首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interstitial fluid pressurization, a consequence of a biphasic tissue structure, is essential to the load bearing and lubrication properties of articular cartilage. Focal tissue degradation may interfere with this protective mechanism, eventually leading to gross degeneration and osteoarthritis. Our long-term goal is to determine whether local contacts can be used as a means to probe local tissue integrity and functionality. In the present work, Hertzian rate-controlled microindentation was used as a model of the more complicated sliding system to directly determine the effects of contact radius and deformation rate on interstitial load support. During localized contact between a steel spherical probe and bovine articular cartilage, the equilibrium and non-equilibrium responses were well-fit by the Hertz model (R(2)>0.998) with a mean equilibrium contact modulus of 0.93 MPa. The effective contact modulus and fluid load fraction were independent of indentation depth, contact radius, and normal force; both increased monotonically with indentation rate. At 21 μm/s indentation rate, the cartilage was effectively stiffened by 6-fold with the fluid pressure supporting 85% of the contact force. The results motivated a simple analytical model that directly links the tribomechanical response (including fluid load support) and the Peclet number to measurable material properties and controllable experimental variables. This paper demonstrates that tribological contacts can be used to probe local functional properties. Such measurements can add important insights into the roles of focal tissue damage and impaired local functionality in the pathogenesis of osteoarthritis.  相似文献   

2.
Li LP  Herzog W 《Biorheology》2004,41(3-4):181-194
The relative importance of fluid-dependent and fluid-independent transient mechanical behavior in articular cartilage was examined for tensile and unconfined compression testing using a fibril reinforced model. The collagen matrix of articular cartilage was modeled as viscoelastic using a quasi-linear viscoelastic formulation with strain-dependent elastic modulus, while the proteoglycan matrix was considered as linearly elastic. The collagen viscoelastic properties were obtained by fitting experimental data from a tensile test. These properties were used to investigate unconfined compression testing, and the sensitivity of the properties was also explored. It was predicted that the stress relaxation observed in tensile tests was not caused by fluid pressurization at the macroscopic level. A multi-step tensile stress relaxation test could be approximated using a hereditary integral in which the elastic fibrillar modulus was taken to be a linear function of the fibrillar strain. Applying the same formulation to the radial fibers in unconfined compression, stress relaxation could not be simulated if fluid pressurization were absent. Collagen viscoelasticity was found to slightly weaken fluid pressurization in unconfined compression, and this effect was relatively more significant at moderate strain rates. Therefore, collagen viscoelasticity appears to play an import role in articular cartilage in tensile testing, while fluid pressurization dominates the transient mechanical behavior in compression. Collagen viscoelasticity plays a minor role in the mechanical response of cartilage in unconfined compression if significant fluid flow is present.  相似文献   

3.
The viscoelastic mechanical properties of normal and osteoarthritic articular were analyzed based on data reported by Kempson [in: Adult Articular Cartilage (1973)] and Silver et al. (Connect. Tissue Res., 2001b). Results of the analysis of tensile elastic stress-strain curves suggest that the elastic modulus of cartilage from the superficial zone is approximately 7.0 GPa parallel and 2.21 GPa perpendicular to the cleavage line pattern. Collagen fibril lengths in the superficial zone were found to be approximately 1265 microm parallel and 668 microm perpendicular to the cleavage line direction. The values for the elastic modulus and fibril lengths decreased with increased extent of osteoarthritis. The elastic modulus of type II collagen parallel to the cleavage line pattern in the superficial zone approaches that of type I collagen in tendon, suggesting that elastic energy storage occurs in the superficial zone due to the tensile pre-tension that exists in this region. Decreases in the elastic modulus associated with osteoarthritis reflect decreased ability of cartilage to store elastic energy, which leads to cartilage fibrillation and fissure formation. We hypothesize that under normal physiological conditions, collagen fibrils in cartilage function to store elastic energy associated with weight bearing and locomotion. Enzymatic cleavage of cartilage proteoglycans and collagen observed in osteoarthritis may lead to fibrillation and fissure formation as a result of impaired energy storage capability of cartilage.  相似文献   

