首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The gecko Oedura marmorata was studied in two different climatic zones: the arid zone of central Australia and in the wet-dry tropics of northern Australia. Doubly labelled water was used to measure field metabolic rate (FMR) and water flux rates of animals in the field during the temperate seasons of spring, summer and winter, and during the tropical wet and dry seasons. FMRs were highest in the tropical wet season and lowest in the temperate winter. The geckos in central Australia expended less energy than predicted for a similarly sized iguanid lizard, but geckos from the tropics expended about the same amount of energy as predicted for an iguanid. Water flux rates of geckos from the arid zone were extremely low in all seasons compared to other reptiles, and although water flux was higher in tropical geckos, the rates were low compared to other tropical reptiles. The standard metabolic rates (SMRs) of geckos were similar between the two regions and among the seasons. Geckos selected higher body temperatures (T bs) in a laboratory thermal gradient in the summer (33.5°C) and wet (33.8°C) seasons compared to the winter (31.7°C) and dry (31.4°C) seasons. The mean T bs selected in the laboratory thermal gradient by geckos from the two regions were not different at a given time of year. The energy expended during each season was partitioned into components of resting metabolism, T b and activity. Most of the energy expended by geckos from central Australia could be attributed to the effects of temperature on resting lizards in all three seasons, but the energy expended by tropical geckos includes a substantial component due to activity during both seasons. This study revealed variability in patterns of ecological energetics between populations of closely related geckos, differences which cannot be entirely attributed to seasonal or temperature effects. Received: 14 November 1997 / Accepted: 4 May 1998  相似文献   

2.
The resting metabolic rate of the fan-fingered gecko Ptyodactylus hasselquistii of various body masses was determined in relation to ambient temperatures ranging from 20 to 35°C during winter and summer acclimatization. Oxygen consumption (ml g−1 h−1) decreased with increasing mass at each temperature. The intraspecific exponents of body mass in relation to metabolic rate ranged from 0.62 to 0.79. Winter-acclimatized geckos had significantly lower metabolic rates than summer-acclimatized geckos at different temperatures, especially at low temperature (20°C). The pattern of acclimatization exhibited by P. hasselquistii may conserve energy during inactivity in winter and make activity more easily achieved during active seasons.  相似文献   

3.
Despite its tropical origin, the Asian house gecko (Hemidactylus frenatus) is currently invading higher latitudes around the world. In this study, we investigated whether the introduced geckos in the subtropical/temperate region of southeastern Australia have shifted their thermal biology to cope with colder temperatures. In the lab, we measured the body temperatures of geckos from Thailand and Australia in a cost-free thermal gradient. Native H. frenatus from Thailand displayed a diel pattern of thermoregulation. Geckos maintained higher body temperatures during mid-afternoon and at dusk but selected cooler temperatures during the night. Introduced geckos showed a similar pattern of thermoregulation, but selected lower body temperatures in summer (mean = 28.9 °C) and winter (mean = 25.5 °C) than native geckos (mean = 31.5 °C). While the Asian house geckos from Thailand did not alter their body temperatures after feeding, their conspecifics from southeastern Australia selected body temperatures that were 1.6–3.1 °C higher after feeding. In conclusion, our study shows that invasive house geckos in Australia have shifted their preferred body temperatures downwards relative to their native conspecifics in Thailand, presumably as a result of plasticity or natural selection. Our findings suggest that these tropical geckos have adapted to colder regions, and thus, they may spread much further than expected for a tropical ectotherm.  相似文献   

4.
The year-round thermal habitat at sea for adult Atlantic salmon Salmo salar (n = 49) from northern Norway was investigated using archival tags over a 10 year study period. During their ocean feeding migration, the fish spent 90% of the time in waters with temperatures from 1.6–8.4°C. Daily mean temperatures ranged from −0.5 to 12.9°C, with daily temperature variation up to 9.6°C. Fish experienced the coldest water during winter (November–March) and the greatest thermal range during the first summer at sea (July–August). Trends in sea-surface temperatures influenced the thermal habitat of salmon during late summer and autumn (August–October), with fish experiencing warmer temperatures in warmer years. This pattern was absent during winter (November–March), when daily mean temperatures ranged from 3.4–5.0°C, in both colder and warmer years. The observations of a constant thermal habitat during winter in both warmer and colder years, may suggest that the ocean distribution of salmon is flexible and that individual migration routes could shift as a response to spatiotemporal alterations of favourable prey fields and ocean temperatures.  相似文献   

