species. Quantitatively, most transported seeds belonged to target species, whereas graminoid competitors were highly under-represented. Morphological traits enhance the attachment probability regardless of seed mass. But for seeds without these epizoochory-facilitating traits, mass seems to affect attachment negatively. Plant height affected the number of species present in sheep coats but not the seed quantities. Probably certain species in the vegetation produced large numbers of seeds, e.g. low-growing Medicago minima with seed surface structures and high-growing species Verbascum phlomoides without seed surface structures. Also, although transfer half-times were three times lower than grazing half-times, naturally attached Stipa capillata and Agrimonia procera seeds showed no significant detachment rates during transfer, whereas considerable losses were found during grazing. Other 3-km sheep transfers did not result in significant losses of either epizoochorously transported seed or species quantities. Our study shows that community-based grazing can lead to the dispersal of especially target species. Besides that, different habitat fragments can be connected to each other via sheep without significant seed losses along the way.  相似文献   


14.
K. S. MURALI 《Biotropica》1997,29(3):271-279
Seed weight, days to germination and seed viability were observed for 99 species growing in the Western Ghats of Karnataka, India. Seed size was strongly correlated with days to germination; smaller seeds germinated faster than larger seeds. Species which flowered during the rainy season had lighter seeds than species which flowered during the dry season. It was also found that seed size and viability of seeds were related to the season of fruiting. Species which fruit during the rainy season had heavier seeds and shorter viability than species which fruit during the dry season. These flowering and fruiting patterns and varying seed sizes are argued to be adaptations to the time of dispersal, time of moisture availability in the habitat and seedling survival.  相似文献   

15.
Recognition that tree recruitment depends on the balance between seed arrival and seedling survival has led to a surge of interest in seed‐dispersal limitation and seedling‐establishment limitation in primary forests. Virtually unaddressed are comparisons of this balance in mature and early successional habitats. We assessed seed rain and seedling recruitment dynamics of tree species in primary forest, secondary forest and pasture released from grazing in a tropical agricultural landscape. Seed to seedling ratios (seed effectiveness; Φi) for 43 species in southern Mexico determined differences in the extent to which seeds produced seedlings by habitat, life history, and dispersal mode. Reproductive potential as estimated by the transition from seed rain to seedling recruitment, differed by habitats, and varied dramatically by life history and dispersal mode. Expected recruit densities (Eit) were higher for animal‐dispersed than wind‐dispersed species, and for non‐pioneer than pioneer species. Non‐pioneers and animal‐dispersed species had higher expected relative recruit abundance (εit) in primary forest (median of 4 seeds recruit?1) whereas in secondary forest wind‐dispersed pioneers had the highest expected relative recruit abundance (median of 16 seeds per recruit). In pastures, wind‐dispersed pioneer species were most successful with many more seeds per recruit (median of 291) than both forest habitats. Seeds per recruit (Φi) appeared to decrease with increase in seed mass for 43 species for which data were available (r = –0.55, P < 0.001). This was associated with a negative correlation of Φi with seed size in primary forest (r = –0.50, P = 0.08 for 13 species); Φi was not correlated with seed size in secondary forest (n = 16) or pasture (n = 14). Metrics of seeds per recruit, expected recruit density and expected relative recruit abundance dramatically illustrate differences in barriers to recruitment in successional habitats.  相似文献   

