首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 This report presents a procedure for high-frequency multiple shoot production from cultured shoot apical meristems of pearl millet [Pennisetum glaucum (L.) R. Br.]. Shoot apices from 1-week-old aseptically germinated seedlings were cultured in vitro on MS medium containing various concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) and benzyladenine (BA) with biweekly subculture. A low concentration of 2,4-D coupled with four different concentrations of BA induced the production of adventitious shoots from the enlarged shoot apical meristems. Somatic embryogenesis was also observed at higher concentrations of BA. The use of higher levels of 2,4-D resulted in callusing of shoot apical meristems, while the shoot tips produced many leaves and in vitro flowering in 2,4-D-free media containing BA. All four pearl millet genotypes produced similar results. Fertile pearl millet plants were produced from in vitro-produced multiple shoots. Received: 1 April 1999 / Revision received: 8 July 1999 / Accepted: 17 August 1999  相似文献   

2.
Summary A protocol for high-frequency callus, somatic embryogenesis, and plant regeneration for Tripsacum is described. Plants were regenerated from complete shoot meristems (3–4 mm) via organogenesis and embryogenesis. In organogenesis, the shoot meristems were cultured directly on a high cytokinin medium comprising 5–10 mgl−1 (22.2–44.4 μM) 6-benzyladenine (BA). The number of multiple shoots varied from six to eight from each meristem. The time required for production of plants from organogenesis was rapid (4–6 wk). In contrast, callus was induced on an auxin medium and continuously cultured on an auxin medium for production of somatic embryos. Prolific callus with numerous somatic embryos developed within 3–4 wk when cultured on an auxin medium containing 5 mgl−1 (22.6μM), 2,4-dichlorophenoxyacetic acid (2,4-D). The number of shoots induced varied from two to five per callus. Regardless of the cultivars used, the frequency of callus induction and plant regeneration was between 48% and 94%. The seed germination procedures also were modified and resulted in a maximum of 60–80% seed germination. Finally, the rate of T-DNA transfer to complete shoot meristems of Tripsacum was high on the auxin medium and was independent of whether super-virulent strains of Agrobacterium were used or not.  相似文献   

3.
Summary Regeneration of several varieties of soybean [Glycine max (L.) Merrill] by somatic embryogenesis from cultured epicotyls and primary leaves has been demonstrated. Somatic embryogenesis was induced from epicotyls and primary leaves when cotyledon halves with the intact zygotic embryo axes were cultured on Murashige and Skoog (MS) medium supplemented with 10 mg 1−1 (45.2 μM) 2,4-D. Stable, continuously proliferating globular embryo cultures (GEC) were established from small groups of somatic embryos on MS medium supplemented with 20 mg 1−1 (90.5 μM) 2,4-dichlorophenoxyacetic acid (2,4-D). Rapid multiplication of shoot tips from germinating somatic embryos was achieved on Cheng’s basal medium (CBO) containing 2.5 mg 1−1 (11.3 μM) 6-benzyladenine. Fertile plants were obtained from individual somatic embryos and in vitro propagated adventitious shoot bud cultures.  相似文献   

4.
Summary Axillary and terminal buds from suckers of Ananas comosus cv. Phuket were established on Murashige and Tucker-based (MT) medium with 2.0 mgl−1 (9.8 μM) indolebutyric acid, 2.0 mgl−1 (10.74 μM) naphthaleneacetic acid, and 2.0 mgl−1 (9.29 μM) kinetin, followed by multiplication on Murashige and Skoog-based (MS) medium containing 2.0 mgl−1 (8.87 μM) benzyladenine (BA) to provide a continuous supply of axenic shoots. Leaves, excised from such cultured shoots, produced adventitious shoots from their bases when these explants were cultured on MS medium containing 0.5 mgl−1 (2.26 μM) 2,4-dichlorophenoxyacetic acid (2,4-D) and 2.0 mgl−1 (8.87 μM) BA. Embryogenic callus was produced when leaf explants were cultured on MS medium with 3.0 mgl−1 (12.42 μM) 4-amino-3,5,6-trichloropicolinic acid (picloram). Somatic embryos developed into shoots following transfer of embryogenic tissues to MS medium with 1.0 mgl−1 (4.44 μM) BA. Cell suspensions, initiated by transfer of embryogenic callus to liquid MS medium with 1.0 mgl−1 (4.14 μM) picloram or 1.0 mgl−1 (4.52 μM) 2,4-D, also regenerated shoots by somatic embryogenesis, on transfer of cells to semisolid MS medium with 1.0 mgl−1 (4.44 μM) BA. All regenerated shoots rooted on growth regulator-free MS medium, prior to ex vitro acclimation and transfer to the glasshouse. These studies provide a baseline for propagation, conservation, and genetic manipulation of elite pineapple germplasms.  相似文献   