5.
Physiological properties of the temperate hermatypic coral Acropora pruinosa Brook with symbiotic algae (zooxanthellae) on the southern coast of the Izu Peninsula, Shizuoka Prefecture, central Japan, were compared between summer and winter. Photosynthesis and respiration rates of the coral with symbiotic zooxanthellae were measured in summer and winter under controlled temperatures and irradiances with a differential gasvolumeter (Productmeter). Net photosynthetic rate under all irradiances was higher in winter than in summer at the lower range of temperature (12–20°C), while lower than in summer at the higher range of temperature (20–30°C). The optimum temperature for net photosynthesis was apt to fall with the decrease of irradiance both in summer and winter, whereas it was higher in summer than in winter under each irradiance. At 25/ 50/100 μmol photons nr2 s?1, it was nearly the sea‐water temperature in each season. Dark respiration rate was higher in winter than in summer, especially in the range from 20–30°C. In both seasons the optimum temperature for gross photosynthesis was 28°C under 400 μmol photons nr2 s?1 and lowered with decreasing irradiance up to 22°C under 25 μmol photons nr2 s?1 in summer, while 20°C under the same irradiance in winter. The optimum temperature for production/respiration (P/R) ratio was higher in summer than in winter under each irradiance. Results indicated that metabolism of coral and zooxanthellae is adapted to ambient temperature condition under nearly natural irradiance in each season.  相似文献   

6.
The balance between energetic acquisition and expenditure depends on the amount of energy allocated to biological functions such as thermoregulation, growth, reproduction and behavior. Ambient temperature has a profound effect on this balance, with species inhabiting colder climates often needing to invest more energy in thermoregulation to maintain body temperature. This leads to local behavioral and physiological adaptations that increase energetic efficiency. In this study, we investigated the role of activity, behavior and thermogenic capacity in the ability of the greater white-toothed shrew, Crocidura russula, to cope with seasonal changes. Individuals were captured in the Sintra-Cascais Natural Park, a Mediterranean region, and separated into three experimental groups: a control group, acclimated to a 12L:12D photoperiod and temperature of 18–20 °C; a winter group, acclimatized to natural winter fluctuations of light and temperature; and a summer group, acclimatized to natural summer fluctuations of light and temperature. No differences were found in resting metabolic rate and nonshivering thermogenesis between the three groups. However, winter shrews significantly reduced their activity, particularly at night, compared to the control and summer groups. Differences in torpor use were also found between groups, with winter shrews entering torpor more frequently and during shorter periods of time than summer and control shrews. Our results indicate C. russula from Sintra relies on the flexibility of energy saving mechanisms, namely daily activity level and torpor use, to cope with seasonal changes in a Mediterranean climate, rather than mechanisms involving body heat production.  相似文献   

7.
Abstract

The autecology of the Sardinian endemics Aquilegia barbaricina Arrigoni et Nardi and A. nugorensis Arrigoni et Nardi were investigated. Peaks of anthesis and seed dispersal were recorded for five populations occurring in two distinct habitats, one riparian and one rupicolous. Germination tests were carried out on seed lots belonging to each population by sowing seeds at 10, 15, 20, 25 and 25/15°C. In addition, seeds were incubated for 2 months at either 25°C (summer), 5°C (winter) or 25°C for 2 months plus 2 months at 5°C (summer followed by winter–SW), and then moved to the germination temperatures. Embryo measurements were taken during pre-treatments and germination. Experimental seed burials were carried out for two populations of each species. Both species dispersed in summer. The population of A. nugorensis occurring on rocky outcrops differed in phenology from both the other A. nugorensis population from riparian vegetation and from A. barbaricina. Both species showed morphophysiological seed dormancy, with <50% germination under laboratory conditions. All riparian populations germinated only after the SW pre-treatment, while the rupicolous population germinated at 25°C, without any pre-treatment. Low germination percentages were observed in the experimental seed burials, suggesting the ability for both species to form a persistent soil seed bank.  相似文献   

