共查询到20条相似文献,搜索用时 31 毫秒
1.
The antibiotic alaremycin has a structure that resembles that of 5-aminolevulinic acid (ALA), a universal precursor of porphyrins, and inhibits porphyrin biosynthesis. Genome sequencing of the alaremycin-producing bacterial strain and enzymatic analysis revealed that the first step of alaremcyin biosynthesis is catalysed by the enzyme, AlmA, which exhibits a high degree of similarity to 5-aminolevulinate synthase (ALAS) expressed by animals, protozoa, fungi, and α-proteobacteria. Site-directed mutagenesis of AlmA revealed that the substitution of two amino acids residues around the substrate binding pocket transformed its substrate specificity from that of alaremycin precursor synthesis to ALA synthesis. To estimate the evolutionary trajectory of AlmA and ALAS, we performed an ancestral sequence reconstitution analysis based on a phylogenetic tree of AlmA and ALAS. The reconstructed common ancestral enzyme of AlmA and ALAS exhibited alaremycin precursor synthetic activity, rather than ALA synthetic activity. These results suggest that ALAS evolved from an AlmA-like enzyme. We propose a new evolutionary hypothesis in which a non-essential secondary metabolic enzyme acts as an ‘evolutionary seed’ to generate an essential primary metabolic enzyme. 相似文献
2.
3.
白细胞介素-21(IL-21)是γc家族的一个新成员,主要由活化的CD4+ T细胞产生,对多种表达IL-21受体(IL-21R)的细胞如T细胞、B细胞、NK细胞及DC细胞等均有作用。近年发现IL-21与Th细胞系中新发现的分支Th17细胞的发生密切相关,在调节CD4+ T细胞究竟是分化为Th17细胞还是CD4+CD25+Foxp3+ Treg细胞中有"开关"作用,从而对免疫系统发挥重要的调节作用,在自身免疫性疾病和抗肿瘤免疫中扮演着重要的角色。简要综述了IL-21与Th17细胞、CD4+CD25+Foxp3+ Treg细胞之间的关系及对免疫平衡的调节作用。 相似文献
4.
5.
6.
Chrystelle Lacroix Cécile Caubet Anne Gonzalez-de-Peredo Benjamin Breuil David Bouyssié Alexandre Stella Luc Garrigues Caroline Le Gall Anthony Raevel Angelique Massoubre Julie Klein Stéphane Decramer Frédérique Sabourdy Flavio Bandin Odile Burlet-Schiltz Bernard Monsarrat Joost-Peter Schanstra Jean-Loup Bascands 《Molecular & cellular proteomics : MCP》2014,13(12):3421-3434
Obstructive nephropathy is a frequently encountered situation in newborns. In previous studies, the urinary peptidome has been analyzed for the identification of clinically useful biomarkers of obstructive nephropathy. However, the urinary proteome has not been explored yet and should allow additional insight into the pathophysiology of the disease. We have analyzed the urinary proteome of newborns (n = 5/group) with obstructive nephropathy using label free quantitative nanoLC-MS/MS allowing the identification and quantification of 970 urinary proteins. We next focused on proteins exclusively regulated in severe obstructive nephropathy and identified Arginase 1 as a potential candidate molecule involved in the development of obstructive nephropathy, located at the crossroad of pro- and antifibrotic pathways. The reduced urinary abundance of Arginase 1 in obstructive nephropathy was verified in independent clinical samples using both Western blot and MRM analysis. These data were confirmed in situ in kidneys obtained from a mouse obstructive nephropathy model. In addition, we also observed increased expression of Arginase 2 and increased total arginase activity in obstructed mouse kidneys. mRNA expression analysis of the related arginase pathways indicated that the pro-fibrotic arginase-related pathway is activated during obstructive nephropathy. Taken together we have identified a new actor in the development of obstructive nephropathy in newborns using quantitative urinary proteomics and shown its involvement in an in vivo model of disease. The present study demonstrates the relevance of such a quantitative urinary proteomics approach with clinical samples for a better understanding of the pathophysiology and for the discovery of potential therapeutic targets.Congenital obstructive nephropathy is the main cause of end stage renal disease (ESRD) in children (1). The most frequently found cause of congenital obstructive nephropathy is ureteropelvic junction (UPJ)1 obstruction with an estimated incidence of 1 in 1000–1500 births. Milder forms of UPJ obstruction often progress to the spontaneous resolution of the pathology over time. This has led to a watchful waiting approach with surgical intervention only if renal deterioration is detected (2). Although this medical surveillance prevents unnecessary surgery, it mostly relies on invasive follow-up. Consequently with the aim to reduce this invasive