5.
Summary Somatic embryo (bipolar) or shoot (monopolar) morphogenesis in mesophyll cells of Euphorbia nivulia Buch.-Ham in vitro was dependent on the type of auxin supplementing Murashige and Skoog (MS) medium containing benzyladenine. Direct in vitro morphogenesis, i.e., organogenesis, and somatic embryogenesis were significantly influenced by seasonal growth of the donor plant, explant position (proximal, mid, and distal), and light. Explants collected in march/April were superior to July/August material. Proximal explants underwent morphogenesis more readily than mid- and tip-derived explants. Incubation in the light favored morphogenesis while darkness was inhibitory. Kinetin (Kn) was also inhibitory to morphogenesis. MS medium enriched with different levels of N6-benzyladenine (BA) alone, or in combination with α-naphthaleneacetic acid (NAA) or indole-3-acetic acid (IAA), induced adventitious shoots directly. Explants collected in March/April cultured on medium with 13.3 μM BA and 2.69 μM NAA developed the highest number of shoots, a mean of 15.2 shoots per proximal explant. Developed shoots rooted the best on half-strength MS medium with 2.46 μM indole-3-butyric acid, which developed a mean of 5.2 roots per shoot. Rooted healthy shoots could be transplanted to small pots, with an 80% survival rate. Addition of 2,4-dichlorophenoxyacetic acid (2.4-D) to BA-supplemented medium was obligatory to develop somatic embryos. MS medium containing 2.26 μM 2,4-D and 4.44 μM BA induced a mean of 44.8 somatic embryos per proximal explant. The embryos passed through distinct stages of embryogenesis, namely globular, heart, torpedo, and early cotyledonary. The embryos (88%) underwent maturation on half-strength MS medium with 2.89 μM gibberellic acid (GA3), and its subsequent transfer on half-strength MS basal medium in light conditions facilitated 80% conversion of embryos to plantlets. Direct shoots or embryos were originated from the mesophyll cells. Somatic embryo development was concurrent with the independent origin of vasculature in the bulbous basal portion. The survival rate of embryo-derived plants was 90%.  相似文献   

6.
Summary An efficient and reproduciblein vitro culture system has been developed for regeneration of multiple shoot clumps from intact seedlings of both lowland and upland cultivars of switchgrass (Panicum virgatum L.). The multiple shoots were induced on Murashige and Skoog medium supplemented with various combinations of 2,4-dichlorophenoxyacetic acid (2,4-D) and 1-phenyl-3-(1,2,3-thiadiazol-5YL)-urea (thidiazuron or TDZ). Maximum response was obtained with 4.5 μM 2,4-D and 18.2 μM TDZ. These shoots proliferated and rooted efficiently on MS medium without growth regulators. The developmental pattern of the multiple shoots indicated their origin from the enlarged shoot apex via proliferation of axillary buds and subsequent reprogramming of shoot meristems followed by secondary differentiation of adventitious shoots The simplicity of the protocol and direct production of multiple shoots make this a potential system that is highly attractive and amenable for microprojectile-mediated gene transfer.  相似文献   

7.
W. Tang 《Plant cell reports》2000,19(7):727-732
 The morphogenesis ability of light yellowish globular callus derived from cotyledons of mature zygotic embryos of Panax ginseng was investigated. The optimal media for somatic embryogenesis and shoot organogenesis were MS medium containing 0.5 mg l–1 2,4-dichlorophenoxyacetic acid, 0.1 mg l–1 6-benzyladenine (BA), and 500 mg l–1 lactoalbumin hydrolysate, and SH medium supplemented with 0.5 mg l–1 α-naphthaleneacetic acid, 0.1 mg l–1 BA, and 500 mg l–1casein hydrolysate. The influences of glucose, mannose, fructose, and sorbose in the media on somatic embryogenesis and shoot organogenesis were revealed as differences in the numbers of somatic embryos and adventitious shoots per gram of morphogenic callus. The best regeneration of somatic embryos was obtained on medium containing glucose, with a mean of 8.7 somatic embryos per gram of callus. The best regeneration of shoots was observed on medium containing fructose, with an average of 12.2 adventitious shoots per gram of callus. Of the somatic embryos 95% were converted into regenerated plantlets, and 100% of adventitious shoots rooted to form regenerated plantlets. Regenerated plants were successfully established in soil. Flowering was observed in 5.7% of the regenerated plants derived from shoot organogenesis and in 1.4% of the regenerated plants derived from somatic embryogenesis. Received: 1 December 1998 / Revision received: 13 September 1999 / Accepted: 20 September 1999  相似文献   