8.
The narwhal (Monodon monoceros) is a high‐Arctic species inhabiting areas that are experiencing increases in sea temperatures, which together with reduction in sea ice are expected to modify the niches of several Arctic marine apex predators. The Scoresby Sound fjord complex in East Greenland is the summer residence for an isolated population of narwhals. The movements of 12 whales instrumented with Fastloc‐GPS transmitters were studied during summer in Scoresby Sound and at their offshore winter ground in 2017–2019. An additional four narwhals provided detailed hydrographic profiles on both summer and winter grounds. Data on diving of the whales were obtained from 20 satellite‐linked time‐depth recorders and 16 Acousonde? recorders that also provided information on the temperature and depth of buzzes. In summer, the foraging whales targeted depths between 300 and 850 m where the preferred areas visited by the whales had temperatures ranging between 0.6 and 1.5°C (mean = 1.1°C, SD = 0.22). The highest probability of buzzing activity during summer was at a temperature of 0.7°C and at depths > 300 m. The whales targeted similar depths at their offshore winter ground where the temperature was slightly higher (range: 0.7–1.7°C, mean = 1.3°C, SD = 0.29). Both the probability of buzzing events and the spatial distribution of the whales in both seasons demonstrated a preferential selection of cold water. This was particularly pronounced in winter where cold coastal water was selected and warm Atlantic water farther offshore was avoided. It is unknown if the small temperature niche of whales while feeding is because prey is concentrated at these temperature gradients and is easier to capture at low temperatures, or because there are limitations in the thermoregulation of the whales. In any case, the small niche requirements together with their strong site fidelity emphasize the sensitivity of narwhals to changes in the thermal characteristics of their habitats.  相似文献   

9.
The supratidal amphipod Talorchestia longicornis Say has a circadian rhythm in activity, in which it is active on the substrate surface at night and inactive in burrows during the day. The present study determined: (1) the circadian rhythms in individual versus groups of amphipods; (2) the range of temperature cycles that entrain the circadian rhythm; (3) entrainment by high-temperature cycles versus light?:?dark cycles, and (4) seasonal substrate temperature cycles. The circadian rhythm was determined by monitoring temporal changes in surface activity using a video system. Individual and groups of amphipods have similar circadian rhythms. Entrainment occurred only to temperature cycles that included temperatures below 20°C (10–20, 15–20, 17–19, 15–25°C) but not to temperatures above 20°C (20–25, 20–30°C), and required only a 2°C temperature cycle (17–19°C). Diel substrate temperatures were above 20°C in the summer and below 20°C during the winter. Upon simultaneous exposure to a diel high-temperature cycle (20–30°C) and a light?:?dark cycle phased differently, amphipods entrained to the light?:?dark cycle. Past studies found that a temperature cycle below 20°C overrode the light?:?dark cycle for entrainment. The functional significance of this change in entrainment cues may be that while buried during the winter, the activity rhythm remains in phase with the day?:?night cycle by the substrate temperature cycles. During the summer, T. longicornis switches to the light?:?dark cycle for entrainment, perhaps as a mechanism to phase activity precisely to the short summer nights.  相似文献   