follow-up, several groups have initiated research to identify noninvasive urinary biomarkers of UPJ obstruction using both targeted and nontargeted (e.g. proteome analysis based) strategies. Targeted strategies including urinary cytokine expression analyses failed to clearly determine the need for surgery in UPJ obstruction (3, 4). On the other hand, untargeted strategies have been more successful and by using urinary proteomics, biomarkers for renal and non-renal diseases have been identified (5–9). Using urinary peptidome analysis, we identified and validated a urinary peptide panel that predicted the clinical outcome of newborns with UPJ obstruction with 97% accuracy several months in advance (3, 10). An independent small-scale study confirmed the efficiency of this biomarker panel (7). These studies indicate the potential of urinary proteomics to predict the clinical fate of patients with UPJ obstruction. Although these endogenous urinary peptide biomarkers are of great potential clinical value, sequencing of these biomarkers mainly identified collagen fragments that are less informative on the pathophysiology of the disease. In contrast, studies of the high molecular weight urinary proteome (i.e. proteins) might be more informative on the pathophysiology of disease. Different approaches have been used in the past to characterize the urinary proteome, either by 2D-gel electrophoresis coupled to mass spectrometry (11, 12) or reverse phase liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analysis (13–16). In-depth proteome analysis using extensive fractionation of the sample and high resolution, fast sequencing mass spectrometers have reported the identification of >2000 proteins in normal human urine (13, 15, 16). Here, we applied quantitative high-resolution label free LC-MS/MS analysis for the identification of urinary proteins associated to UPJ obstruction in newborns. Among a number of proteins uniquely associated with severe UPJ obstruction, we identified Arginase 1, not previously recognized in UPJ obstruction. Using an independent larger cohort, we further verified reduced urinary abundance of Arginase 1 using both Western blot and multiple reaction monitoring (MRM). Using the mouse model of obstructive nephropathy, we observed that the expression of arginases is modulated in situ in obstructed kidneys. Further gene expression analysis of the arginase pathway allowed us to hypothesize for a role of arginases in the development of fibrotic lesions in obstructive nephropathy. 相似文献
7.
Chiara Ciaccio Grazia R. Tundo Giuseppe Grasso Daniela Marasco Magda Gioia Massimo Coletta 《Journal of molecular biology》2009,385(5):1556-1567
Insulin-degrading enzyme (IDE) is an interesting pharmacological target for Alzheimer's disease (AD), since it hydrolyzes β-amyloid, producing non-neurotoxic fragments. It has also been shown that the somatostatin level reduction is a pathological feature of AD and that it regulates the neprilysin activity toward β-amyloid.In this work, we report for the first time that IDE is able to hydrolyze somatostatin [kcat (s− 1) = 0.38 (± 0.05); Km (M) = 7.5 (± 0.9) × 10− 6] at the Phe6-Phe7 amino acid bond. On the other hand, somatostatin modulates IDE activity, enhancing the enzymatic cleavage of a novel fluorogenic β-amyloid through a decrease of the Km toward this substrate, which corresponds to the 10-25 amino acid sequence of the Aβ(1-40). Circular dichroism spectroscopy and surface plasmon resonance imaging experiments show that somatostatin binding to IDE brings about a concentration-dependent structural change of the secondary and tertiary structure(s) of the enzyme, revealing two possible binding sites. The higher affinity binding site disappears upon inactivation of IDE by ethylenediaminetetraacetic acid, which chelates the catalytic Zn2+ ion. As a whole, these features suggest that the modulatory effect is due to an allosteric mechanism: somatostatin binding to the active site of one IDE subunit (where somatostatin is cleaved) induces an enhancement of IDE proteolytic activity toward fluorogenic β-amyloid by another subunit. Therefore, this investigation on IDE-somatostatin interaction contributes to a more exhaustive knowledge about the functional and structural aspects of IDE and its pathophysiological implications in the amyloid deposition and somatostatin homeostasis in the brain. 相似文献
8.
