首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A major challenge in neuroscience is relating neuronal activity to animal behavior. In olfaction limited techniques are available for these correlation studies in freely moving animals. To solve this problem, we developed an olfactory behavioral assay in head-restrained mice where we can monitor behavioral responses with high temporal precision. Mice were trained on a go/no-go operant conditioning paradigm to discriminate simple monomolecular odorants, as well as complex odorants such as binary mixtures of monomolecular odorants or natural odorants. Mice learned to discriminate both simple and complex odors in a few hundred trials with high accuracy. We then compared the discrimination performance of head-restrained mice to the performance observed in freely moving mice. Discrimination accuracies were comparable in both behavioral paradigms. In addition, discrimination times were measured while the animals performed well. In both tasks, mice discriminated simple odors in a few hundred milliseconds and took additional time to discriminate the complex mixtures. In conclusion, mice showed similar and efficient discrimination behavior while head-restrained compared with freely moving mice. Therefore, the head-restrained paradigm offers a relevant approach to monitor neuronal activity while animals are actively engaged in olfactory discrimination behaviors.  相似文献   

2.
3.
Optogenetic control of the peripheral nervous system (PNS) would enable novel studies of motor control, somatosensory transduction, and pain processing. Such control requires the development of methods to deliver opsins and light to targeted sub-populations of neurons within peripheral nerves. We report here methods to deliver opsins and light to targeted peripheral neurons and robust optogenetic modulation of motor neuron activity in freely moving, non-transgenic mammals. We show that intramuscular injection of adeno-associated virus serotype 6 enables expression of channelrhodopsin (ChR2) in motor neurons innervating the injected muscle. Illumination of nerves containing mixed populations of axons from these targeted neurons and from neurons innervating other muscles produces ChR2-mediated optogenetic activation restricted to the injected muscle. We demonstrate that an implanted optical nerve cuff is well-tolerated, delivers light to the sciatic nerve, and optically stimulates muscle in freely moving rats. These methods can be broadly applied to study PNS disorders and lay the groundwork for future therapeutic application of optogenetics.  相似文献   

4.
The fear, flight or fight response serves as the fundamental physiological basis for examining an organism''s awareness of its environment under an impending predator attack. Although it is not known whether invertebrates posses an autonomic nervous system identical to that of vertebrates, evidence shows invertebrates have a sympathetic-like response to regulate the internal environment and ready the organism to act behaviorally to a given stimuli. Furthermore, this physiological response can be feasibly measured and it acts as a biological index for the animal''s internal state. Measurements of the physiological response can be directly related to internal and external stressors through changes in the central nervous system controlled coordination of the cardio-vascular and respiratory systems. More specifically, monitoring heart and ventilation rates provide quantifiable measures of the stress response not always behaviorally observed. Crayfish are good model organisms for heart and ventilatory rate measurements due to the feasibility of recording, as well as the rich history known of the morphology of the crayfish, dating back to Huxley in 1888, and the well-studied typical behaviors.  相似文献   

5.
6.
The manner in which the nervous system regulates animal behaviors in natural environments is a fundamental issue in biology. To address this question, C. elegans has been widely used as a model animal for the analysis of various animal behaviors. Previous behavioral assays have been limited to two-dimensional (2-D) environments, confining the worm motion to a planar substrate that does not reflect three-dimensional (3-D) natural environments such as rotting fruits or soil. Here, we develop a 3-D worm tracker (3DWT) for freely moving C. elegans in 3-D environments, based on a stereoscopic configuration. The 3DWT provides us with a quantitative trajectory, including the position and movement direction of the worm in 3-D. The 3DWT is also capable of recording and visualizing postures of the moving worm in 3-D, which are more complex than those in 2-D. Our 3DWT affords new opportunities for understanding the nervous system function that regulates animal behaviors in natural 3-D environments.  相似文献   

7.
8.
We have developed a screen for the isolation of mutations that produce neural defects in adult Drosophila melanogaster. In this screen, we identify mutants as flies unable to remove a light coating of applied dust in a 2-hr period. We have recovered and characterized six mutations and have found that they produce coordination defects and some have reduced levels of reflex responsiveness to the stimulation of single tactile sensory bristles. The grooming defects produced by all six of the mutations are recessive, and each of the mutations has been genetically mapped. We have also used our assay to test the grooming ability of stocks containing mutations that produce known neural defects.  相似文献   

9.
10.
Genetic manipulations of neuronal activity are a cornerstone of studies aimed to identify the functional impact of defined neurons for animal behavior. With its small nervous system, rapid life cycle, and genetic amenability, the fruit fly Drosophila melanogaster provides an attractive model system to study neuronal circuit function. In the past two decades, a large repertoire of elegant genetic tools has been developed to manipulate and study neural circuits in the fruit fly. Current techniques allow genetic ablation, constitutive silencing, or hyperactivation of neuronal activity and also include conditional thermogenetic or optogenetic activation or inhibition. As for all genetic techniques, the choice of the proper transgenic tool is essential for behavioral studies. Potency and impact of effectors may vary in distinct neuron types or distinct types of behavior. We here systematically test genetic effectors for their potency to alter the behavior of Drosophila larvae, using two distinct behavioral paradigms: general locomotor activity and directed, visually guided navigation. Our results show largely similar but not equal effects with different effector lines in both assays. Interestingly, differences in the magnitude of induced behavioral alterations between different effector lines remain largely consistent between the two behavioral assays. The observed potencies of the effector lines in aminergic and cholinergic neurons assessed here may help researchers to choose the best-suited genetic tools to dissect neuronal networks underlying the behavior of larval fruit flies.  相似文献   