10.
Climate change projections indicate more frequent and severe tropical marine heatwaves (MHWs) and accompanying hypoxia year-round. However, most studies have focused on peak summer conditions under the assumption that annual maximum temperatures will induce the greatest physiological consequences. This study challenges this idea by characterizing seasonal MHWs (i.e., mean, maximum, and cumulative intensities, durations, heating rates, and mean annual occurrence) and comparing metabolic traits (i.e., standard metabolic rate (SMR), Q10 of SMR, maximum metabolic rate (MMR), aerobic scope, and critical oxygen tension (Pcrit)) of winter- and summer-acclimatized convict tang (Acanthurus triostegus) to the combined effects of MHWs and hypoxia. Fish were exposed to one of six MHW treatments with seasonally varying maximum intensities (winter: 24.5, 26.5, 28.5°C; summer: 28.5, 30.5, 32.5°C), representing past and future MHWs under IPCC projections (i.e., +0, +2, +4°C). Surprisingly, MHW characteristics did not significantly differ between seasons, yet SMR was more sensitive to winter MHWs (mean Q10 = 2.92) than summer MHWs (mean Q10 = 1.81), despite higher absolute summer temperatures. Concurrently, MMR increased similarly among winter +2 and +4°C treatments (i.e., 26.5, 28.5°C) and all summer MHW treatments, suggesting a ceiling for maximal MMR increase. Aerobic scope did not significantly differ between seasons nor among MHW treatments. While mean Pcrit did not significantly vary between seasons, warming of +4°C during winter (i.e., 28.5°C) significantly increased Pcrit relative to the winter control group. Contrary to the idea of increased sensitivity to MHWs during the warmest time of year, our results reveal heightened sensitivity to the deleterious effects of winter MHWs, and that seasonal acclimatization to warmer summer conditions may bolster metabolic resilience to warming and hypoxia. Consequently, physiological sensitivity to MHWs and hypoxia may extend across larger parts of the year than previously expected, emphasizing the importance of evaluating climate change impacts during cooler seasons when essential fitness-related traits such as reproduction occur in many species.  相似文献   

11.
Summary

In the southeast of Buenos Aires Province (Argentina), slugs cause reductions in crop yield by killing seeds and seedlings, by destroying stems and growing points, and by reducing leaf area. Deroceras reticulatum (Müller, 1774) was introduced into Argentina a long time ago, but the biology and ecology of this species in this country are still unknown. The aim of this study was to determine how temperature affects growth rate, reproduction and survival of D. reticulatum and also to assess the seasonal phenology of this species. The life cycle of D. reticulatum was investigated at 12°C, 20°C and at a temperature which alternated between 12°C for 16 h and 20°C for 8 h. The light/dark regime during the experiment was LD: 8/16 h. Slug populations were sampled from grassland located at the Experimental Station of INTA Balcarce. Eggs hatched after 16.3 to 39.8 days and fertility varied between 83.9% and 91.1%. The mean time from hatching to oviposition was longer and fecundity lower at 20°C than 12°C and 12/20°C (p <0.05). The net reproductive rate was 1.49 to 70.53 and the mean generation time varied between the 27 and 30 weeks. In natural conditions, eggs of D. reticulatum were found from early winter until the end of the spring, when soil temperature was 8–15°C and humidity was above 15%. These results indicate that D. reticulatum has one generation per year, univoltine phenology, with peak densities of slugs from the beginning of winter to the end of spring, which coincides with the sowing and emergence of winter and summer crops.  相似文献   

12.
Abstract. To understand overwintering of the cotton boll worm Helicoverpa armigera, cold hardiness and sugar content are compared between diapausing and nondiapausing pupae. Diapausing and nondiapausing pupae reared at 20 °C under short and long photoperiods are acclimatized with a reduction of 5 °C per 5 days to 0 °C. When the acclimation temperature reaches 0 °C, the survival of diapausing pupae is assessed. The survival gradually decreases as the period of treatment progresses and approximately half survive for 112 days. However, nondiapausing pupae survive only 14 days after exposure to 0 °C. The surpercooling points of nondiapausing, diapausing and acclimatized pupae are approximately −17 °C. The major sugars contained in pupae are trehalose and glucose. Even though trehalose contents in diapausing pupae (initial level: 0.6 mg 100 mg−1 fresh weight) increase significantly during cold acclimation and continue increasing until 58 days after exposure to 0 °C (maximum level: 1.8 mg 100 mg−1), glucose is maintained at low levels (0.02 mg 100 mg−1) for 56 days at 0 °C. However, glucose contents increase (maximum level: 0.8 mg 100 mg−1) with decreasing contents of trehalose 84 days after exposure to 0 °C. Glycogen content gradually decreases during cold acclimation. When nondiapausing pupae are acclimatized with a reduction of 5 °C per 5 days to 5 °C from the beginning of pupation until the eyespots move, trehalose content increases (maximum level: 1.0 mg 100 mg−1). Glucose contents in nondiapausing pupae increase before eclosion (0.09 mg 100 mg−1). From these results, diapausing pupae of H. armigera can overwinter in regions where average winter temperatures are higher than 0 °C, but nondiapausing pupae cannot.  相似文献   