9.
10.
Agmatinase Activity in Rat Brain: A Metabolic Pathway for the Degradation of Agmatine 总被引:7,自引:2,他引:7
Magdalena Sastre Soundararajan Regunathan Elena Galea Donald J. Reis 《Journal of neurochemistry》1996,67(4):1761-1765
Abstract: Agmatinase, the enzyme that hydrolyzes agmatine to form putrescine and urea in lower organisms, was found in rat brain. Agmatinase activity was maximal at pH 8–8.5 and had an apparent K m of 5.3 ± 0.99 m M and a V max of 530 ± 116 nmol/mg of protein/h. After subcellular fractionation, most of the enzyme activity was localized in the mitochondrial matrix (333 ± 5 nmol/mg of protein/h), where it was enriched compared with the whole-brain homogenate (7.6–11.8 nmol/mg of protein/h). Within the CNS, the highest activity was found in hypothalamus, a region rich in imidazoline receptors, and the lowest in striatum and cortex. It is interesting that other agmatine-related molecules such as arginine decarboxylase, which synthesizes agmatine, and I2 imidazoline receptors, for which agmatine is an endogenous ligand, are also located in mitochondria. The results show the existence of rat brain agmatinase, mainly located in mitochondria, indicating possible degradation of agmatine by hydrolysis at its sites of action. 相似文献
11.
12.
Regulation of Arginase Activity by Intermediates of the Arginine Biosynthetic Pathway in Neurospora crassa 总被引:1,自引:5,他引:1 下载免费PDF全文
It has been found that, in Neurospora crassa, arginine synthesized from exogenous citrulline was not as effectively hydrolyzed as exogenous arginine. This was explained by the observed inhibition of arginase in vitro and in vivo by citrulline. The high arginine pool formed from exogenous citrulline feedback inhibits the arginine pathway. These two factors allow exogenous citrulline to be used adventitiously and efficiently as an arginine source. Finally, it was found that ornithine was a strong inhibitor of arginase. This suggests that the characteristically high ornithine pool of minimal cultures of Neurospora may act to control a potentially wasteful catabolism of endogenous arginine by arginase. 相似文献
13.
Petr Rada Pavlína Kellerov Zdenk Verner Jan Tachezy 《The Journal of eukaryotic microbiology》2019,66(6):899-910
The enzymes pyruvate ferredoxin oxidoreductase (PFO), malic enzyme (ME), and the α‐ and β‐subunits of succinyl‐CoA synthetase (SCS) catalyze key steps of energy metabolism in Trichomonas vaginalis hydrogenosomes. These proteins have also been characterized as the adhesins AP120 (PFO), AP65 (ME), AP33, and AP51 (α‐ and β‐SCS), which are localized on the cell surface and mediate the T. vaginalis cytoadherence. However, the mechanisms that facilitate the targeting of these proteins to the cell surface via the secretory pathway and/or to hydrogenosomes are not known. Here we adapted an in vivo biotinylation system to perform highly sensitive tracing of protein trafficking in T. vaginalis. We showed that α‐ and β‐SCS are biotinylated in the cytosol and imported exclusively into the hydrogenosomes. Neither α‐ nor β‐SCS is biotinylated in the endoplasmic reticulum and delivered to the cell surface via the secretory pathway. In contrast, two surface proteins, tetratricopeptide domain‐containing membrane‐associated protein and tetraspanin family surface protein, as well as soluble‐secreted β‐amylase‐1 are biotinylated in the endoplasmic reticulum and delivered through the secretory pathway to their final destinations. Taken together, these results demonstrate that the α‐ and β‐SCS subunits are targeted only to the hydrogenosomes, which argues against their putative moonlighting function. 相似文献
14.
