首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Combining structure-specific recognition of nucleic acids with limited sequence reading is a promising method to reduce the size of the recognition unit required to achieve the necessary selectivity and binding affinity to control function. It has been demonstrated recently that G-quadruplex DNA structures can be targeted by organic cations in a structure-specific manner. Structural targets of quadruplexes include the planar end surfaces of the G-tetrad stacked columns and four grooves. These provide different geometries and functional groups relative to duplex DNA. We have used surface plasmon resonance and isothermal titration calorimetry to show that binding affinity and selectivity of a series of quadruplex end-stacking molecules to human telomeric DNA are sensitive to compound shape as well as substituent type and position. ITC results indicate that binding is largely enthalpy driven. Circular dichroism was also used to identify a group of structurally related compounds that selectively target quadruplex grooves.  相似文献   

2.
Y Long  Z Li  JH Tan  TM Ou  D Li  LQ Gu  ZS Huang 《Bioconjugate chemistry》2012,23(9):1821-1831
In order to improve the selectivity of 5-N-methyl quindoline (cryptolepine) derivatives as telomeric quadruplex binding ligands versus duplex DNA, a series of peptidyl-benzofuroquinoline (P-BFQ) conjugates (2a-2n) were designed and synthesized. Their interactions with telomeric quadruplex and duplex DNA were examined by using the fluorescence resonance energy transfer (FRET) melting assay, surface plasmon resonance (SPR), circular dichroism spectroscopy (CD), and molecular modeling studies. Introduction of a peptidyl group at 11-position of the aromatic benzofuroquinoline scaffold not only effectively increased its binding affinity, but also significantly improved its selectivity toward telomeric quadruplex versus duplex DNA. Combined with the data for their inhibitory effects on telomerase activity, their structure-activity relationships (SARs) studies showed that the types of amino acid residues and the length of the peptidyl side chains were important for the improvement of their interactions with the telomeric G-quadruplex. Long-term exposure of human cancer cells to 2c showed a remarkable cessation in population growth and cellular senescence phenotype, and accompanied by a shortening of the telomere length.  相似文献   

3.
Oxazole-containing macrocycles represent a promising class of anticancer agents that target G-quadruplex DNA. We report the results of spectroscopic studies aimed at defining the mode, energetics and specificity with which a hexaoxazole-containing macrocycle (HXDV) binds to the intramolecular quadruplex formed by the human telomeric DNA model oligonucleotide d(T2AG3)4 in the presence of potassium ions. HXDV binds solely to the quadruplex nucleic acid form, but not to the duplex or triplex form. HXDV binds d(T2AG3)4 with a stoichiometry of two drug molecules per quadruplex, with these binding reactions being coupled to the destacking of adenine residues from the terminal G-tetrads. HXDV binding to d(T2AG3)4 does not alter the length of the quadruplex. These collective observations are indicative of a nonintercalative 'terminal capping' mode of interaction in which one HXDV molecule binds to each end of the quadruplex. The binding of HXDV to d(T2AG3)4 is entropy driven, with this entropic driving force reflecting contributions from favorable drug-induced alterations in the configurational entropy of the host quadruplex as well as in net hydration. The 'terminal capping' mode of binding revealed by our studies may prove to be a general feature of the interactions between oxazole-containing macrocyclic ligands (including telomestatin) and intramolecular DNA quadruplexes.  相似文献   

4.
Surface plasmon resonance is a technique for detecting binding events at the surface of a thin metal film. Through the commercial availability of instrumentation and sensor chips, the technique has found widespread application for determining the affinity and kinetics of macromolecular interactions. A variety of quadruplex forming oligonucleotides have been immobilized to sensor chips to permit analysis of their binding interactions with both small molecule and protein analytes. The fold of the quadruplex must be maintained through an appropriate choice of buffer, and care must be taken to ensure that data interpretation is not hampered by non-specific binding and adsorption of the analyte to the sensor surface and instrument. Affinity constants determined by surface plasmon resonance for interactions with quadruplexes correlate meaningfully with other methods, such as UV-visible and fluorescence titrations, enzyme linked immunosorbent assay, thermal melting studies and telomerase inhibition. Kinetic measurements of the association and dissociation of duplexes of quadruplex forming oligonucleotides and their complementary strands have enabled calculation of the folding and unfolding rates of the quadruplex itself, and determination of its stability as a function of buffer composition.  相似文献   