4.
Over the last two decades, considerable progress has been reported in the field of cartilage mechanics that impacts our understanding of the role of interstitial fluid pressurization on cartilage lubrication. Theoretical and experimental studies have demonstrated that the interstitial fluid of cartilage pressurizes considerably under loading, potentially supporting most of the applied load under various transient or steady-state conditions. The fraction of the total load supported by fluid pressurization has been called the fluid load support. Experimental studies have demonstrated that the friction coefficient of cartilage correlates negatively with this variable, achieving remarkably low values when the fluid load support is greatest. A theoretical framework that embodies this relationship has been validated against experiments, predicting and explaining various outcomes, and demonstrating that a low friction coefficient can be maintained for prolonged loading durations under normal physiological function. This paper reviews salient aspects of this topic, as well as its implications for improving our understanding of boundary lubrication by molecular species in synovial fluid and the cartilage superficial zone. Effects of cartilage degeneration on its frictional response are also reviewed.  相似文献   

5.
Mixture models have been successfully used to describe the response of articular cartilage to various loading conditions. Mow et al. (J. Biomech. Eng. 102 (1980) 73) formulated a biphasic mixture model of articular cartilage where the collagen-proteoglycan matrix is modeled as an intrinsically incompressible porous-permeable solid matrix, and the interstitial fluid is modeled as an incompressible fluid. Lai et al. (J. Biomech. Eng. 113 (1991) 245) proposed a triphasic model of articular cartilage as an extension of their biphasic theory, where negatively charged proteoglycans are modeled to be fixed to the solid matrix, and monovalent ions in the interstitial fluid are modeled as additional fluid phases. Since both models co-exist in the cartilage literature, it is useful to show how the measured properties of articular cartilage (the confined and unconfined compressive and tensile moduli, the compressive and tensile Poisson's ratios, and the shear modulus) relate to both theories. In this study, closed-form expressions are presented that relate biphasic and triphasic material properties in tension, compression and shear. These expressions are then compared to experimental findings in the literature to provide greater insight into the measured properties of articular cartilage as a function of bathing solutions salt concentrations and proteoglycan fixed-charge density.  相似文献   

6.
The mechanical properties of articular cartilage serve as important measures of tissue function or degeneration, and are known to change significantly with osteoarthritis. Interest in small animal and mouse models of osteoarthritis has increased as studies reveal the importance of genetic background in determining predisposition to osteoarthritis. While indentation testing provides a method of determining cartilage mechanical properties in situ, it has been of limited value in studying mouse joints due to the relatively small size of the joint and thickness of the cartilage layer. In this study, we developed a micro-indentation testing system to determine the compressive and biphasic mechanical properties of cartilage in the small joints of the mouse. A nonlinear optimization program employing a genetic algorithm for parameter estimation, combined with a biphasic finite element model of the micro-indentation test, was developed to obtain the biphasic, compressive material properties of articular cartilage. The creep response and material properties of lateral tibial plateau cartilage were obtained for wild-type mouse knee joints, by the micro-indentation testing and optimization algorithm. The newly developed genetic algorithm was found to be efficient and accurate when used with the finite element simulations for nonlinear optimization to the experimental creep data. The biphasic mechanical properties of mouse cartilage in compression (average values: Young's modulus, 2.0 MPa; Poisson's ratio, 0.20; and hydraulic permeability, 1.1 x 10(-16) m4/N-s) were found to be of similar orders of magnitude as previous findings for other animal cartilages, including human, bovine, rat, and rabbit and demonstrate the utility of the new test methods. This study provides the first available data for biphasic compressive properties in mouse cartilage and suggests a promising method for detecting altered cartilage mechanics in small animal models of osteoarthritis.  相似文献   

7.
A time- and depth-dependent Poisson’s ratio has been observed during unconfined compression experiments on articular cartilage, but existing cartilage models have not fully addressed these phenomena. The goal of this study was to develop a model which is able to predict and explain these phenomena, while also being able to fit other experimental scenarios on full depth cartilage specimens such as confined and unconfined compressions. A biphasic (poroelastic), fiber-embedded cartilage model was developed. The heterogeneous material properties of the cartilage (aggregate modulus, void ratio tensile modulus) were extracted from reported experiments on individual layers of bovine articular cartilage. The nonlinear permeability material constants were found by fitting the overall response to published experimental data from confined compression. The matrix of the cartilage was modelled as an inhomogeneous isotropic biphasic material with nonlinear strain dependent permeability. Orthotropic layers were added as embedded elements to represent collagen fibers. Material parameters for these layers were derived from tensile tests of different layers of cartilage. With these predefined tensile parameters, the model showed a good fit with multi-step confined and unconfined compression experiments (R2=0.984 and 0.977, respectively) and could also predict the depth-dependent Poisson’s ratio (R2=0.981). The highlight of the model is the ability to explain the time-depth dependent Poisson's ratio and, by association, the strong effect of material inhomogeneity on local stress and strain patterns within the cartilage layer. This material model’s response may provide valuable new insight into potential initiation of cartilage fibrillation or delamination in whole-joint simulations.  相似文献   

