首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 352 毫秒
1.
Heart valve tissue engineering offers a promising alternative for current treatment and replacement strategies, e.g., synthetic or bioprosthetic heart valves. In vitro mechanical conditioning is an important tool for engineering strong, implantable heart valves. Detailed knowledge of the mechanical properties of the native tissue as well as the developing tissue construct is vital for a better understanding and control of the remodeling processes induced by mechanical conditioning. The nonlinear, anisotropic and inhomogeneous mechanical behavior of heart valve tissue necessitates a mechanical characterization method that is capable of dealing with these complexities. In a recent computational study we showed that one single indentation test, combining force and deformation gradient data, provides sufficient information for local characterization of nonlinear soft anisotropic tissue properties. In the current study this approach is validated in two steps. First, indentation tests with varying indenter sizes are performed on linear elastic PDMS rubbers and compared to tensile tests on the same specimen. For the second step, tissue constructs are engineered using uniaxial or equibiaxial static constrained culture conditions. Digital image correlation (DIC) is used to quantify the anisotropy in the tissue constructs. For both validation steps, material parameters are estimated by inverse fitting of a computational model to the experimental results.  相似文献   

2.
For treatment of critical heart valve diseases, prosthetic valves perform fairly well in most adults; however, for pediatric patients, there is the added requirement that the replacement valve grows with the child, thus extremely limiting current treatment options. Tissue engineered heart valves (TEHV), such as those derived from autologous bone marrow stem cells (BMSCs), have the potential to recapitulate native valve architecture and accommodate somatic growth. However, a fundamental pre-cursor in promoting directed integration with native tissues rather than random, uncontrolled growth requires an understanding of BMSC mechanobiological responses to valve-relevant mechanical environments. Here, we report on the responses of human BMSC-seeded polymer constructs to the valve-relevant stress states of: (i) steady flow alone, (ii) cyclic flexure alone, and (iii) the combination of cyclic flexure and steady flow (flex-flow). BMSCs were seeded onto a PGA: PLLA polymer scaffold and cultured in static culture for 8 days. Subsequently, the aforementioned mechanical conditions, (groups consisting of steady flow alone—850ml/min, cyclic flexure alone—1 Hz, and flex-flow—850ml/min and 1 Hz) were applied for an additional two weeks. We found samples from the flex-flow group exhibited a valve-like distribution of cells that expressed endothelial (preference to the surfaces) and myofibroblast (preference to the intermediate region) phenotypes. We interpret that this was likely due to the presence of both appreciable fluid-induced shear stress magnitudes and oscillatory shear stresses, which were concomitantly imparted onto the samples. These results indicate that flex-flow mechanical environments support directed in vitro differentiation of BMSCs uniquely towards a heart valve phenotype, as evident by cellular distribution and expression of specific gene markers. A priori guidance of BMSC-derived, engineered tissue growth under flex-flow conditions may serve to subsequently promote controlled, engineered to native tissue integration processes in vivo necessary for successful long-term valve remodeling.  相似文献   

3.
The in vitro development of tissue engineered heart valves (TEHV) exhibiting appropriate structural and mechanical characteristics remains a significant challenge. An important step yet to be addressed is establishing the relationship between scaffold and extracellular matrix (ECM) mechanical properties. In the present study, a composite beam model accounting for nonwoven scaffold-ECM coupling and the transmural collagen concentration distribution was developed, and utilized to retrospectively estimate the ECM effective stiffness in TEHV specimens incubated under static and cyclic flexure conditions (Engelmayr Jr et~al. in Biomaterials 26(2):175-187 2005). The ECM effective stiffness was expressed as the product of the local collagen concentration and the collagen specific stiffness (i.e., stiffness/concentration), and was related to the overall TEHV effective stiffness via an empirically determined scaffold-ECM coupling parameter and measured transmural collagen concentration distributions. The scaffold-ECM coupling parameter was determined by flexural mechanical testing of polyacrylamide gels (i.e., ECM analogs) of variable stiffness and associated scaffold-polyacrylamide gel composites (i.e., engineered tissue analogs). The transmural collagen concentration distributions were quantified from fluorescence micrographs of picro-sirius red stained TEHV sections. As suggested by a previous structural model of the nonwoven scaffold (Engelmayr Jr and Sacks in J Biomech Eng 128(4):610-622, 2006), nonwoven scaffold-ECM composites did not follow a traditional rule of mixtures. The present study provided further evidence that the primary mode of reinforcement in nonwoven scaffold-ECM composites is an increase in the number fiber-fiber bonds with a concomitant increase in the effective stiffness of the spring-like fiber segments. Simulations of potential ECM deposition scenarios using the current model indicated that the present approach is sensitive to the specific time course of tissue deposition, and is thus very suitable for studies of ECM formation in engineered heart valve tissues.  相似文献   