13.
《Chronobiology international》2012,29(12):1646-1657
ABSTRACT

We performed large-scale analyses of circadian and infradian cycles of human body temperature, focusing on changes over the day, week, and year. Temperatures (n= 93,225) were collected using temporal artery thermometers from a Boston emergency department during 2009–2012 and were statistically analyzed using regression with cyclic splines. The overall mean body temperature was 36.7°C (98.1°F), with a 95% confidence interval of 36.7–36.7°C (98.1–98.1°F) and a standard deviation of 0.6°C (1.1°F). Over the day, mean body temperature followed a steady cycle, reaching its minimum at 6:00–8:00 and its maximum at 18:00–20:00. Across days of the week, this diurnal cycle was essentially unchanged, even though activities and sleeping hours change substantially during the weekly cycles of human behavior. Over the year, body temperatures were slightly colder in winter than summer (~0.2°C difference), consistent with most prior studies. We propose these seasonal differences might be due to ambient effects on body temperature that are not eliminated because they fall within the tolerance range of the thermoregulatory system. Over the year, bathyphase (daily time of minimum temperature) appeared to parallel sunrise times, as expected from sunrise’s zeitgeber role in circadian rhythms. However, orthophase (daily time of maximum temperature) and sunset times followed opposite seasonal patterns, with orthophase preceding nightfall in summer and following nightfall in winter. Throughout the year, bathyphase and orthophase remained separated by approximately 12 h, suggesting this interval might be conserved. Finally, although 37.0°C (98.6°F) is widely recognized as the mean or normal human body temperature, analysis showed mean temperature was <37.0°C during all times of day, days of the week, and seasons of the year, supporting prior arguments that the 37.0°C standard has no scientific basis. Overall, this large study showed robust and consistent behavior of the human circadian cycle at the population level, providing a strong example of circadian homeostasis.  相似文献   

14.
To investigate the effects of age on thermal sensitivity, preferred ambient temperature (T pref) was compared between old (71–76 years) and young (21–30 years) groups, each consisting of six male subjects in summer and winter. The air temperature (T a) was set at either 20° C or 40° C at commencement. The subject was directed to adjust theT a for 45 min by manipulating a remote control switch to the level at which he felt most comfortable. In the older group, theT pref was significantly lower in trials starting at 20° C than that starting at 40° C in summer. The fluctuation ofT pref (temperature difference between maximum and minimumT a during the last 10 min) was significantly wider in the older group in both summer and winter. Repetition of the same experiment on each subject showed a poorer reproducibility ofT pref in the older group than in the younger group in summer. Tympanic and esophageal temperatures of the older group kept falling throughout the trial starting at 20° C in summer. These results suggest that thermal sensitivity is decreased with advancing age and that thermal perception in the elderly, especially to cold, is less sensitive in summer.  相似文献   