8.
A squeeze-film lubrication model of the human ankle joint in standing that takes into account the fluid transport across the articular surface is presented. Articular cartilage is a biphasic mixture of the ideal interstitial fluid and an elastic permeable isotropic homogeneous intrinsically incompressible matrix. The simple homogeneous model for articular cartilage models the case of early osteoarthritis, when the intact superficial zone of the normal articular cartilage, much stiffer in tension than the bulk material, has been already disrupted or worn out. The calculations indicate for this case that in normal approach motion the lubricating fluid film is quickly depleted and turned into a synovial gel film that is supposed to serve as a boundary lubricant if sliding motion follows  相似文献   

9.
We used a pin-on-disc tribometer to measure the friction coefficient of both pristine and mechanically damaged cartilage samples in the presence of different lubricant solutions. The experimental set up maximizes the lubrication mechanism due to interstitial fluid pressurization. In phosphate buffer solution (PBS), the measured friction coefficient increases with the level of damage. The main result is that when poly(ethylene oxide) (PEO) or hyaluronic acid (HA) are dissolved in PBS, or when synovial fluid (SF) is used as lubricant, the friction coefficients measured for damaged cartilage samples are only slightly larger than those obtained for pristine cartilage samples, indicating that the surface damage is in part alleviated by the presence of the various lubricants. Among the lubricants considered, 100 mg/mL of 100,000 Da MW PEO in PBS appears to be as effective as SF. We attempted to discriminate the lubrication mechanism enhanced by the various compounds. The lubricants viscosity was measured at shear rates comparable to those employed in the friction experiments, and a quartz crystal microbalance with dissipation monitoring was used to study the adsorption of PEO, HA, and SF components on collagen type II adlayers pre-formed on hydroxyapatite. Under the shear rates considered the viscosity of SF is slightly larger than that of PBS, but lower than that of lubricant formulations containing HA or PEO. Neither PEO nor HA showed strong adsorption on collagen adlayers, while evidence of adsorption was found for SF. Combined, these results suggest that synovial fluid is likely to enhance boundary lubrication. It is possible that all three formulations enhance lubrication via the interstitial fluid pressurization mechanism, maximized by the experimental set up adopted in our friction tests.  相似文献   

10.
Under physiological conditions of loading, articular cartilage is subjected to both compressive strains, normal to the articular surface, and tensile strains, tangential to the articular surface. Previous studies have shown that articular cartilage exhibits a much higher modulus in tension than in compression, and theoretical analyses have suggested that this tension–compression nonlinearity enhances the magnitude of interstitial fluid pressurization during loading in unconfined compression, above a theoretical threshold of 33% of the average applied stress. The first hypothesis of this experimental study is that the peak fluid load support in unconfined compression is significantly greater than the 33% theoretical limit predicted for porous permeable tissues modeled with equal moduli in tension and compression. The second hypothesis is that the peak fluid load support is higher at the articular surface side of the tissue samples than near the deep zone, because the disparity between the tensile and compressive moduli is greater at the surface zone. Ten human cartilage samples from six patellofemoral joints, and 10 bovine cartilage specimens from three calf patellofemoral joints were tested in unconfined compression. The peak fluid load support was measured at 79±11% and 69±15% at the articular surface and deep zone of human cartilage, respectively, and at 94±4% and 71±8% at the articular surface and deep zone of bovine calf cartilage, respectively. Statistical analyses confirmed both hypotheses of this study. These experimental results suggest that the tension–compression nonlinearity of cartilage is an essential functional property of the tissue which makes interstitial fluid pressurization the dominant mechanism of load support in articular cartilage.  相似文献   