4.
Preclinical studies of tissue-engineered heart valves (TEHVs) showed retraction of the heart valve leaflets as major failure of function mechanism. This retraction is caused by both passive and active cell stress and passive matrix stress. Cell-mediated retraction induces leaflet shortening that may be counteracted by the hemodynamic loading of the leaflets during diastole. To get insight into this stress balance, the amount and duration of stress generation in engineered heart valve tissue and the stress imposed by physiological hemodynamic loading are quantified via an experimental and a computational approach, respectively.  相似文献   

5.

Cardiovascular tissue engineering (CVTE) aims to create living tissues, with the ability to grow and remodel, as replacements for diseased blood vessels and heart valves. Despite promising results, the (long-term) functionality of these engineered tissues still needs improvement to reach broad clinical application. The functionality of native tissues is ensured by their specific mechanical properties directly arising from tissue organization. We therefore hypothesize that establishing a native-like tissue organization is vital to overcome the limitations of current CVTE approaches. To achieve this aim, a better understanding of the growth and remodeling (G&R) mechanisms of cardiovascular tissues is necessary. Cells are the main mediators of tissue G&R, and their behavior is strongly influenced by both mechanical stimuli and cell–cell signaling. An increasing number of signaling pathways has also been identified as mechanosensitive. As such, they may have a key underlying role in regulating the G&R of tissues in response to mechanical stimuli. A more detailed understanding of mechano-regulated cell–cell signaling may thus be crucial to advance CVTE, as it could inspire new methods to control tissue G&R and improve the organization and functionality of engineered tissues, thereby accelerating clinical translation. In this review, we discuss the organization and biomechanics of native cardiovascular tissues; recent CVTE studies emphasizing the obtained engineered tissue organization; and the interplay between mechanical stimuli, cell behavior, and cell–cell signaling. In addition, we review past contributions of computational models in understanding and predicting mechano-regulated tissue G&R and cell–cell signaling to highlight their potential role in future CVTE strategies.

  相似文献   

6.
Mechanical forces are known to affect the biomechanical properties of native and engineered cardiovascular tissue. In particular, shear stress that results from the relative motion of heart valve leaflets with respect to the blood flow is one important component of their mechanical environment in vivo. Although different types of bioreactors have been designed to subject cells to shear stress, devices to expose biological tissue are few. In an effort to address this issue, the aim of this study was to design an ex vivo tissue culture system to characterize the biological response of heart valve leaflets subjected to a well-defined steady or time-varying shear stress environment. The novel apparatus was designed based on a cone-and-plate viscometer. The device characteristics were defined to limit the secondary flow effects inherent to this particular geometry. The determination of the operating conditions producing the desired shear stress profile was streamlined using a computational fluid dynamic (CFD) model validated with laser Doppler velocimetry. The novel ex vivo tissue culture system was validated in terms of its capability to reproduce a desired cone rotation and to maintain sterile conditions. The CFD results demonstrated that a cone angle of 0.5 deg, a cone radius of 40 mm, and a gap of 0.2 mm between the cone apex and the plate could limit radial secondary flow effects. The novel cone-and-plate permits to expose nine tissue specimens to an identical shear stress waveform. The whole setup is capable of accommodating four cone-and-plate systems, thus concomitantly subjecting 36 tissue samples to desired shear stress condition. The innovative design enables the tissue specimens to be flush mounted in the plate in order to limit flow perturbations caused by the tissue thickness. The device is capable of producing shear stress rates of up to 650 dyn cm(-2) s(-1) (i.e., maximum shear stress rate experienced by the ventricular surface of an aortic valve leaflet) and was shown to maintain tissue under sterile conditions for 120 h. The novel ex vivo tissue culture system constitutes a valuable tool toward elucidating heart valve mechanobiology. Ultimately, this knowledge will permit the production of functional tissue engineered heart valves, and a better understanding of heart valve biology and disease progression.  相似文献   