James T. Rosenbaum Dongseok Choi Amanda Wong David J. Wilson Hans E. Grossniklaus Christina A. Harrington Roger A. Dailey John D. Ng Eric A. Steele Craig N. Czyz Jill A. Foster David Tse Chris Alabiad Sander Dubovy Prashant K. Parekh Gerald J. Harris Michael Kazim Payal J. Patel Valerie A. White Peter J. Dolman Deepak P. Edward Hind M. Alkatan Hailah al Hussain Dinesh Selva R. Patrick Yeatts Bobby S. Korn Don O. Kikkawa Patrick Stauffer Stephen R. Planck 《PloS one》2015,10(9)
Background
Although thyroid eye disease is a common complication of Graves’ disease, the pathogenesis of the orbital disease is poorly understood. Most authorities implicate the immune response as an important causal factor. We sought to clarify pathogenesis by using gene expression microarray.Methods
An international consortium of ocular pathologists and orbital surgeons contributed formalin fixed orbital biopsies. RNA was extracted from orbital tissue from 20 healthy controls, 25 patients with thyroid eye disease (TED), 25 patients with nonspecific orbital inflammation (NSOI), 7 patients with sarcoidosis and 6 patients with granulomatosis with polyangiitis (GPA). Tissue was divided into a discovery set and a validation set. Gene expression was quantified using Affymetrix U133 Plus 2.0 microarrays which include 54,000 probe sets.Results
Principal component analysis showed that gene expression from tissue from patients with TED more closely resembled gene expression from healthy control tissue in comparison to gene expression characteristic of sarcoidosis, NSOI, or granulomatosis with polyangiitis. Unsupervised cluster dendrograms further indicated the similarity between TED and healthy controls. Heat maps based on gene expression for cytokines, chemokines, or their receptors showed that these inflammatory markers were associated with NSOI, sarcoidosis, or GPA much more frequently than with TED.Conclusion
This is the first study to compare gene expression in TED to gene expression associated with other causes of exophthalmos. The juxtaposition shows that inflammatory markers are far less characteristic of TED relative to other orbital inflammatory diseases. 相似文献15.
Metabolic Pathway of alpha-Ketoglutarate in Citrus Leaves as Affected by Phosphorus Nutrition 总被引:1,自引:0,他引:1 下载免费PDF全文
The uptake and metabolism of α-[5-14C]ketoglutarate by phosphorus-deficient and full nutrient (control) lemon (Citrus limon) leaves were studied over various time intervals. After 45 minutes in P-deficient leaves, the bulk of incorporated 14C appeared in organic acids and much less in amino acids, while in the control leaves, the 14C contents of organic and amino acids were equal. In P-deficient leaves, after longer incubation times the 14C content of organic acids and amino acids increased, while that of CO2 and residue fractions remained low. In full nutrient leaves the 14C content of amino acids and organic acids decreased after longer incubation time and increased in the insoluble residue and CO2. In full nutrient leaves the organic and amino acid metabolism were closely related and accompanied by protein synthesis and CO2 release, while in P-deficient leaves an accelerating accumulation of arginine and citric acid was linked together with inhibition of protein synthesis and CO2 liberation. 相似文献
16.
17.
Imane Nait Irahal Dounia Darif Ismail Guenaou Fouzia Hmimid Fatima azzahra Lahlou Fatima Ez-zahra Ousaid Fatima Abdou-Allah Lamiaa Aitsi Khadija Akarid Noureddine Bourhim 《化学与生物多样性》2023,20(3):e202201169
Type 1 diabetes is characterized by insulin deficiency due to the destruction of pancreatic β cells, leading to hyperglycemia, which in turn induces vascular complications. In the current study, we investigated the effect of intraperitoneal administration of clove essential oil (CEO: 20 mg/kg body weight) on certain oxidative stress and glucose metabolism enzymes, as well as the expression of proinflammatory mediators. Administration of CEO to diabetic rats showed a significant decline in blood glucose levels, total cholesterol, and xanthine oxidase, compared to the streptozotocin group. Furthermore, these treated rats elicited a notable attenuation in the levels of lipid peroxides, and thiols groups in both liver and brain tissues. The activities of antioxidant and metabolic enzymes were reverted to normality in diabetic upon CEO administration. In addition to its protective effects on red blood cell hemolysis, CEO is a potent α-amylase inhibitor with an IC50=298.0±2.75 μg/mL. Also, treatment of diabetic rats with CEO significantly reduced the iNOS expression in the spleen. Our data showed that CEO has potential beneficial effects on diabetes, which can possibly prevent the pathogenesis of diabetic micro- and macrovascular complications. 相似文献
18.