15.
  • Cycling of sensitivity to physical dormancy (PY) break has been documented in herbaceous species. However, it has not been reported in tree seeds, nor has the effect of seed size on sensitivity to PY‐breaking been evaluated in any species. Thus, the aims of this study were to investigate how PY is broken in seeds of the tropical legume tree Senna multijuga, if seeds exhibit sensitivity cycling and if seed size affects induction into sensitivity.
  • Dormancy and germination were evaluated in intact and scarified seeds from two collections of S. multijuga. The effects of temperature, moisture and seed size on induction of sensitivity to dormancy‐breaking were assessed, and seasonal changes in germination and persistence of buried seeds were determined. Reversal of sensitivity was also investigated.
  • Fresh seeds were insensitive to dormancy break at wet–high temperatures, and an increase in sensitivity occurred in buried seeds after they experienced low temperatures during winter (dry season). Temperatures ≤20 °C increased sensitivity, whereas temperatures ≥30 °C decreased it regardless of moisture conditions. Dormancy was broken in sensitive seeds by incubating them at 35 °C. Sensitivity could be reversed, and large seeds were more sensitive than small seeds to sensitivity induction.
  • Seeds of S. multijuga exhibit sensitivity cycling to PY‐breaking. Seeds become sensitive during winter and can germinate with the onset of the spring–summer rainy season in Brazil. Small seeds are slower to become sensitive than large ones, and this may be a mechanism by which germination is spread over time. Sensitive seeds that fail to germinate become insensitive during exposure to drought during summer. This is the first report of sensitivity cycling in a tree species.
  相似文献   

16.
Summary

Gemmules of Eunapius fragilis collected during the fall and kept at 20° C for up to 6 months did not germinate. Freshly collected gemmules, which were dried at 20° C for 7 days and then rehydrated, also exhibited a very low capacity for germination. However, gemmules, stored at 20° C for several months and then dried, showed a much higher level of germination (but usually no more than 50%) after they were returned to pond water. Gemmules, stored at 4–5° C for 4 to 6 weeks, exhibited at most very little germination when they were tested at 20° C. On the other hand, gemmules, which were chilled at 4–5° C for 4 to 6 weeks and then dried for 7 days, underwent rapid and nearly complete germination upon rehydration. These results provide clear evidence for a synergistic effect between low temperature and desiccation in breaking gemmule diapause. It is suggested that in temporary habitats where E. fragilis often survives the dry summer as gemmules, drying may be the primary agent releasing the gemmules from diapause so that they germinate in the fall upon the return of water. A brief exposure of the gemmules to low temperatures before and/or during the dry period may enhance the effect of desiccation.  相似文献   

17.
Metabolic rates of four resting, post-absorptive male adult summer- and winter-adapted captive arctic foxes (Alopex lagopus) were recorded. Basal metabolic rates (BMR) varied seasonally with a 36% increase from winter to summer, while body mass was reduced by 17% in the same period. The lower critical temperature (T 1c) of the winter-adapted arctic fox was estimated to −7°C, whereas T lc during summer was 5°C. The similarity of these values, which are much higher than hitherto assumed (e.g. Scholander et al. 1950b), is mainly due to a significantly (P<0.05) lower BMR in winter than in summer. Body core (stomach) temperature was stable, even at ambient temperatures as low as −45°C, but showed a significant (P<0.05) seasonal variation, being lower in winter (39.3±0.33°C) than in summer (39.8±0.16°C). The thermal conductivity of arctic fox fur was the same during both seasons, whereas the thermal conductance in winter was lower than in summer. This was reflected in an increase in fur thickness of 140% from summer to winter, and in a reduced metabolic response to ambient temperatures below T lc in winter. Another four arctic foxes were exposed to three periods of forced starvation, each lasting 8 days during winter, when body mass is in decline. No significant reduction in mass specific BMR was observed during the exposure to starvation, and respiratory quotient was unchanged at 0.73±0.02 during the first 5 days, but dropped significantly (P<0.05) to 0.69±0.03 at day 7. Locomotor activity and body core (intraperitoneal) temperature was unaltered throughout the starvation period, but body mass was reduced by 18.5±2.1% during these periods. Upon re-feeding, locomotor activity was significantly (P<0.05) reduced for about 6 days. Energy intake was almost doubled, but stabilised at normal levels after 11 days. Body mass increased, but not to the level before the starvation episodes. Instead, body mass increased until it reached the reduced body mass of ad libitum fed control animals. This indicates that body mass in the arctic fox is regulated according to a seasonally changing set point.  相似文献   