8.
In vitro morphogenesis of Cucumis melo var. inodorus   总被引:2,自引:0,他引:2  
In vitro morphogenesis of C. melo L. var. inodorus was studied by the induction of adventitious buds and somatic embryos. Organogenesis was obtained from cotyledon segments and leaf discs in culture medium supplemented with benzylaminopurine (1 mg l−1) and somatic embryogenesis was induced in medium containing 2,4-dichlorophenoxyacetic acid (5 mg l−1) + thidiazuron (1 mg l−1). Through histological analysis it was possible to verify that in cotyledonary explants, protuberances that do not develop into well-formed shoot buds and leaf primordia are more frequently formed than complete shoot buds, resulting in a low frequency of plant recovery in the organogenic process. A high percentage of explants responded with the formation of somatic embryos; the microscopical analysis showed that the somatic embryos lacking well developed apical meristems had a low conversion rate into plants. Plant recovery was not obtained from leaf-disc explants, with high rates of contamination and formation of protuberances which did not develop into shoot buds. Histological sections showed the development of epidermis and leaf hairs, indicating those structures could be leaf primordia; however, these were not associated with a shoot apical meristem. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Summary Adventive organogenesis and somatic embryogenesis were induced from leaf explants taken from in vitro or in vivo plants of Codiaeum variegatum cv. “Corazón de Oro.” Shoot multiplication occurred with N6-benzyladenine (BA) alone, where the simultaneous production of adventitious buds and somatic embryos occurred at the fourth subculture, and on leaves not in contact with the medium. A medium with BA and 2,4 dichlorophenoxy acetic acid (2,4-D) produced the largest organogenic response, for both in vivo- and in vitro-produced explants. Somatic embryogenesis was only induced when such explants were transferred to a medium lacking 2,4-D. Thus, a medium with BA only produced the largest percentage of explants with shoots and embryos. Replacing BA with thidiazuron induced up to 100% bud regeneration on in vitro-produced explants by 60 d, but was slower for in vitro-grown explants. Both types of embryos exhibited growth arrest that was partially overcome by transfer to hormone-free basal medium with activated charcoal. Rooted plants from all explants were successfully obtained on a medium with indole-butyric acid (IBA).  相似文献   

10.
Summary High-frequency embryogenesis systems were established for hybrid yellow-poplar (Liriodendron tulipifera×L. chinense) and hybrid sweetgum (Liquidambar styraciflua×L. formosana) by modifying a medium originally developed for embryogenic yellow-poplar cultures. Embryogenic cultures of both hybrids, consisting of proembryogenic masses (PEMs), were initiated from immature hybrid seeds on an induction-maintenance medium (IMM) supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D), benzyladenine (BA), and casein hydrolyzate (CH). For hybrid yellow-poplar, as many as 2100 germinable somatic embryos per 4000 cells or cell clumps were produced when PEMs were grown in liquid IMM lacking CH, at a pH that varied with genotype (3.5 or 5.6), followed by size fractionation and plating on semisolid embryo development medium (DM; IMM lacking 2,4-D and BA) without CH, but supplemented with 4.0 mgl−1 (15 μM) abscisic acid. For hybrid sweetgum, up to 1650 germinable somatic embryos per 4000 cells or cell clumps were produced when PEMs were grown in liquid IMM without CH, but with 550 mgl−1 l-glutamine, 510 mg l−1 asparagine, and 170 mg l−1 arginine at pH 5.6. Somatic embryos developed from cell clumps on DM without any plant growth regulators or other supplements. Hundreds of somatic embryos of both hybrids were germinated on DM without CH, transferred to potting mix, and hardened off in a humidifying chamber for transfer to the greenhouse.  相似文献   