11.
An asymptotic analysis of a lubrication problem is presented for a model of articular cartilage and synovial fluid under the squeeze-film condition. This model is based upon the following constitutive assumptions: (1) articular cartilage is a linear porous-permeable biphasic material filled with a linearly viscous fluid (i.e. Newtonian fluid); (2) synovial fluid is also a linearly viscous fluid. The geometry of the problem is defined by assuming that (1) cartilage is a uniform layer of thickness H; (2) synovial fluid is a very thin layer compared to H; (3) the radius R of the load-supporting area (or the effective radius of curvature of joint surface, Ri) is large compared to H. Squeeze-film action is generated in the lubricant by a step loading function applied onto the two bearing surfaces. The model assumptions and the material properties yield two small parameters in the mathematical formulation. Based on these two small parameters, two coupled nonlinear partial differential equations were derived from an asymptotic analysis of the problem: one for the lubricant (analogous to the Reynolds equation) and one for the cartilage. For known properties of normal cartilage, our calculations show: (1) the cartilage layer deforms to enlarge the load-supporting area; (2) cartilage deformation acts to reduce the lateral fluid speed in the lubricant, thus prolonging the squeeze-film time which ranges from 1 to 10 s; (3) lubricant fluid in the gap is forced from the central high-pressure region into cartilage, and expelled from the tissue at the low-pressure periphery of the load-bearing region; and (4) tensile hoop stress exists at the cartilage surface despite the compressive squeeze-film loading condition. This hoop stress results directly from the radial flow of the interstitial fluid in the cartilage layer.  相似文献   

12.
It has been well established that articular cartilage is compositionally and mechanically inhomogenous through its depth. To what extent this structural inhomogeneity is a prerequisite for appropriate cartilage function and integrity is not well understood. The first hypothesis to be tested in this study was that the depth-dependent inhomogeneity of the cartilage acts to maximize the interstitial fluid load support at the articular surface, to provide efficient frictional and wear properties. The second hypothesis was that the inhomogeneity produces a more homogeneous state of elastic stress in the matrix than would be achieved with uniform properties. We have, for the first time, simultaneously determined depth-dependent tensile and compressive properties of human patellofemoral cartilage from unconfined compression stress relaxation tests. The results show that the tensile modulus increases significantly from 4.1 +/- 1.9 MPa in the deep zone to 8.3 +/- 3.7 MPa at the superficial zone, while the compressive modulus decreases from 0.73 +/- 0.26 MPa to 0.28 +/- 0.16 MPa. The experimental measurements were then implemented with the finite-element method to compute the response of an inhomogeneous and homogeneous cartilage layer to loading. The finite-element models demonstrate that structural inhomogeneity acts to increase the interstitial fluid load support at the articular surface. However, the state of stress, strain, or strain energy density in the solid matrix remained inhomogeneous through the depth of the articular layer, whether or not inhomogeneous material properties were employed. We suggest that increased fluid load support at the articular surface enhances the frictional and wear properties of articular cartilage, but that the tissue is not functionally adapted to produce homogeneous stress, strain, or strain energy density distributions. Interstitial fluid pressurization, but not a homogeneous elastic stress distribution, appears thus to be a prerequisite for the functional and morphological integrity of the cartilage.  相似文献   

13.
The objective of this study was to develop an in vitro cartilage degradation model that emulates the damage seen in early-stage osteoarthritis. To this end, cartilage explants were collagenase-treated to induce enzymatic degradation of collagen fibers and proteoglycans at the articular surface. To assess changes in mechanical properties, intact and degraded cartilage explants were subjected to a series of confined compression creep tests. Changes in extracellular matrix structure and composition were determined using biochemical and histological approaches. Our results show that collagenase-induced degradation increased the amount of deformation experienced by the cartilage explants under compression. An increase in apparent permeability as well as a decrease in instantaneous and aggregate moduli was measured following collagenase treatment. Histological analysis of degraded explants revealed the presence of surface fibrillation, proteoglycan depletion in the superficial and intermediate zones and loss of the lamina splendens. Collagen cleavage was confirmed by the Col II–3/4Cshort antibody. Degraded specimens experienced a significant decrease in proteoglycan content but maintained total collagen content. Repetitive testing of degraded samples resulted in the gradual collapse of the articular surface and the compaction of the superficial zone. Taken together, our data demonstrates that enzymatic degradation with collagenase can be used to emulate changes seen in early-stage osteoarthritis. Further, our in vitro model provides information on cartilage mechanics and insights on how matrix changes can affect cartilage's functional properties. More importantly, our model can be applied to develop and test treatment options for tissue repair.  相似文献   