16.
Aim To enhance our understanding of the evolutionary interactions between seed‐dispersal syndromes, life‐forms, seed size, and habitat characteristics by studying their association with the regional‐scale distributions of subtropical rain‐forest plants in the context of climatic gradients. Location South‐east Queensland, subtropical eastern Australia (152° E, 26° S). Methods We classified 250 rain‐forest sites into six floristic site‐groups based on their woody plant composition. The resulting classification was strongly associated with variation in rainfall. The distribution of species across the floristic site‐groups was used to assign 568 species to seven habitat classes (one class for ‘widespread’ species, with all other species classified according to the site‐group within which they were most frequent). Species were also classified for three other categorical life‐history factors: three dispersal syndromes based on diaspore morphology (fleshy, wind‐assisted, and unadorned); four life‐forms (trees, shrubs and small trees, tall climbers, and short and shrubby climbers); and four seed‐diameter classes (< 3 mm, ≥ 3 and < 4.5 mm, ≥ 4.5 and < 7 mm, and ≥ 7 mm). We used a basic comparative approach augmented by simple phylogenetically constrained comparisons to assess association between dispersal syndrome, seed size, life‐form, and habitat class. Results Across the rain forests of south‐east Queensland, the proportion of species with fleshy diaspores or of large stature increases with rainfall. High‐rainfall sites also have larger average seed sizes, but the difference in average seed size between high‐ and low‐rainfall sites is small compared with variation within sites. Among species, those with fleshy fruit tend to have larger seeds and to favour high‐rainfall sites. Very few small trees produce diaspores adapted for wind‐assisted dispersal. On average, species with unadorned diaspores have smaller seeds than those with fleshy diaspores. However, within sites, species with unadorned and fleshy diaspores have similar average seed sizes, and some species with unadorned diaspores from high‐rainfall habitats have extremely large seeds. Main conclusions Commonly observed associations between fleshy fruit, larger plants, larger seeds, and productive habitats are apparent within the rain‐forest flora of south‐east Queensland. However, these associations are generally weak and involve complex interactions. For example, the strong tendency for species with fleshy fruit to have larger seeds than those with unadorned diaspores concealed a significant group of species from wetter forests that produce extremely large seeds and unadorned diaspores. The most widespread species in this study tend to be large plants (particularly robust lianes) and to produce fleshy fruit, but they tend not to have relatively large seeds. The association between large seeds, large plants, fleshy fruit and productive habitats is discussed as part of an evolutionary strategy favouring fitness in populations close to carrying capacity. We review some problems with focusing on establishment chances per seed as the driver towards association between large seeds, large plants and productive rain‐forest habitats (the difficult‐establishment hypothesis). Instead we suggest that production of large, short‐lived seeds by long‐lived plants in temporally stable, closed habitats may reflect the limited evolutionary potential for strategies enhancing colonization (e.g. producing large numbers of dormant seeds), thus allowing the establishment benefits of large seeds greater selective influence (the slow‐replacement hypothesis). The association of fleshy fruit with large seeds probably reflects the difficulty of dispersing large seeds by other means (the difficult‐dispersal hypothesis).  相似文献   

17.
Abstract. Plants possessing generalized dispersal syndromes are likely to be more invasive than those relying on specialist dispersal agents. To address this issue on a local and regional scale, avian seed dispersal of the invasive alien Chinese tallow tree (Sapium sebiferum (L.) Roxb.) was assessed in forests and spoil areas of South Carolina and along forest edges in Louisiana during the 1997–99 fruiting seasons. Tallow trees in these floristically distinct habitats had a few common and many casual visitors, and considerable species overlap among habitats was found. However, bird species differed in the importance of dispersing and dropping seeds among habitats. Important dispersal agents common to forests and spoil areas of South Carolina included Northern Flicker, American Robin and Red‐winged Blackbird, whereas Red‐bellied Woodpecker and European Starling were important in the former and latter habitat, respectively. In Louisiana, Red‐bellied Woodpecker, American Robin, Northern Cardinal and Eastern Bluebird dispersed many seeds. Nearly all species foraging on seeds were winter residents. Estimated numbers of seeds dispersed and dropped were higher in spoil areas of South Carolina than in Louisiana because of higher numbers of individuals per visit, higher seed consumption and seed dropping rates, and longer foraging durations. Within South Carolina, more seeds were dispersed and dropped in spoil areas than in forests because of higher numbers of birds per visit. These findings show that among habitats, tallow tree attracts diverse but variable coteries of dispersal agents that are qualitatively similar in seed usage patterns. We suggest that its generalized dispersal syndrome contributes to effective seed dispersal by many bird species throughout its range. Effects of differential avian use among locales may include changes in local bird communities, and differing tallow tree demographics and invasion patterns.  相似文献   