5.
Prion protein (PrP) is involved in lethal neurodegenerative diseases, and many issues remain unclear about its physio-pathological role. Quadruplex-forming nucleic acids (NAs) have been found to specifically bind to both PrP cellular and pathological isoforms. To clarify the relevance of these interactions, thermodynamic, kinetic and structural studies have been performed, using isothermal titration calorimetry, surface plasmon resonance and circular dichroism methodologies. Three quadruplex-forming sequences, d(TGGGGT), r(GGAGGAGGAGGA), d(GGAGGAGGAGGA), and various forms of PrP were selected for this study. Our results showed that these quadruplexes exhibit a high affinity and specificity toward PrP, with KD values within the range 62÷630 nM, and a weaker affinity toward a PrP-β oligomer, which mimics the pathological isoform. We demonstrated that the NA quadruplex architecture is the structural determinant for the recognition by both PrP isoforms. Furthermore, we spotted both PrP N-terminal and C-terminal domains as the binding regions involved in the interaction with DNA/RNAs, using several PrP truncated forms. Interestingly, a reciprocally induced structure loss was observed upon PrP–NA interaction. Our results allowed to surmise a quadruplex unwinding-activity of PrP, that may have a feedback in vivo.  相似文献   

6.
There is compelling evidence that cellular DNA is the target of many anticancer agents. Consequently, elucidation of the molecular nature governing the interaction of small molecules to DNA is paramount to the progression of rational drug design strategies. In this study, we have compared the binding and thermodynamic aspects of two known DNA-binding agents, quinacrine (QNA) and methylene blue (MB), with calf thymus (CT) DNA. The study revealed noncooperative binding phenomena for both the drugs to DNA with an affinity one order higher for QNA compared to MB as observed from diverse techniques, but both bindings obeyed neighbor exclusion principle. The data of the salt dependence of QNA and MB from the plot of log K versus log [Na+] revealed a slope of 1.06 and 0.93 consistent with the values predicted by theories for the binding of monovalent cations, and have been analyzed for contributions from polyelectrolytic and nonpolyelectrolytic forces. The binding of both drugs was further characterized by strong stabilization of DNA against thermal strand separation in both optical melting and differential scanning calorimetry studies. The binding data analyzed from the thermal denaturation and from isothermal titration calorimetry (ITC) were in close proximity to those obtained from spectral titration data. ITC results revealed the binding to be exothermic and favored by both negative enthalpy and positive entropy changes. The heat capacity changes obtained from temperature dependence of enthalpy indicated -146 and -78 cal/(mol.K), respectively, for the binding of QNA and MB to CT DNA. Circular dichroism study further characterized the structural changes on DNA upon intercalation of these molecules. Molecular aspects of interaction of these molecules to DNA are discussed.  相似文献   

7.
In vitro binding of Hoechst 33258 to the promoter region of human c-myc, d(GG GGAGGG TGG GGA GGG TGG GGA AGG TGG GG) which forms G-quadruplex, both in vitro and in vivo in the presence of metal ions, was investigated by equilibrium absorption, fluorescence, and kinetic surface plasmon resonance methods. Hypochromic effect in UV absorption spectra and blue shift in fluorescence emission maxima of Hoechst in the presence of quadruplex revealed that Hoechst binds to the quadruplex. Analysis of UV and fluorescence titration data revealed that Hoechst binds to quadruplex with binding affinity of the order of 10(6). Anisotropy measurements and higher lifetime obtained from time-resolved decay experiments revealed that quadruplex-bound Hoechst is rotationally restricted in a less polar environment than the bulk buffer medium. From surface plasmon resonance studies, we obtained kinetic association (k(a)) and dissociation (k(d)) of 1.23+/-0.04 x 10(5)M(-1)s(-1) and 0.686+/-0.009 s(-1), respectively. As Hoechst is known to bind A-T-rich region of duplex DNA, here we propose the likelihood of Hoechst interacting with the AAGGT loop of the quadruplex.  相似文献   