14.
Cartilage is considered a biphasic material in which the solid is composed of proteoglycans and collagen. In biphasic tissue, the hydraulic pressure is believed to bear most of the load under higher strain rates and its dissipation due to fluid flow determines creep and relaxation behavior. In equilibrium, hydraulic pressure is zero and load bearing is transferred to the solid matrix. The viscoelasticity of the collagen network also contributes to its time-dependent behavior, and the osmotic pressure to load bearing in equilibrium. The aim of the present study was to determine the relative contributions of hydraulic pressure, viscoelastic collagen stress, solid matrix stiffness and osmotic pressure to load carriage in cartilage under transient and equilibrium conditions. Unconfined compression experiments were simulated using a fibril-reinforced poroviscoelastic model of articular cartilage, including water, fibrillar viscoelastic collagen and non-fibrillar charged glycosaminoglycans. The relative contributions of hydraulic and osmotic pressures and stresses in the fibrillar and non-fibrillar network were evaluated in the superficial, middle and deep zone of cartilage under five different strain rates and after relaxation. Initially upon loading, the hydraulic pressure carried most of the load in all three zones. The osmotic swelling pressure carried most of the equilibrium load. In the surface zone, where the fibers were loaded in tension, the collagen network carried 20 % of the load for all strain rates. The importance of these fibers was illustrated by artificially modifying the fiber architecture, which reduced the overall stiffness of cartilage in all conditions. In conclusion, although hydraulic pressure dominates the transient behavior during cartilage loading, due to its viscoelastic nature the superficial zone collagen fibers carry a substantial part of the load under transient conditions. This becomes increasingly important with higher strain rates. The interesting and striking new insight from this study suggests that under equilibrium conditions, the swelling pressure generated by the combination of proteoglycans and collagen reinforcement accounts cartilage stiffness for more than 90 % of the loads carried by articular cartilage. This finding is different from the common thought that load is transferred from fluid to solid and is carried by the aggregate modulus of the solid. Rather, it is transformed from hydraulic to osmotic swelling pressure. These results show the importance of considering both (viscoelastic) collagen fibers as well as swelling pressure in studies of the (transient) mechanical behavior of cartilage.  相似文献   

15.
Classically, single-phase isotropic elastic (IE) model has been used for in situ or in vivo indentation analysis of articular cartilage. The model significantly simplifies cartilage structure and properties. In this study, we apply a fibril-reinforced poroelastic (FRPE) model for indentation to extract more detailed information on cartilage properties. Specifically, we compare the information from short-term (instantaneous) and long-term (equilibrium) indentations, as described here by IE and FRPE models. Femoral and tibial cartilage from rabbit (age 0–18 months) knees (n=14) were tested using a plane-ended indenter (diameter=0.544 mm). Stepwise creep tests were conducted to equilibrium. Single-phase IE solution for indentation was used to derive instantaneous modulus and equilibrium (Young's) modulus for the samples. The classical and modified Hayes’ solutions were used to derive values for the indentation moduli. In the FRPE model, the indentation behavior was sample-specifically described with three material parameters, i.e. fibril network modulus, non-fibrillar matrix modulus and permeability. The instantaneous and fibril network modulus, and the equilibrium Young's modulus and non-fibrillar matrix modulus showed significant (p<0.01) linear correlations of R2=0.516 and 0.940, respectively (Hayes’ solution) and R2=0.531 and 0.960, respectively (the modified Hayes’ solution). No significant correlations were found between the non-fibrillar matrix modulus and instantaneous moduli or between the fibril network modulus and the equilibrium moduli. These results indicate that the instantaneous indentation modulus (IE model) provides information on tensile stiffness of collagen fibrils in cartilage while the equilibrium modulus (IE model) is a significant measure for stiffness of PG matrix. Thereby, this study highlights the feasibility of a simple indentation analysis.  相似文献   

16.
Lubrication mode analysis of articular cartilage using Stribeck surfaces   总被引:2,自引:0,他引:2  
Lubrication of articular cartilage occurs in distinct modes with various structural and biomolecular mechanisms contributing to the low-friction properties of natural joints. In order to elucidate relative contributions of these factors in normal and diseased tissues, determination and control of lubrication mode must occur. The objectives of these studies were (1) to develop an in vitro cartilage on glass test system to measure friction coefficient, mu; (2) to implement and extend a framework for the determination of cartilage lubrication modes; and (3) to determine the effects of synovial fluid on mu and lubrication mode transitions. Patellofemoral groove cartilage was linearly oscillated against glass under varying magnitudes of compressive strain utilizing phosphate buffered saline (PBS) and equine and bovine synovial fluid as lubricants. The time-dependent frictional properties were measured to determine the lubricant type and strain magnitude dependence for the initial friction coefficient (mu(0)=mu(t-->0)) and equilibrium friction coefficient (mu(eq)=mu(t-->infinity)). Parameters including tissue-glass co-planarity, normal strain, and surface speed were altered to determine the effect of the parameters on lubrication mode via a 'Stribeck surface'. Using this testing apparatus, cartilage exhibited biphasic lubrication with significant influence of strain magnitude on mu(0) and minimal influence on mu(eq), consistent with hydrostatic pressurization as reported by others. Lubrication analysis using 'Stribeck surfaces' demonstrated clear regions of boundary and mixed modes, but hydrodynamic or full film lubrication was not observed even at the highest speed (50mm/s) and lowest strain (5%).  相似文献   