7.
Efficient cell seeding and subsequent support from a substrate ensure optimal cell growth and neotissue development during tissue engineering, including heart valve tissue engineering. Fibrin gel as a cell carrier may provide high cell seeding efficiency and adhesion property, improved cellular interaction, and structural support to enhance cellular growth in trilayer polycaprolactone (PCL) substrates that mimic the structure of native heart valve leaflets. This cell carrier gel coupled with a trilayer PCL substrate may enable the production of native-like cell-cultured leaflet constructs suitable for heart valve tissue engineering. In this study, we seeded valvular interstitial cells onto trilayer PCL substrates with fibrin gel as a cell carrier and cultured them for 1 month in vitro to determine if this gel can improve cell proliferation and production of extracellular matrix within the trilayer cell-cultured constructs. We observed that the fibrin gel enhanced cellular proliferation, their vimentin expression, and collagen and glycosaminoglycan production, leading to improved structure and mechanical properties of the developing PCL cell-cultured constructs. Fibrin gel as a cell carrier significantly improved the orientations of the cells and their produced tissue materials within trilayer PCL substrates that mimic the structure of native heart valve leaflets and, thus, may be highly beneficial for developing functional tissue-engineered leaflet constructs.  相似文献   

8.
With advances in tissue engineering and improvement of surgical techniques, stentless biological valves and valve-sparing procedures have become alternatives to traditional aortic valve replacement with stented bioprostheses or mechanical valves. New surgical techniques preserve the advantages of native valves but require better understanding of the anatomical structure of the aortic root. Silicone rubber was injected in fresh aortic roots of nine human cadavers under the physiological closing pressure of 80 mmHg. The casts reproduced every detail of the aortic root anatomy and were used to digitize 27 leaflet attachment lines (LALs) of the aortic valves. LALs were normalized and described with a mathematical model. LALs were found to follow a pattern with the right coronary being the largest followed by the non-coronary and then the left coronary. During diastole, the aortic valve LAL can be described by an intersection between a created tube and an extruded parabolic surface. This geometrical definition of the LAL during end diastole gives a better understanding of the aortic root anatomy and could be useful for heart valve design and improvement of aortic valve reconstruction technique.  相似文献   

9.
To optimize the mechanical properties and integrity of tissue-engineered aortic heart valves, it is necessary to gain insight into the effects of mechanical stimuli on the mechanical behavior of the tissue using mathematical models. In this study, a finite-element (FE) model is presented to relate changes in collagen fiber content and orientation to the mechanical loading condition within the engineered construct. We hypothesized that collagen fibers aligned with principal strain directions and that collagen content increased with the fiber stretch. The results indicate that the computed preferred fiber directions run from commissure to commissure and show a strong resemblance to experimental data from native aortic heart valves.  相似文献   

10.
Most tissue-engineered cartilage constructs are more compliant than native articular cartilage (AC) and are poorly integrated to the surrounding tissue. To investigate the effect of an implanted tissue-engineered construct (TEC) with these inferior properties on the mechanical environment of both the engineered and adjacent native tissues, a finite element study was conducted. Biphasic swelling was used to model tibial cartilage and an implanted TEC with the material properties of either native tissue or a decreased elastic modulus and fixed charged density. Creep loading was applied with a rigid impermeable indenter that represented the femur. In comparison with an intact joint, compressive strains in the transplant, surface contact stress in the adjacent native AC and load partitioning between different phases of cartilage were affected by inferior properties of TEC. Results of this study may lead to a better understanding of the complex mechanical environment of an implanted TEC.  相似文献   