11.
In the following we describe the methodological details of appetitive associative olfactory learning in Drosophila larvae. The setup, in combination with genetic interference, provides a handle to analyze the neuronal and molecular fundamentals of specifically associative learning in a simple larval brain.Organisms can use past experience to adjust present behavior. Such acquisition of behavioral potential can be defined as learning, and the physical bases of these potentials as memory traces1-4. Neuroscientists try to understand how these processes are organized in terms of molecular and neuronal changes in the brain by using a variety of methods in model organisms ranging from insects to vertebrates5,6. For such endeavors it is helpful to use model systems that are simple and experimentally accessible. The Drosophila larva has turned out to satisfy these demands based on the availability of robust behavioral assays, the existence of a variety of transgenic techniques and the elementary organization of the nervous system comprising only about 10,000 neurons (albeit with some concessions: cognitive limitations, few behavioral options, and richness of experience questionable)7-10.Drosophila larvae can form associations between odors and appetitive gustatory reinforcement like sugar11-14. In a standard assay, established in the lab of B. Gerber, animals receive a two-odor reciprocal training: A first group of larvae is exposed to an odor A together with a gustatory reinforcer (sugar reward) and is subsequently exposed to an odor B without reinforcement 9. Meanwhile a second group of larvae receives reciprocal training while experiencing odor A without reinforcement and subsequently being exposed to odor B with reinforcement (sugar reward). In the following both groups are tested for their preference between the two odors. Relatively higher preferences for the rewarded odor reflect associative learning - presented as a performance index (PI). The conclusion regarding the associative nature of the performance index is compelling, because apart from the contingency between odors and tastants, other parameters, such as odor and reward exposure, passage of time and handling do not differ between the two groups9.  相似文献   

12.
Olfactory responses in Drosophila larvae have been traditionally studied in Petri dishes comprising a single peripheral odor source. In this behavioral paradigm, the experimenter usually assumes that the rapid diffusion of odorant molecules from the source leads to the creation of a stable gradient in the dish. To establish a quantitative correlation between sensory inputs and behavioral responses, it is necessary to achieve a more thorough characterization of the odorant stimulus conditions. In this video article, we describe a new method allowing the construction of odorant gradients with stable and controllable geometries. We briefly illustrate how these gradients can be used to screen for olfactory defects (full and partial anosmia) and to study more subtle features of chemotaxis behavior.Download video file.(188M, mp4)  相似文献   

13.
14.
Highlights? An invertebrate model for studying appetitive stimulus-driven feeding is presented ? Perception of appetitive olfactory inputs requires dopamine and NPF activities ? Dopamine neurons postsynaptic to projection neurons mediate odor-induced appetite ? NPF and its receptor NPFR1 define a gating mechanism in dopamine neurons  相似文献   

15.
16.
Abstract: Intracerebral microdialysis combined with a sensitive and specific radioimmunoassay was used to monitor the neuronal release of somatostatin (somatostatin-like immunoreactivity, SLI) in the dorsal hippocampus of freely moving rats. The sensitivity of the radioimmunoassay was optimized to detect <1 fmol/ml. The basal concentration of SLI in 20-min dialysate fractions (5 μl/min) collected 24 h after probe implantation was stable over at least 200 min. The spontaneous efflux dropped by 54 ± 6.4% ( p < 0.05) when Ca2+ was omitted and 1 m M EGTA added to the Krebs-Ringer solution and by 65.5 ± 3.2% ( p < 0.05) in the presence of 1 μ M tetrodotoxin. Depolarizing concentrations of the Na+ channel opener veratridine (6.25, 25, 100 μ M ) induced 11 ± 2 ( p < 0.05), 17 ± 2 ( p < 0.05), and 21 ± 5 ( p < 0.01) fold increase in SLI concentration, respectively, during the first 20 min of perfusion. The effect of 100 μ M veratridine was blocked by coperfusion with 5 μ M tetrodotoxin ( p < 0.01) and reduced by 79% ( p < 0.01) in the virtual absence of Ca2+. Neuronal depolarization by 20 min of perfusion with Krebs-Ringer solution containing 25 and 50 m M KCl and proportionally lowered Na+ increased the dialysate SLI 4.4 ± 1 ( p < 0.05) and 17 ± 3 ( p < 0.01) fold baseline, respectively. Ten micromolar ouabain, a blocker of Na+,K+-ATPase, increased the dialysate SLI 15-fold baseline, on average ( p < 0.05), during 80 min of perfusion. The results demonstrate the suitability of brain microdialysis for monitoring the neuronal release of SLI and for studying its role in synaptic transmission.  相似文献   