8.
Study on anticancer agents that act via stabilization of telomeric G‐quadruplex DNA has emerged as novel and exciting field for anticancer drug discovery. The interaction of carbohydrate containing anticancer alkaloid aristololactam‐β‐D‐glucoside (ADG) with human telomeric G‐quadruplex DNA sequence was characterized by different biophysical techniques. The binding parameters were compared with daunomycin (DAN), a well‐known chemotherapeutic drug. The Scatchard binding isotherms revealed noncooperative binding for both with the binding affinity values of (1.01 ± 0.05) × 106 and (1.78 ± 0.18) × 106 M−1 for ADG and DAN, respectively. Circular dichroism, ferrocyanide quenching study, anisotropy study, thiazole orange displacement, optical melting, differential scanning calorimetry study, and molecular docking study suggest significant stacking and stabilizing efficiency of ADG with comparison to DAN. The energetics of the interaction for ADG and DAN revealed that both reactions were predominantly entropy driven. Negative heat capacity values were obtained from the temperature dependence of the enthalpy change. The standard molar Gibbs energy change exhibited only marginal alterations with temperature suggesting the occurrence of enthalpy‐entropy compensation. These findings indicate that ADG can act as a stabilizer of telomeric G‐quadruplex DNA and thereby can be considered as a potential telomerase inhibitor.  相似文献   

9.
Oxazole-containing macrocycles, which include the natural product telomestatin, represent a promising class of anticancer agents that target G-quadruplex DNA. Two synthetic hexaoxazole-containing macrocyclic compounds (HXDV and HXLV-AC) have been characterized with regard to their cytotoxic activities versus human cancer cells, as well as the mode, thermodynamics, and specificity with which they bind to the intramolecular (3+1) G-quadruplex structural motif formed in the presence of K(+) ions by human telomeric DNA. Both compounds exhibit cytotoxic activities versus human lymphoblast (RPMI 8402) and oral carcinoma (KB3-1) cells, with associated IC(50) values ranging from 0.4 to 0.9muM. The compounds bind solely to the quadruplex nucleic acid form, but not to the duplex or triplex form. Binding to the quadruplex is associated with a stoichiometry of two ligand molecules per DNA molecule, with one ligand molecule binding to each end of the host quadruplex via a nonintercalative "terminal capping" mode of interaction. For both compounds, quadruplex binding is primarily entropy driven, while also being associated with a negative change in heat capacity. These thermodynamic properties reflect contributions from favorable ligand-induced alterations in the loop configurational entropies of the quadruplex, but not from changes in net hydration. The stoichiometry and mode of binding revealed by our studies have profound implications with regard to the number of ligand molecules that can potentially bind the 3-overhang region of human telomeric DNA.  相似文献   

10.
11.
Tiny telomere DNA   总被引:4,自引:4,他引:0       下载免费PDF全文
We describe the design, synthesis and biophysical characterization of a novel DNA construct in which a folded quadruplex structure is joined to a standard double helix. Circular dichroism, gel electrophoresis, three-dimensional UV melting and differential scanning calorimetry were all used to characterize the structure. Rigorous molecular dynamics simulations were used to build a plausible atomic-level structural model of the DNA construct. This novel DNA construct provides a model for the duplex–quadruplex junction region at the end of chromosomal DNA and offers a system for the study of structure-selective ligand binding.  相似文献   

12.

Background

G-quadruplex has been viewed as a promising therapeutic target in oncology due to its potentially important roles in physiological and pathological processes. Emerging evidence suggests that the biological functions of G-quadruplexes are closely related to the binding of some proteins. Insulin-like growth factor type I (IGF-1), as a significant modulator of cell growth and development, may serve as a quadruplex-binding protein.