11.
Most tissue-engineered cartilage constructs are more compliant than native articular cartilage (AC) and are poorly integrated to the surrounding tissue. To investigate the effect of an implanted tissue-engineered construct (TEC) with these inferior properties on the mechanical environment of both the engineered and adjacent native tissues, a finite element study was conducted. Biphasic swelling was used to model tibial cartilage and an implanted TEC with the material properties of either native tissue or a decreased elastic modulus and fixed charged density. Creep loading was applied with a rigid impermeable indenter that represented the femur. In comparison with an intact joint, compressive strains in the transplant, surface contact stress in the adjacent native AC and load partitioning between different phases of cartilage were affected by inferior properties of TEC. Results of this study may lead to a better understanding of the complex mechanical environment of an implanted TEC.  相似文献   

12.
Tissue engineering of heart valves utilizes biodegradable or metabolizable scaffolds for remodeling by seeded autologous cells. The aim of this study was to determine and compare extracellular matrix (ECM) formations, cellular phenotypes and cell location of native and tissue engineered (TE) valve leaflets. Ovine carotid arteries, ovine and porcine hearts were obtained from slaughterhouses. Cells were isolated from carotid arteries and dissected ovine, porcine and TE leaflets. TE constructs were fabricated from decellularized porcine pulmonary valves, seeded ovine arterial cells and subsequent 16 days dynamic in vitro culture using a pulsatile bioreactor. Native and TE valves were studied by histology (hematoxylin-eosin, resorcin-fuchsin, Movat pentachrome), NIR femtosecond multiphoton laser scanning microscopy and scanning electron microscopy (SEM). Cells of native and TE tissues were identified and localized by immunohistochemistry. Arterial, valvular and re-isolated TE-construct cells were processed for immunocytochemistry and Western blotting. ECM analysis and SEM revealed characteristical and comparable structures in native and TE leaflets. Most cells in native leaflets stained strongly positive for vimentin. Cells positive to alpha-smooth muscle actin (alpha-SMA), myosin and calponin were only found at the ventricular (inflow) side of ovine aortic and porcine pulmonary valve leaflets. Cells from TE constructs had a strong expression of vimentin, alpha-SMA, myosin, calponin and h-caldesmon throughout the entire leaflet. Comparable ECM formation and endothelial cell lining of native and TE leaflets could be demonstrated. However, immunostaining revealed significant differences between valvular cell phenotypes of native and TE leaflets. These results may be essential for further cardiovascular tissue engineering efforts.  相似文献   

13.
Site-specific biomechanical properties of the aortic valve play an important role in native valve function, and alterations in these properties may reflect mechanisms of degeneration and disease. Small animals such as targeted mutagenesis mice provide a powerful approach to model human valve disease pathogenesis; however, physical mechanical testing in small animals is limited by valve tissue size. Aortic valves are comprised of highly organized extracellular matrix compartmentalized in cusp and annulus regions, which have different functions. The objective of this study was to measure regional mechanical properties of mouse aortic valve tissue using a modified micropipette aspiration technique. Aortic valves were isolated from juvenile, adult and aged adult C57BL/6 wild type mice. Tissue tensile stiffness was determined for annulus and cusp regions using a half-space punch model. Stiffness for the annulus region was significantly higher compared to the cusp region at all stages. Further, aged adult valve tissue had decreased stiffness in both the cusp and annulus. Quantitative histochemical analysis revealed a collagen-rich annulus and a proteoglycan-rich cusp at all stages. In aged adult valves, there was proteoglycan infiltration of the annulus hinge, consistent with the observed mechanical differences over time. These findings indicate that valve tissue biomechanical properties vary in wild type mice in a region-specific and age-related manner. The micropipette aspiration technique provides a promising approach for studies of valve structure and function in small animal models, such as transgenic mouse models of valve disease.  相似文献   