17.
Spermatogenesis is a complex process that produces functional sperm by establishing male germline stem cells (mGSCs) in adult testes. To study Drosophila spermatogenesis in vitro , we examined various culture conditions of spermatogonia. Spermatogonia from larval testes began to differentiate soon after culture, whereas mGSCs did not undergo self-renewal division. Strikingly, 16-cell spermatogonia from early and late larval testes differentiated into motile spermatids autonomously. Furthermore, individual spermatogonia developed into motile spermatids even after mechanical dissociation from encapsulating cyst cells. This is the first study to report that spermatogonia in larval testes retain the ability to differentiate into spermatids in the absence of gonadal tissue. Our in vitro system should provide an excellent opportunity to study spermatogenesis in detail and apply genetic manipulation.  相似文献   

18.
Monitoring and describing the physical movements and body postures of animals is one of the most fundamental tasks of ethology. The more precise the observations are the more sophisticated the interpretations can be about the biology of a certain individual or species. Animal-borne data loggers have recently contributed much to the collection of motion-data from individuals, however, the problem of translating these measurements to distinct behavioural categories to create an ethogram is not overcome yet. The objective of the present study was to develop a “behaviour tracker”: a system composed of a multiple sensor data-logger device (with a tri-axial accelerometer and a tri-axial gyroscope) and a supervised learning algorithm as means of automated identification of the behaviour of freely moving dogs. We collected parallel sensor measurements and video recordings of each of our subjects (Belgian Malinois, N=12; Labrador Retrievers, N=12) that were guided through a predetermined series of standard activities. Seven behavioural categories (lay, sit, stand, walk, trot, gallop, canter) were pre-defined and each video recording was tagged accordingly. Evaluation of the measurements was performed by support vector machine (SVM) classification. During the analysis we used different combinations of independent measurements for training and validation (belonging to the same or different individuals or using different training data size) to determine the robustness of the application. We reached an overall accuracy of above 90% perfect identification of all the defined seven categories of behaviour when both training and validation data belonged to the same individual, and over 80% perfect recognition rate using a generalized training data set of multiple subjects. Our results indicate that the present method provides a good model for an easily applicable, fast, automatic behaviour classification system that can be trained with arbitrary motion patterns and potentially be applied to a wide range of species and situations.  相似文献   

19.
Abstract: The real-time measurement of electrically evoked dopamine was established in brain extracellular fluid of freely moving rats. Dopamine was monitored by fast-scan cyclic voltammetry at carbon fiber microelectrodes lowered into the striatum by means of a detachable micromanipulator. A stimulating electrode, previously implanted in the substantia nigra, was used to evoke striatal dopamine efflux. Evoked extracellular dopamine was both current and frequency dependent. When low current intensities (±125 µA) and frequencies (10–20 Hz) were applied, detectable levels of dopamine were elicited without a perceptible behavioral response. Reproducible concentrations of extracellular dopamine could be evoked in the same rat for at least 2 months. These concentrations, moreover, were significantly higher in freely moving rats compared with rats anesthetized with Equithesin. Analysis of measured curves for dopamine uptake and release rates revealed that anesthesia inhibits release but does not affect uptake. It is concluded that (a) fast-scan cyclic voltammetry at carbon fiber microelectrodes is a viable technique for the measurement of electrically evoked dopamine in brain extracellular fluid of freely moving rats, (b) it is possible to determine in situ rate constants for dopamine release and uptake from these temporally and spatially resolved measurements of levels of dopamine, and (c) transient changes in extracellular dopamine levels elicited by electrical stimulation are affected by anesthesia.  相似文献   

20.
Biochemical approaches were used in freely moving rats to determine, under steady-state conditions, the brain/arterial plasma partition coefficients of L-tryptophan and alpha-[3H]methyl-L-tryptophan, from which the lumped constant for the alpha-methyl-L-tryptophan method of estimating the rate of brain serotonin synthesis is calculated. The lumped constants were significantly different in the various structures examined: 0.149 +/- 0.003 in the raphe dorsalis, 0.103 +/- 0.002 in the raphe centralis, 0.087 +/- 0.003 in the reticular formation, and 0.62 +/- 0.08 in the pineal gland. From these data we proposed a two-compartment model to calculate the rate of serotonin synthesis by quantitative autoradiography using a three-time point experiment. Rates of synthesis for the raphe dorsalis and the reticular formation (620 +/- 57 and 80 +/- 35 pmol/g of tissue/min, respectively) were similar to those measured simultaneously by biochemical means, but rates were 50% higher for the raphe centralis (568 +/- 90 vs. 381 +/- 31 pmol/g of tissue/min). The lack of dynamic equilibrium of the tracer between plasma and tissue pools may explain the discrepancy between the two methods. Our findings did not confirm previous data, indicating that the application of the autoradiographic method to measure the rate of brain serotonin synthesis using alpha-methyl-L-tryptophan as tracer has limitations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号