Methods

The binding affinity and selectivity of IGF-1 to different DNA motifs in solution were measured by using fluorescence spectroscopy, Surface Plasmon Resonance (SPR), and force-induced remnant magnetization (FIRM). The effects of IGF-1 on the formation and stability of G-quadruplex structures were evaluated by circular dichroism (CD) and melting fluorescence resonance energy transfer (FRET) spectroscopy. The influence of quadruplex-specific ligands on the binding of G-quadruplexes with IGF-1 was determined by FIRM.

Results

IGF-1 shows a binding specificity for G-quadruplex structures, especially the G-quadruplex structure with a parallel topology. The quadruplex-specific ligands TMPyP4 and PDS (Pyridostatin) can inhibit the interaction between G-quadruplexes and proteins.

Conclusions

IGF-1 is demonstrated to selectively bind with G-quadruplex structures. The use of quadruplex-interactive ligands could modulate the binding of IGF-1 to G-quadruplexes.

General significance

This study provides us with a new perspective to understand the possible physiological relationship between IGF-1 and G-quadruplexes and also conveys a strategy to regulate the interaction between G-quadruplex DNA and proteins.  相似文献   

13.
Regulation of the structural equilibrium of G-quadruplex-forming sequences located in the promoter regions of oncogenes by the binding of small molecules has shown potential as a new avenue for cancer chemotherapy. In this study, microcalorimetry (isothermal titration calorimetry and differential scanning calorimetry), electronic spectroscopy (ultraviolet-visible and circular dichroism), and molecular modeling were used to probe the complex interactions between a cationic porphryin mesotetra (N-methyl-4-pyridyl) porphine (TMPyP4) and the c-MYC PU 27-mer quadruplex. The stoichiometry at saturation is 4:1 mol of TMPyP4/c-MYC PU 27-mer G-quadruplex as determined by isothermal titration calorimetry, circular dichroism, and ultraviolet-visible spectroscopy. The four independent TMPyP4 binding sites fall into one of two modes. The two binding modes are different with respect to affinity, enthalpy change, and entropy change for formation of the 1:1 and 2:1, or 3:1 and 4:1 complexes. Binding of TMPyP4, at or near physiologic ionic strength ([K(+)] = 0.13 M), is described by a "two-independent-sites model." The two highest-affinity sites exhibit a K(1) of 1.6 x 10(7) M(-1) and the two lowest-affinity sites exhibit a K(2) of 4.2 x 10(5) M(-1). Dissection of the free-energy change into the enthalpy- and entropy-change contributions for the two modes is consistent with both "intercalative" and "exterior" binding mechanisms. An additional complexity is that there may be as many as six possible conformational quadruplex isomers based on the sequence. Differential scanning calorimetry experiments demonstrated two distinct melting events (T(m)1 = 74.7 degrees C and T(m)2 = 91.2 degrees C) resulting from a mixture of at least two conformers for the c-MYC PU 27-mer in solution.  相似文献   

14.
Many aromatic ligands, including tetra-(N-methyl-4-pyridyl)porphyrin (TMPyP4), have been reported to bind and stabilize quadruplex structure of telomeric DNA. We synthesized novel quadruplex-interacting porphyrins with cationic pyridinium and trimethylammonium arms at para- or meta-position of all phenyl groups of tetratolyl porphyrin. An antiparallel quadruplex structure was found to be stabilized more greatly by the meta-isomers than by the para-isomers and well-studied TMPyP4, as revealed by the increase in melting temperature of the quadruplex. One mole equivalent of the isomers was sufficient to stabilize the quadruplex. From the results of absorption, induced circular dichroism, and fluorescence resonance energy transfer spectroscopic methods, the unique site for the porphyrin binding is suggested to be the external guanine tetrad or groove of the quadruplex. The cationic side arms played a key role in the stabilization of the quadruplex structure.  相似文献   