18.
Forest edges and fire ants alter the seed shadow of an ant-dispersed plant   总被引:3,自引:2,他引:1  
Ness JH 《Oecologia》2004,138(3):448-454
Exotic species invade fragmented, edge-rich habitats readily, yet the distinct impacts of habitat edges and invaders on native biota are rarely distinguished. Both appear detrimental to ant-dispersed plants such as bloodroot, Sanguinaria canadensis. Working in northeastern Georgia (USA), an area characterized by a rich ant-dispersed flora, fragmented forests, and invasions by the red imported fire ant, Solenopsis invicta , I monitored the interactions between ants and S. canadensis seeds in uninvaded forest interiors, uninvaded forest edges, invaded forest interiors, and invaded forest edges. I observed 95% of the seed dispersal events that occurred within the 60-min observation intervals. Seed collection rates were similar among all four (habitat × invasion) groups. The presence of invasive ants had a strong effect on seed dispersal distance: S. invicta collected most seeds in invaded sites, but was a poorer disperser than four of five native ant taxa. Habitat type (interior versus edge) had no effect on seed dispersal distance, but it had a strong effect on seed dispersal direction. Dispersal towards the edge was disproportionately rare in uninvaded forest edges, and ants in those habitats moved the average dispersed seed approximately 70 cm away from that edge. Dispersal direction was also skewed away from the edge in uninvaded forest interiors and invaded forest edges, albeit non-significantly. This biased dispersal may help explain the rarity of myrmecochorous plants in younger forests and edges, and their poor ability to disperse between fragments. This is the first demonstration that forest edges and S. invicta invasion influence seed dispersal destination and distance, respectively. These forces act independently.  相似文献   

19.
Paeonia officinalis L., a rare and protected species, mostly occurs in open and semi‐open habitats and is often threatened by forest and shrubland spread. To explore the still undocumented dispersal features of this species, we address the following questions. What are the relative roles of ants, small rodents, and birds as diaspore removers in open habitat and woodland? Which animal groups constitute the potential disperser assemblage and how do they shape the spatial patterns of seed dispersal? Do diaspores fit the ornithochory syndrome or do they only mimic fleshy fruits? Two experiments were performed to quantify diaspore fall and diaspore removal by animal groups, above ground and on the ground. Ants did not contribute to dispersal. In open habitats, no seed removal was detected, either on follicles or once diaspores had fallen to the ground. In woodland, diaspores were weakly removed by vertebrates on follicles and were mainly removed by rodents on the ground. As a consequence, we suggest that long‐distance dispersal events are very rare, weakening the possible escape into space of populations subject to forest spread. Several traits indicate that diaspores fit the ornithochory syndrome, but other traits are strongly reminiscent of mimetic diaspores deceiving bird dispersers. © 2007 CNRS. Journal compilation © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society, 2007, 154 , 13–25.  相似文献   

20.
Endozoochory is a prominent form of seed dispersal in tropical dry forests. Most extant megafauna that perform such seed dispersal are ungulates, which can also be seed predators. White‐tailed deer (Odocoileus virginianus) is one of the last extant megafauna of Neotropical dry forests, but whether it serves as a legitimate seed disperser is poorly understood. We studied seed dispersal patterns and germination after white‐tailed deer gut passage in a tropical dry forest in southwest Ecuador. Over 23 mo, we recorded ca 2000 seeds of 11 species in 385 fecal samples. Most seeds belonged to four species of Fabaceae: Chloroleucon mangense, Senna mollissima, Piptadenia flava, and Caesalpinia glabrata. Seeds from eight of the 11 species dispersed by white‐tailed deer germinated under controlled conditions. Ingestion did not affect germination of C. mangense and S. mollissima, whereas C. glabrata showed reduced germination. Nevertheless, the removal of fruit pulp resulting from ingestion by white‐tailed deer could have a deinhibition effect on germination due to seed release. Thus, white‐tailed deer play an important role as legitimate seed dispersers of woody species formerly considered autochorous. Our results suggest that more research is needed to fully understand the ecological and evolutionary effects of the remaining extant megafauna on plant regeneration dynamics in the dry Neotropics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号