14.
There is limited information about age-specific structural and functional properties of human heart valves, while this information is key to the development and evaluation of living valve replacements for pediatric and adolescent patients. Here, we present an extended data set of structure-function properties of cryopreserved human pulmonary and aortic heart valves, providing age-specific information for living valve replacements. Tissue composition, morphology, mechanical properties, and maturation of leaflets from 16 pairs of structurally unaffected aortic and pulmonary valves of human donors (fetal-53 years) were analyzed. Interestingly, no major differences were observed between the aortic and pulmonary valves. Valve annulus and leaflet dimensions increase throughout life. The typical three-layered leaflet structure is present before birth, but becomes more distinct with age. After birth, cell numbers decrease rapidly, while remaining cells obtain a quiescent phenotype and reside in the ventricularis and spongiosa. With age and maturation–but more pronounced in aortic valves–the matrix shows an increasing amount of collagen and collagen cross-links and a reduction in glycosaminoglycans. These matrix changes correlate with increasing leaflet stiffness with age. Our data provide a new and comprehensive overview of the changes of structure-function properties of fetal to adult human semilunar heart valves that can be used to evaluate and optimize future therapies, such as tissue engineering of heart valves. Changing hemodynamic conditions with age can explain initial changes in matrix composition and consequent mechanical properties, but cannot explain the ongoing changes in valve dimensions and matrix composition at older age.  相似文献   

15.
Surgical replacement of diseased heart valves by mechanical and tissue valve substitutes is now commonplace and generally enhances survival and quality of life. However, a fundamental problem inherent to the use of existing mechanical and biological prostheses in the pediatric population is their failure to grow, repair, and remodel. A tissue engineered heart valve could, in principle, accommodate these requirements, especially somatic growth. This review provides a brief overview of the field of heart valve tissue engineering, with emphasis on recent studies and evolving concepts, especially those that establish design criteria and key hurdles that must be surmounted before clinical implementation.  相似文献   

16.
Modulation of the mechanical properties of tissue engineered cartilage   总被引:9,自引:0,他引:9  
Cartilaginous constructs have been grown in vitro using chondrocytes, biodegradable polymer scaffolds, and tissue culture bioreactors. In the present work, we studied how the composition and mechanical properties of engineered cartilage can be modulated by the conditions and duration of in vitro cultivation, using three different environments: static flasks, mixed flasks, and rotating vessels. After 4-6 weeks, static culture yielded small and fragile constructs, while turbulent flow in mixed flasks induced the formation of an outer fibrous capsule; both environments resulted in constructs with poor mechanical properties. The constructs that were cultured freely suspended in a dynamic laminar flow field in rotating vessels had the highest fractions of glycosaminoglycans and collagen (respectively 75% and 39% of levels measured in native cartilage), and the best mechanical properties (equilibrium modulus, hydraulic permeability, dynamic stiffness, and streaming potential were all about 20% of values measured in native cartilage). Chondrocytes in cartilaginous constructs remained metabolically active and phenotypically stable over prolonged cultivation in rotating bioreactors. The wet weight fraction of glycosaminoglycans and equilibrium modulus of 7 month constructs reached or exceeded the corresponding values measured from freshly explanted native cartilage. Taken together, these findings suggest that functional equivalents of native cartilage can be engineered by optimizing the hydrodynamic conditions in tissue culture bioreactors and the duration of tissue cultivation.  相似文献   