15.
Four new carbocyanines containing symmetric and asymmetric heterocyclic moieties and N‐carboxyalkyl groups have been synthesized and characterized. The binding mechanism established between these cyanines and several proteins was evaluated using saturation transfer difference (STD) NMR. The results obtained for the different dyes revealed a specific interaction to the standard proteins lysozyme, α‐chymotrypsin, ribonuclease (RNase), bovine serum albumin (BSA), and gamma globulin. For instance, the two un‐substituted symmetrical dyes (cyanines 1 and 3) interacted preferentially through its benzopyrrole and dibenzopyrrole units with lysozyme, α‐chymotrypsin, and RNase, whereas the symmetric disulfocyanine dye (cyanine 2) bound BSA and gamma globulin through its carboxyalkyl chains. On the other hand, the asymmetric dye (cyanine 4) interacts with lysozyme and α‐chymotrypsin through benzothiazole moiety and with RNase through dibenzopyrrole unit. Thus, STD‐NMR technique was successfully used to screen cyanine–protein interactions and determine potential binding sites of the cyanines for posterior use as ligands in affinity chromatography. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.

Background

Interaction of putative anticancer agent sanguinarine with two quadruplex forming sequences, human telomeric DNA (H24) and NHE III1 upstream of the P1 promoter of c-myc (Pu27), has been studied to understand the structural basis of the recognition.

Methods

Absorption, fluorescence and circular dichroism spectroscopy have been employed to characterize the association. Energetics of the interaction was studied by isothermal titration and differential scanning calorimetry. TRAP assay was done to assess the inhibitory potential of sanguinarine.

Results

Absorption and fluorescence studies show that sanguinarine has high binding affinity of ~ 105 M− 1 for both sequences. Binding stoichiometry is 2:1 for H24 and 3:1 for Pu27. Results suggest stacking interaction between planar sanguinarine moiety and G-quartets. Circular dichroism spectra show that sanguinarine does not cause structural perturbation in the all-parallel Pu27 but causes a structural transition from mixed hybrid to basket form at higher sanguinarine concentration in case of H24. The interaction is characterized by total enthalpy–entropy compensation and high heat capacity values. Differential scanning calorimetry studies suggest that sanguinarine binding increases the melting temperature and also the total enthalpy of transition of both quadruplexes. TRAP results show that sanguinarine effectively blocks telomerase activity in a concentration dependent manner in cell extracts from MDAMB-231 breast cancer cell lines.

Conclusion

These results suggest that there is a difference in the structural modes of association of sanguinarine to the quadruplexes.

General significance

It helps to understand the role of quadruplex structures as a target of small molecule inhibitors of telomerase.  相似文献   

17.
Fifteen polymethine cyanine dyes were studied as fluorescent stains for DNA in electrophoretic gels. Among studied cyanines, two dyes CPent V and CCyan 2-O most effectively visualized covalently closed and linear double-stranded DNA molecules in gels under standard conditions using UV-illumination, green filter and black-and-white photo film. Ethidium bromide was 1.2-1.6 times more effective as compared to cyanine dyes in staining of DNA in the concentration range of 8-18 ng, while studied cyanines were more sensitive to DNA quantity above 50 ng.  相似文献   

18.
The interaction between small molecules and telomeric quadruplex DNA has received great attention because of its importance in molecular recognition and anticancer drug design. Using UV/vis absorption titration, thermal melting, circular dichroism spectroscopy, and electrospray ionization mass spectrometry, we examined the formation of lead ion induced guanine quadruplexes (Pb-G4) from oligonucleotide AG3(T2AG3)3 and their interaction with a zinc derivative of 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin (Zn-TMPyP). The binding of lead ion to the oligonucleotide was found to have an unusually high affinity and followed a 1:1 stoichiometry, and the resultant Pb-G4 structure was stabilized by Zn-TMPyP binding. Owing to the steric hindrance of the axial ligand of zinc and also the relatively rigid structure of Pb-G4, intercalation of Zn-TMPyP between adjacent guanine quartets is precluded, thus allowing the end-stacking binding mode to be characterized exclusively. In conjunction with a big redshift (more than 8 nm) in the absorption spectrum, we demonstrate that a conservative induced circular dichroism is an important signature for end-stacking of porphyrins on guanine quadruplexes.  相似文献   