11.
Summary Establishment of fast-growing, highly regenerable callus cultures was examined in Muscari armeniacum Leichtl. ex Bak. in order to develop an efficient genetic transformation system. High-frequency callus formation was obtained from leaf explants of cv. Blue Pearl on media containing 2,4-dichlorophenoxyacetic acid (2,4-D), α-naphthaleneacetic acid (NAA) or 4-amino-3,5,6-trichloropicolinic acid (picloram, PIC). Fast-growing, yellowish nodular callus lines and white friable callus lines containing a few somatic embryos were established on initiation medium supplemented with 4.5 μM 2,4-D and with 54 μM NAA, respectively. The yellowish nodular calluses vigorously produced shoot buds after transfer to media containing 0.44–44 μM 6-benzyladenine (BA), whereas the white friable calluses produced numerous somatic embryos upon transfer to plant growth regulator-free (PGR-F) medium. Histological observation of shoot buds and somatic embryos indicated that the former consisted of an apparent shoot meristem and several leaf primordia, and the latter had two distinct meristematic regions, corresponding to shoot and root meristems. Both shoot buds and somatic embryos developed into complete plantlets on PGR-F medium. Regenerated plants showed no observable morphological alterations. High proliferation and regeneration ability of these calluses, were maintained for over 2 yr.  相似文献   

12.
Summary A method for adventitious shoot induction from petiole explants of Heracleum candicans is reported. Shoot buds were induced on Murashige and Skoog (MS) medium with 4.4μM 6-benzylaminopurine (BA) and 1.1 μM 2,4-dichlorophen-oxyacetic acid (2,4-D). A wound response in the presence of BA and 2,4-D at the time of culture was necessary for inducing shoot buds. The shoot bud regeneration was significantly influenced by size, type and orientation of explants on the culture medium. These shoot buds developed into 4–5 cm shoots upon transfer to a medium containing 1.1μM BA and 0.5 μM α-naphthaleneacetic acid (NAA). The regenerated shoots formed rooted plantlets on MS medium supplemented with 4.9 μM indole-3-butyric acid (IBA). About 15 plants were established in the field for further evaluation.  相似文献   

13.
An efficient in vitro plant regeneration protocol through somatic embryogenesis and direct shoot organogenesis has been developed for pearl millet (Pennisetum glaucum). Efficient plant regeneration is a prerequisite for a complete genetic transformation protocol. Shoot tips, immature inflorescences, and seeds of two genotypes (843B and 7042-DMR) of pearl millet formed callus when cultured on Murashige and Skoog (MS) medium supplemented with varying levels of 2,4-dichlorophenoxyacetic acid (2,4-D; 4.5, 9, 13.5, and 18 μM). The level of 2,4-D, the type of explant, and the genotype significantly effected callus induction. Calli from each of the three explant types developed somatic embryos on MS medium containing 2.22 μM 6-benzyladenine (BA) and either 1.13, 2.25, or 4.5 μM of 2,4-D. Somatic embryos developed from all three explants and generated shoots on MS medium containing high levels of BA (4.4, 8.8, or 13.2 μM) combined with 0.56 μM 2,4-D. The calli from the immature inflorescences exhibited the highest percentage of somatic embryogenesis and shoot regeneration. Moreover, these calli yielded the maximum number of differentiated shoots per callus. An efficient and direct shoot organogenesis protocol, without a visible, intervening callus stage, was successfully developed from shoot tip explants of both genotypes of pearl millet. Multiple shoots were induced on MS medium containing either BA or kinetin (4.4, 8.8, 17.6, or 26.4 μM). The number of shoots formed per shoot tip was significantly influenced by the level of cytokinin (BA/kinetin) and genotype. Maximum rooting was induced in 1/2 strength MS with 0.8% activated charcoal. The regenerated plants were transferred to soil in pots, where they exhibited normal growth.  相似文献   