A better understand the ecology of microbes and their role in the global ecosystem could be achieved if traditional ecological theories can be applied to microbes. In ecology organisms are defined as specialists or generalists according to the breadth of their niche. Spatial distribution is often used as a proxy measure of niche breadth; generalists have broad niches and a wide spatial distribution and specialists a narrow niche and spatial distribution. Previous studies suggest that microbial distribution patterns are contrary to this idea; a microbial generalist genus (Desulfobulbus) has a limited spatial distribution while a specialist genus (Methanosaeta) has a cosmopolitan distribution. Therefore, we hypothesise that this counter-intuitive distribution within generalist and specialist microbial genera is a common microbial characteristic. Using molecular fingerprinting the distribution of four microbial genera, two generalists, Desulfobulbus and the methanogenic archaea Methanosarcina, and two specialists, Methanosaeta and the sulfate-reducing bacteria Desulfobacter were analysed in sediment samples from along a UK estuary. Detected genotypes of both generalist genera showed a distinct spatial distribution, significantly correlated with geographic distance between sites. Genotypes of both specialist genera showed no significant differential spatial distribution. These data support the hypothesis that the spatial distribution of specialist and generalist microbes does not match that seen with specialist and generalist large organisms. It may be that generalist microbes, while having a wider potential niche, are constrained, possibly by intrageneric competition, to exploit only a small part of that potential niche while specialists, with far fewer constraints to their niche, are more capable of filling their potential niche more effectively, perhaps by avoiding intrageneric competition. We suggest that these counter-intuitive distribution patterns may be a common feature of microbes in general and represent a distinct microbial principle in ecology, which is a real challenge if we are to develop a truly inclusive ecology. 相似文献
19.
20.
Succinyl-CoA:(R)-Benzylsuccinate CoA-Transferase: an Enzyme of the Anaerobic Toluene Catabolic Pathway in Denitrifying Bacteria 下载免费PDF全文
Anaerobic microbial toluene catabolism is initiated by addition of fumarate to the methyl group of toluene, yielding (R)-benzylsuccinate as first intermediate, which is further metabolized via beta-oxidation to benzoyl-coenzyme A (CoA) and succinyl-CoA. A specific succinyl-CoA:(R)-benzylsuccinate CoA-transferase activating (R)-benzylsuccinate to the CoA-thioester was purified and characterized from Thauera aromatica. The enzyme is fully reversible and forms exclusively the 2-(R)-benzylsuccinyl-CoA isomer. Only some close chemical analogs of the substrates are accepted by the enzyme: succinate was partially replaced by maleate or methylsuccinate, and (R)-benzylsuccinate was replaced by methylsuccinate, benzylmalonate, or phenylsuccinate. In contrast to all other known CoA-transferases, the enzyme consists of two subunits of similar amino acid sequences and similar sizes (44 and 45 kDa) in an alpha(2)beta(2) conformation. Identity of the subunits with the products of the previously identified toluene-induced bbsEF genes was confirmed by determination of the exact masses via electrospray-mass spectrometry. The deduced amino acid sequences resemble those of only two other characterized CoA-transferases, oxalyl-CoA:formate CoA-transferase and (E)-cinnamoyl-CoA:(R)-phenyllactate CoA-transferase, which represent a new family of CoA-transferases. As suggested by kinetic analysis, the reaction mechanism of enzymes of this family apparently involves formation of a ternary complex between the enzyme and the two substrates. 相似文献