17.
The purposes of this study were to determine the in situ functional and material properties of articular cartilage in an experimental model of joint injury, and to quantify the corresponding in situ joint contact mechanics. Experiments were performed in the anterior cruciate ligament (ACL) transected knee of the cat and the corresponding, intact contralateral knee, 16 weeks following intervention. Cartilage thickness, stiffness, effective Young’s modulus, and permeability were measured and derived from six locations of the knee. The total contact area and peak pressures in the patellofemoral joint were obtained in situ using Fuji Pressensor film, and comparisons between experimental and contralateral joint were made for corresponding loading conditions. Total joint contact area and peak pressure were increased and decreased significantly (=0.01), respectively, in the experimental compared to the contralateral joint. Articular cartilage thickness and stiffness were increased and decreased significantly (=0.01), respectively, in the experimental compared to the contralateral joint in the four femoral and patellar test locations. Articular cartilage material properties (effective Young’s modulus and permeability) were the same in the ACL-transected and intact joints. These results demonstrate for the first time the effect of changes in articular cartilage properties on the load transmission across a joint. They further demonstrate a substantial change in the joint contact mechanics within 16 weeks of ACL transection. The results were corroborated by theoretical analysis of the contact mechanics in the intact and ACL-transected knee using biphasic contact analysis and direct input of cartilage properties and joint surface geometry from the experimental animals. We conclude that the joint contact mechanics in the ACL-transected cat change within 16 weeks of experimental intervention.  相似文献   

18.
Collagen degradation is one of the early signs of osteoarthritis. It is not known how collagen degradation affects chondrocyte volume and morphology. Thus, the aim of this study was to investigate the effect of enzymatically induced collagen degradation on cell volume and shape changes in articular cartilage after a hypotonic challenge. Confocal laser scanning microscopy was used for imaging superficial zone chondrocytes in intact and degraded cartilage exposed to a hypotonic challenge. Fourier transform infrared microspectroscopy, polarized light microscopy, and mechanical testing were used to quantify differences in proteoglycan and collagen content, collagen orientation, and biomechanical properties, respectively, between the intact and degraded cartilage. Collagen content decreased and collagen orientation angle increased significantly (p < 0.05) in the superficial zone cartilage after collagenase treatment, and the instantaneous modulus of the samples was reduced significantly (p < 0.05). Normalized cell volume and height 20 min after the osmotic challenge (with respect to the original volume and height) were significantly (p < 0.001 and p < 0.01, respectively) larger in the intact compared to the degraded cartilage. These findings suggest that the mechanical environment of chondrocytes, specifically collagen content and orientation, affects cell volume and shape changes in the superficial zone articular cartilage when exposed to osmotic loading. This emphasizes the role of collagen in modulating cartilage mechanobiology in diseased tissue.  相似文献   

19.
20.
A hydrogel with potential applications in the role of a cushion form replacement joint bearing surface material has been investigated. The material properties are required for further development and design studies and have not previously been quantified. Creep indentation experiments were therefore performed on samples of the hydrogel. The biphasic model developed by Mow and co-workers (Mak et al., 1987; Mow et al., 1989a) was used to curve-fit the experimental data to theoretical solutions in order to extract the three intrinsic biphasic material properties of the hydrogel (aggregate modulus, HA, Poisson's ratio, Vs, and permeability, k). Ranges of material properties were determined: aggregate modulus was calculated to be between 18.4 and 27.5 MPa, Poisson's ratio 0.0-0.307, and permeability 0.012-7.27 x 10(-17) m4/Ns. The hydrogel thus had a higher aggregate modulus than values published for natural normal articular cartilage, the Poisson's ratios were similar to articular cartilage, and finally the hydrogel was found to be less permeable than articular cartilage. The determination of these values will facilitate further numerical analysis of the stress distribution in a cushion form replacement joint.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号