14.
Summary The types of auxin in Murashige and Skoog (MS) medium containing N 6-benzyladenine (BA) determined indirect morphogenesis, i.e. development to bipolar somatic embryos or monopolar shoots in Euphorbia nivulia Buch.-Ham. Indirect in vitro morphogenesis depended on growth regulators, explant excision period, and light. Calli induced from explants collected in March–April were superior in the induction of indirect morphogenesis to those collected in July–August. Light enforced in vitro morphogenesis, while darkness was inhibitory. The presence of kinetin in the medium also inhibited morphogenesis. Calli developed on explants collected in March–April grown on MS medium fortified with α-naphthaleneacetic acid (NAA) and BA facilitated indirect organogenesis, while those developed on medium containing 2,4-dichlorophenoxyacetic acid (2,4-D) and BA underwent somatic embryogenesis. MS medium with 13.3 μM BA and 2.69 μM NAA was the best for induction of shoots from callus, which developed a mean of 15.7 shoots. Shoots were best rooted on half-strength MS medium enriched with 2.46 μM indole-3-butyric acid with a mean of 5.1 roots per shoot. MS medium supplemented with 2.26 μM 2,4-D and 4.44 μM BA induced the highest number (mean of 13.4) of somatic embryos. Of the embryos transferred on half-strength MS medium containing 2.89 μM gibberellic acid, 78% of embryos developed to the cotyledonary stage. Most cotyledonary embryos (80%) underwent conversion to plantlets upon being transferred to half-strength MS basal medium in light. The survival rate of organogenesis and embryo-derived plants was 80 and 90%, respectively. Calli transformed with Agrobacterium tumefaciens showed expression of the gusA transgene and resistance to kanamycin, but did not undergo morphogenesis.  相似文献   

15.
Somatic embryogenesis and plant regeneration were successfully established on Nitsch and Nitsch (NN) medium from immature zygotic embryos of six genotypes of grapevine (Vitis vinifera). The optimum hormone combinations were 1.0 mg dm−3 2,4-dichlorophenoxyacetic acid (2,4-D) for callus induction and 1.0 mg dm−3 α-naphthalene acetic acid (NAA) + 0.5 mg dm−3 6-benzyladenine (BA) for embryos production and 0.03 mg dm−3 NAA + 0.5 mg dm−3 BA for embryos conversion and plant regeneration. The frequency of somatic embryogenesis varied from 10.5 to 37.5 % among six genotypes and 15.5–42.1 % of somatic embryos converted into normal plantlets. The analysis of DNA content determined by flow cytometry and chromosome counting of the regenerated plantlets clearly indicated that no ploidy changes were induced during somatic embryogenesis and plant regeneration, the nuclear DNA content and ploidy levels of the regenerated plants were stable and homogeneous to those of the donor plants. RAPD markers were also used to evaluate the genetic fidelity of plants regenerated from somatic embryos. All RAPD profiles from regenerated plants were monomorphic and similar to those of the field grown donor plants. We conclude that somaclonal variation is almost absent in our grapevine plant regeneration system.  相似文献   

16.
Summary Callus induction was observed from hypocotyl, root, and cotyledonary leaf segments, grown on Murashige and Skoog (MS) medium supplemented with various concentrations and combinations of 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin (KN). Maximum callusing (100%) was obtained from root and cotyledonary leaf segments grown on MS medium supplemented with a combination of 2 mg l−1 (9.1 μM) 2,4-D and 0.2 mg l−1 (0.9 μM) KN. The calluses, when subcultured in the same medium, showed profuse callusing. However, these calluses remained recalcitrant to regenerate regardless of the quality and combinations of plant growth regulators in the nutrient pool. When hypocotyl segments were used as explants, callus induction was noticed in 91% of cultures which showed shoot regeneration on MS medium supplemented with 2 mg l−1 2,4-D and 0.2 mg l−1 KN. These shoots were transferred to fresh medium containing various concentrations and combinations of 6-benzyladenine (BA) and N6-(2-isopentenyl)adenosine (2-iP). Maximum shoot multiplication was observed after 60 d of the second subculture on MS medium containing 2 mg l−1 (8.9 μM) BA. These shoots were rooted best (87%) on MS medium containing 2 mg l−1 (9.9 μM) indole-3-butyric acid (IBA). The plantlets were transferred to the field after acclimatization and showed 60% survival.  相似文献   