19.
Studies on ligand interaction with quadruplex DNA, and their role in stabilizing the complex at concentration prevailing under physiological condition, has attained high interest. Electrospray ionization mass spectrometry (ESI-MS) and spectroscopic studies in solution were used to evaluate the interaction of PBD and TMPyP4 ligands, stoichiometry and selectivity to G-quadruplex DNA. Two synthetic ligands from PBD family, namely pyrene-linked pyrrolo[2,1-c][1,4]benzodiazepine hybrid (PBD1), mixed imine-amide pyrrolobenzodiazepine dimer (PBD2) and 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin (TMPyP4) were studied. G-rich single-stranded oligonucleotide d(5'GGGGTTGGGG3') designated as d(T(2)G(8)), from the telomeric region of Tetrahymena Glaucoma, was considered for the interaction with ligands. ESI-MS and spectroscopic methods viz., circular dichroism (CD), UV-Visible, and fluorescence were employed to investigate the G-quadruplex structures formed by d(T(2)G(8)) sequence and its interaction with PBD and TMPyP4 ligands. From ESI-MS spectra, it is evident that the majority of quadruplexes exist as d(T(2)G(8))(2) and d(T(2)G(8))(4) forms possessing two to ten cations in the centre, thereby stabilizing the complex. CD band of PBD1 and PBD2 showed hypo and hyperchromicity, on interaction with quadruplex DNA, indicating unfolding and stabilization of quadruplex DNA complex, respectively. UV-Visible and fluorescence experiments suggest that PBD1 bind externally where as PBD2 intercalate moderately and bind externally to G-quadruplex DNA. Further, melting experiments using SYBR Green indicate that PBD1 unfolds and PBD2 stabilizes the G-quadruplex complex. ITC experiments using d(T(2)G(8)) quadruplex with PBD ligands reveal that PBD1 and PBD2 prefer external/loop binding and external/intercalative binding to quadruplex DNA, respectively. From experimental results it is clear that the interaction of PBD2 and TMPyP4 impart higher stability to the quadruplex complex.  相似文献   

20.
The pyrrolo[2,1-c][1,4] benzodiazepines (PBDs) are a family of sequence-selective, minor-groove binding DNA-interactive agents that covalently attach to guanine residues. A recent publication in this journal (Raju et al, PloS One, 2012, 7, 4, e35920) reported that two PBD molecules were observed to bind with high affinity to the telomeric quadruplex of Tetrahymena glaucoma based on Electrospray Ionisation Mass Spectrometry (ESI-MS), Circular Dichroism, UV-Visible and Fluorescence spectroscopy data. This was a surprising result given the close 3-dimensional shape match between the structure of all PBD molecules and the minor groove of duplex DNA, and the completely different 3-dimensional structure of quadruplex DNA. Therefore, we evaluated the interaction of eight PBD molecules of diverse structure with a range of parallel, antiparallel and mixed DNA quadruplexes using DNA Thermal Denaturation, Circular Dichroism and Molecular Dynamics Simulations. Those PBD molecules without large C8-substitutents had an insignificant affinity for the eight quadruplex types, although those with large π-system-containing C8-substituents (as with the compounds evaluated by Raju and co-workers) were found to interact to some extent. Our molecular dynamics simulations support the likelihood that molecules of this type, including those examined by Raju and co-workers, interact with quadruplex DNA through their C8-substituents rather than the PBD moiety itself. It is important for the literature to be clear on this matter, as the mechanism of action of these agents will be under close scrutiny in the near future due to the growing number of PBD-based agents entering the clinic as both single-agents and as components of antibody-drug conjugates (ADCs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号