17.
With the increase in average life expectancy and growing aging population, lack of functional grafts for replacement surgeries has become a severe problem. Engineered tissues are a promising alternative to this problem because they can mimic the physiological function of the native tissues and be cultured on demand. Cyclic stretch is important for developing many engineered tissues such as hearts, heart valves, muscles, and bones. Thus a variety of stretch bioreactors and corresponding scaffolds have been designed and tested to study the underlying mechanism of tissue formation and to optimize the mechanical conditions applied to the engineered tissues. In this review, we look at various designs of stretch bioreactors and common scaffolds and offer insights for future improvements in tissue engineering applications. First, we summarize the requirements and common configuration of stretch bioreactors. Next, we present the features of different actuating and motion transforming systems and their applications. Since most bioreactors must measure detailed distributions of loads and deformations on engineered tissues, techniques with high accuracy, precision, and frequency have been developed. We also cover the key points in designing culture chambers, nutrition exchanging systems, and regimens used for specific tissues. Since scaffolds are essential for providing biophysical microenvironments for residing cells, we discuss materials and technologies used in fabricating scaffolds to mimic anisotropic native tissues, including decellularized tissues, hydrogels, biocompatible polymers, electrospinning, and 3D bioprinting techniques. Finally, we present the potential future directions for improving stretch bioreactors and scaffolds. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:543–553, 2016  相似文献   

18.
Functional tissue engineering of chondral and osteochondral constructs   总被引:5,自引:0,他引:5  
Lima EG  Mauck RL  Han SH  Park S  Ng KW  Ateshian GA  Hung CT 《Biorheology》2004,41(3-4):577-590
Due to the prevalence of osteoarthritis (OA) and damage to articular cartilage, coupled with the poor intrinsic healing capacity of this avascular connective tissue, there is a great demand for an articular cartilage substitute. As the bearing material of diarthrodial joints, articular cartilage has remarkable functional properties that have been difficult to reproduce in tissue-engineered constructs. We have previously demonstrated that by using a functional tissue engineering approach that incorporates mechanical loading into the long-term culture environment, one can enhance the development of mechanical properties in chondrocyte-seeded agarose constructs. As these gel constructs begin to achieve material properties similar to that of the native tissue, however, new challenges arise, including integration of the construct with the underlying native bone. To address this issue, we have developed a technique for producing gel constructs integrated into an underlying bony substrate. These osteochondral constructs develop cartilage-like extracellular matrix and material properties over time in free swelling culture. In this study, as a preliminary to loading such osteochondral constructs, finite element modeling (FEM) was used to predict the spatial and temporal stress, strain, and fluid flow fields within constructs subjected to dynamic deformational loading. The results of these models suggest that while chondral ("gel alone") constructs see a largely homogenous field of mechanical signals, osteochondral ("gel bone") constructs see a largely inhomogeneous distribution of mechanical signals. Such inhomogeneity in the mechanical environment may aid in the development of inhomogeneity in the engineered osteochondral constructs. Together with experimental observations, we anticipate that such modeling efforts will provide direction for our efforts aimed at the optimization of applied physical forces for the functional tissue engineering of an osteochondral articular cartilage substitute.  相似文献   

19.
Confronted with articular cartilage's limited capacity for self‐repair, joint resurfacing techniques offer an attractive treatment for damaged or diseased tissue. Although tissue engineered cartilage constructs can be created, a substantial number of cells are required to generate sufficient quantities of tissue for the repair of large defects. As routine cell expansion methods tend to elicit negative effects on chondrocyte function, we have developed an approach to generate phenotypically stable, large‐sized engineered constructs (≥3 cm2) directly from a small amount of donor tissue or cells (as little as 20,000 cells to generate a 3 cm2 tissue construct). Using rabbit donor tissue, the bioreactor‐cultivated constructs were hyaline‐like in appearance and possessed a biochemical composition similar to native articular cartilage. Longer bioreactor cultivation times resulted in increased matrix deposition and improved mechanical properties determined over a 4 week period. Additionally, as the anatomy of the joint will need to be taken in account to effectively resurface large affected areas, we have also explored the possibility of generating constructs matched to the shape and surface geometry of a defect site through the use of rapid‐prototyped defect tissue culture molds. Similar hyaline‐like tissue constructs were developed that also possessed a high degree of shape correlation to the original defect mold. Future studies will be aimed at determining the effectiveness of this approach to the repair of cartilage defects in an animal model and the creation of large‐sized osteochondral constructs. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号