18.
Rapid ocean warming is affecting kelp forests globally. While the sporophyte life stage has been well studied for many species, the microscopic life stages of laminarian kelps have been understudied, particularly regarding spatial and temporal variations in thermal tolerance and their interaction. We investigated the thermal tolerance of growth, survival, development, and fertilization of Ecklonia radiata gametophytes, derived from zoospores sampled from two sites in Tasmania, Australia, throughout a year, over a temperature gradient (3–30°C). For growth we found a relatively stable thermal optimum at ~20.5°C and stable thermal maxima (25.3–27.7°C). The magnitude of growth was highly variable and depended on season and site, with no consistent spatial pattern for growth and gametophyte size. Survival also had a relatively stable thermal optimum of ~17°C, 3°C below the optimum for growth. Gametophytes grew to single cells between 5 and 25°C, but sporophytes were only observed between 10 and 20°C, indicating reproductive failure outside this range. The results reveal complex effects of source population and season of collection on gametophyte performance in E. radiata, with implications when comparing results from material collected at different localities and times. In Tasmania, gametophytes grow considerably below the estimated thermal maxima and thermal optima that are currently only reached during summer heatwaves, whereas optima for survival (~17°C) are frequently reached and surpassed during heatwaves, which may affect the persistence and recruitment of E. radiata in a warmer climate.  相似文献   

19.
The cost of living for freshwater fish in a warmer, more polluted world   总被引:1,自引:0,他引:1  
Little of the vast literature on the temperature physiology of freshwater fish is useful in predicting the effects of global warming. In the present review a series of laboratory experiments is reviewed in which rainbow trout (Oncorhynchus mykiss) were exposed to simulated global warming, a 2 °C increment superimposed upon the natural thermal regime, in the presence and absence of two common freshwater pollutants, ammonia and acidity (low pH). Simulated global warming had little effect on the growth and physiology of trout fed to satiation over much of the summer. However, in late summer, when ambient water temperature was at its highest, the addition of 2 °C caused a marked inhibition of appetite and growth, although this impact was not exacerbated by a reduction in food availability. In winter, + 2 °C stimulated metabolism, appetite and growth by approximately 30–60%. Exposure of satiation‐fed trout to low levels of pollutants produced unexpected results. Ammonia (NH3 + NH4+ = 70 μm) stimulated summer growth and energy conversion efficiency, whilst acidification (pH 5.2) increased appetite and growth but caused no disturbance of electrolyte balance. These pollutant effects were additive upon, but not synergistic with, the effects of + 2 °C. The ability of the fish to acclimate to the experimental conditions was tested with acute lethal temperature and/or toxicant challenges. Fish exposed to + 2 °C had a slightly (0.2–1.0 °C) but significantly higher lethal temperature than those exposed to ambient temperature when fed to satiation. However, there was no evidence of acclimation to either ammonia or low pH. It is concluded that the impact of global warming on freshwater fish will vary seasonally. The additional temperature may provide growth benefits in winter, but may threaten fish populations living towards the upper end of their thermal tolerance zone in (late) summer.  相似文献   

20.
The present study was conducted to ascertain the adaptive capability of pigs to different seasons based on changes in serum cortisol and lactate dehydrogenase (LDH) levels, and peripheral blood mononuclear cell (PBMC) heat shock protein 70 (HSP70) mRNA expression. Based on average THI, the seasons were classified as winter (November–February), spring (March–June), and summer (July–October). Hormone cortisol was found to be influenced by season (p < 0.01), age (p < 0.05), and genetics of the animal (p < 0.05). However, level of LDH was not influenced by either of these factors. HSP70 mRNA expression was higher in almost all age groups in crossbred and exotic pigs during summer in comparison to other seasons. Lower HSP70 gene expression was observed in almost all age groups of native pigs in comparison to crossbred and exotic during summer. In conclusion, native pigs were acclimatized for thermal stress in comparison to crossbred and exotic breeds of pigs. Also, the expression pattern of HSP70 gene is breed-specific, most likely due to variations in thermal tolerance and adaptation to different environmental conditions. Both serum cortisol and HSP70 gene may act as reliable biological markers for assessing the adaptive capabilities of pigs to different seasons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号