17.
Burma reed (Neyraudia arundinacea Henr.) is a C4 grass native to Southeast Asia and Indomalaya that grows quickly, exhibits strong resistance to environmental stresses, and is extremely adaptable. It can be widely utilized as a bioenergy crop for biomass conversion. In vitro multiple shoots were first established from axillary buds and then subcultured on propagation medium containing 10 μM 6-benzylaminopurine (BA) and 2.0 μM naphthaleneacetic acid (NAA). Multishoot clumps were used as explants to induce somatic embryogenesis and adventitious shoot formation. The results showed that auxin 2,4-dichlorophenoxyacetic acid or NAA play a key role for the induction of somatic embryogenesis and adventitious shoot formation, whereas cytokinin BA or kineatin enhance shoot proliferation and plant regeneration from callus and somatic embryos. Efficient somatic embryogenesis, mass propagation, and plant regeneration systems in Burma reed were established.  相似文献   

18.
Summary The purpose of this study was to developin vitro techniques for conserving wild and endemic species ofCeropegia by mass multiplication for subsequent reintroduction in their natural habitat. Micropropagation involving a combination of axillary bud culture, shoot multiplication, somatic embryogenesis andin vitro tuber formation forCeropegia jainii, a rare plant of the Indian sub continent,C. bulbosa var.bulbosa andC. bulbosa var.lushii, common species, was developed. Nodal explants from all species were cultured on 0.5 MS medium with 8.8 μM (2 mg·l−1) N6-benzyl aminopurine (BA) to regenerate the axillary buds. These produced multiple shoots when transferred to multiplication medium consisting of 0.5 MS medium with 2.2 μM (0.5 mg·l−1) BA, or microtubers when transferred to 0.5 MS medium with 22.2 μM (5 mg·l−1) BA and 23.2 μM (5 mg·l−1) kinetin.In vitro flowering occurred inC. jainii and not in the other two varieties when the plants were cultured on multiplication media with spermine at 0.25 μM (50 μg·l−1) as an additive. Shoot pieces produced callus on MS medium with 9.05 μM (2 mg·l−1) 2,4-dichlorophenoxy acetic acid. Regeneration of the calli by somatic embryogenesis was achieved when they were transferred to 0.5 MS medium with 2.2 μM (0.5 mg·l−1) BA. Rooting of the shoots was possible both byin vitro andex vitro means.  相似文献   

19.
Summary An efficient and reproducible procedure for the large-scale propagation of Pseudoxytenanthera stocksii is described. High-frequency multiple shoot induction was achieved from nodal shoot segments collected from superior/elite genotypes on Murashige and Skoog (MS) liquid medium supplemented with 1-naphthaleneacetic acid (NAA; 2.68 μM) and 6-benzylaminopurine (BA; 4.40 μM) at 28±1°C and 60 μmol m−2 s−1 light intensity under 12h photoperiod. In vitro-differentiated shoots were multiplied on MS liquid medium fortified with NAA (2.68 μM), BA (2.21 μM) and additives: ascorbic acid (283.93 μM), citric acid (118.10 μM), cysteine (104.04 μM), and glutamine (342.24 μM). Subculturing was carried out every 2wk on fresh shoot multiplication medium. About 125–150 shoots per culture flask were harvested within 45–50d. In vitro-differentiated shoot clumps (three or four shoots) were successfully rooted on half-strength MS basal liquid medium with indole-3-butyric acid (4.90 μM), BA (0.44 μM), and additives. This is the first report where in vitro- and in vivo-(through tillers) raised clonal plants were acclimatized and established in the field, where they exhibited normal growth.  相似文献   

20.
Summary Culture media, environmental and genotypic factors affecting regeneration from multi-shoot cultures derived from corn seedling apical explants were investigated. The frequency of shoot regeneration was highes for seedlings that were 4–5 cm in length. Flow cytometry was used to show that the most responsive culturs contained a high proportion of cells in the G1 phase. Proline in the multi-shoot induction medium (MSI) significantly increased the shoot induction frequency. Continuous low light (30–40 μEm−2s−1) stimulated multi-shoot induction. The highest number of multi-shoots developed in medium containing 4 gl−1 proline, 2 mgl−1 (8.8 μM) 6-benzylaminopurine (BA), and 1 mgl−1 (4.5 μM) 2,4-dichlorophenoxyacetic acid (2,4-D). Multi-shoots were induced in this culture system from 44 of 45 corn genotypes and approximately 70% of the genotypes exhibited a high to moderate response (greater than 20 shoots per explant in 4 wk of culture). This culture procedure is an efficient and widely applicable method for corn regeneration that may be a useful target for transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号